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Abstract

The aim of this paper is twofold. Starting from the population dynamics literature,
which usually finds the resulting distribution of a trait in a population, according to
some parents’ preferences, I answer the inverted question: Which preference function
would yield into a given trait distribution? I solve this using a continuous trait, in-
stead of finite types of agents. Using this result, I connect this transmission theory
of social traits with the well-known results of Dictator Game (DG) experiments. I
use a specific definition of a Kantian trait applied to DG results, and determine the
distribution of this trait that is commonly found in these experiments. With these two
ingredients, I show that homo-oeconomicus parents have a greater ’dislike’ or disutility
of having offspring with different traits from them compared to their Kantian counter-
parts. This could be a result of myopic empathy being stronger in homo-oeconomicus
parents, driving this dislike of difference.
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1 Introduction

The goal of this paper is twofold. First, using the transmission theory of social traits,
specifically the population dynamics tool-kit, I develop the transmission dynamics of a
trait that lies in a continuous segment. This trait is transmitted using some myopic prefer-
ence of parents (concerning their offspring utility) as in Bisin & Verdier (2000) [1]. Within
this set-up, the literature usually develops to find the equilibrium. I invert this question
and ask: Which parents’ preference function would lead to a given population distribu-
tion? I solve the conditions that have to be met and I also develop an algorithm to solve
for more complex cases. On the other hand, and using the previous results, I connect
the transmission theory of social traits with the results of a well known experiment in
economics, the Dictator Game (DG). In order to do so, I use the experimental results of
the DG in order to infer the distribution of a moral trait in a society. In this case, the
moral trait is what I call a Kantian morale. It is possible to map the responses of DG
experiments into these types of moral traits. Assuming that distributions of actual so-
cieties are the result of a long evolutionary transmission process of these kind of traits,
and using the aforementioned results, I ask if there is such an evolutionary process that
could explain the results of DG experiments. It turns out that such a process could exist
(mathematically speaking), and if this is the case, it would imply that homo-oeconomicus
parents have stronger feelings about having offspring similar to them, than their Kantian
counterparts. This result can turn out to be important when dealing with environmental
challenges, where individual provision of environmental public goods and coordination
are greatly needed in order to sustain a clean environment.

The literature on social trait transmission uses the population dynamics tool kit in
order to model how the next generation will be, according to the present state of the dis-
tribution of traits and the ’forces’ involved in the evolving process. For example, Bisin
& Verdier (2000) [1] suppose that agents of the present generation, using a myopic em-
pathy when considering their offspring’s utility, try to transmit their own traits to their
children.(1) This myopic empathy means that parents evaluate their offspring’s utility ac-
cording to their own. This implies that parents will evaluate their children’s actions using
their own utility functions, which in turn will yield to a lower utility of their offspring,
from the parents’ point of view, if their traits differ from those of their parents. I use
this starting point and I make two modifications: I assume there exists a ’myopic dislike’
function v(·) of the agent towards his or her child’s trait when this trait is different from
their own; and I assume that this trait can be modelled with one variable positioned in
a continuous line between zero and one. This departs from the literature, where usually

(1)This type of trait transmission has also been used in Bisin & Verdier (2001) [2], Hauk & Saez-Marti
(2002) [7] and Saez-Marti & Zenou (2012) [11].
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authors study a specific scenario with a finite number of types of agents, usually being
equal to two or three.

On the other hand, the Dictator Game (DG) is one of the simplest and most replicated
economic experiments in the game theory area. In a nutshell, the experiment consists
of recruiting two people and giving an amount of money (or another valuable thing) to
one of them, chosen randomly. The person who received the money is called the Pro-
poser (or Dictator) and he is asked to share some fraction (or none) of this money with
the second person, called the Responder. After this, the money is split according to this
decision. Therefore, the Responder has no say in this game; we are only interested in
the Proposer’s decision. According to the homo-oeconomicus theory, the Dictator should
never give a dime, but these experiments show a constant and considerable amount of
people sharing some part, even to a 50/50 proportion or more. Different explanations of
this phenomenon exist. Assuming that the Proposer has no direct or indirect relationship
with the Responder, which is usually the experiment set-up, these explanations point to
the idea of a social norm and/or a moral trait, both of which are transmitted between
generations. Following the idea of Cerda (2015) [3] regarding a Kantian morale, where
agents are endowed with a Kantian trait that lies in a continuous spectrum, I can map
the DG responses to a Kantian trait level. In this framework, I define a Kantian person as
an agent maximizing his utility assuming that everyone acts as he does, in contrast with
the homo-oeconomicus agent, who just maximizes his utility in a selfish manner. An
interesting result of the DG experiments is that there is a kind of polarization of the distri-
bution, having roughly one third of the population acting in a purely homo-oeconomicus
way (giving nothing), another third or so sharing half of the pie (or even more), which I
translate to being fully Kantian, and the rest of the people distributed, almost uniformly,
between these two extremes.

With these two ingredients in mind, the objective of this paper is to rationalize the
evolution of the distribution of the Kantian trait to one that could account for the results
of DG experiments. In order to do so, I will first develop a continuous model of popu-
lation dynamics, using the discrete one as a starting point. I assume that there exists a
v(·) function that represents the parent’s ’dislike’ or loss in utility of having a child with
a trait different from their own. The input of the function is the difference of the child’s
trait compared to his or her parent’s trait. A positive amount means that the child is more
Kantian than his or her parent, where a negative one means the inverse case. The v(·)
function does not need to be symmetrical in zero. Actually, we will see that in order to
match the DG experiment’s results, it will not be symmetrical. With this, I find equilib-
rium conditions of the dynamics where the distribution of the population stops evolving.
I am assuming here that the results of the DG experiments are actually in equilibrium,

3

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2015.32



or quite close to it. With this set-up, I show some simple results concerning possible
solutions of v(·) functions, which evolve into a given equilibrium distribution of the pop-
ulation. This distribution lies in the continuous segment [0, 1], and it can have points of
high concentration, modelled with Dirac deltas. The only condition for the distribution is
that its integral has to be equal to one, as in any distribution.

Having the basic results of the equilibrium conditions and some properties of v(·), I
move into finding v(·) function(s) that can make a population distribution evolve into
what we have as results in DG experiments. It turns out that solving this problem ana-
lytically is not plausible for this asymmetric case, and I have to rely on simulations. Here
I develop an algorithm that takes the resulting (final) distribution as input and an initial
guess for v(·); using an iterative process, it converges to a v(·) function that meets the
equilibrium conditions. The paper starts in Section 2 with the basic discrete model and
explains how I transform it to its continuous counterpart. This section also includes some
basic properties of the solutions. In Section 3, I move to the general case, introducing the
algorithm and showing the solution for the case of the DG experiments’ results. Section 4
concludes.

2 The Initial Model

2.1 The starting point

I begin with the trait transmission, using as a starting point the model used by Bisin
& Verdier (2000) [1]. They used what it is called ’vertical’ and ’oblique’ cultural transmis-
sion. The idea is that parents will try to transmit their own trait to their children, which
will be effectively transmitted with some probability τ. If they fail to transmit the trait,
then with probability (1 − τ) the child is matched randomly with an individual of an
old generation and adopts his trait. In their paper, the authors deal with a population
consisting of only two types of people, therefore having the vertical transmission proba-
bilities of τa and τb (one for each type). By calling qt the share of population of type a in
period t (and therefore having (1− qt) the share of population of type b), the transition
probabilities Pij

t of type i having a child of type j, are easily calculated (as in [1]):

Paa
t = τa + (1− τa)qt Pab

t = (1− τa)(1− qt) (2.1)

Pbb
t = (1− τb)(1− qt) Pba

t = (1− τb)qt (2.2)

Given these probabilities, the share of type a in period t + 1 is derived too:

qt+1 = qt + qt(1− qt)[τ
a − τb] (2.3)

4
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This is the standard evolution equation found in population dynamics, as in for ex-
ample Sigmund (1986) [12], Silverberg (1997) [13], Hofbauer & Sigmund (2003) [8], and
Harper (2009) [6]. Still following Bisin & Verdier’s paper, the parent will bear a cost when
socializing their child with a given trait. In this case, this cost is denoted by H(τi), de-
pending on the socialization effort τi. The parent chooses τi that maximize

β[Pii
t Vii + Pij

t Vij]− H(τi) (2.4)

where β is the discount rate and Vij is the utility of a child of type j perceived by a parent
of type i. Again following the literature, I assume that parents act according to ’imperfect
empathy’, meaning that they evaluate their child’s utility through their own imperfect
lenses. This is the point where I depart from the literature. First, I assume that Vij is
constant in time and well-known by the parents of type i. These values do not depend on
the composition of the society, as they do in some cases in the literature. In any case, the
maximization in Eqn. 2.4 does depend on the society composition, through the transition
probabilities Pij

t . Secondly, I ’normalize’ the value of Vij such that instead of being the
child j’s utility viewed in parent i’s eyes, it will be the difference of this aforementioned
utility and the parent’s. In other words, I define V(i, j) = Vij − Vii. Therefore V(i, j) is
the loss of utility that a parent of type i has, when having a child of type j. This will turn
out to be handy in the generalization to n types of agents.(2)

Returning to the population dynamics and observing Eqn. (2.3), it is easy to see that
if both types coexist (q 6= 0 ∧ q 6= 1), then the system stops evolving when τa = τb,
meaning that both types of parent are exerting the same amount of effort in socializing
their children.

2.2 Extending the model

Now I will add more types to the model, then transform it into one with types of peo-
ple lying in a continuous segment. First, we have n types of agents; let us have them
ordered, as for example with the natural numbers. In other words, we have different de-
grees of a trait and the n types just signify the strength of this trait. As explained in the
Introduction, I will relate this type i with how Kantian or homo-oeconomicus a person
is, as in Cerda (2015) [3]. Hence, we can think of having n types 1, 2, . . . , n, where i = 1
means a fully homo-oeconomicus person and i = n means a fully Kantian one. Those in
between are ordered in the sense that if j > i, it means that type j is more Kantian than i,

(2)This modification does not change the maximization problem. It is easy to verify this by replacing the
term Pii

t with 1− Pij
t in Eqn. (2.4). Since Vii is constant with respect to τi, we have the same maximization

program. In the general case, we make Pii
t = ∑n

j=1(1− Pij
t ).
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although this idea can be applied to any trait that allows an ordering.

I also assume that V(i, j) is a ’dislike’ function, as previously mentioned, and that it
increases with the difference of i and j. This means that the more different a child turns
out to be (with respect to his parent), the bigger the disutility that his parent bears. We
also have, following its definition, that V(i, i) = 0, ∀i.

Following the previous notation, let qi
t be the share of type i in the population at time

t. It is now easy to extend the two type equations (Eqns. (2.1) and (2.2)) into n types. We
can now write the transition probabilities:

Pii = τi + (1− τi)qi
t Pij = (1− τi)q

j
t ∀i 6= j (2.5)

We can also construct a matrix V with its elements being: Vij = V(i, j) and the effort
vector ~τ = (τ1, τ2, . . . , τn)T. The maximization problem for each agent j will be:

max
τj

β
( n

∑
i=1

Pji ·V ji
)
− H(τj) (2.6)

Noting that the diagonal of V is full of zeros (since Vii = 0), we can redefine the matrix P
without changing the system of equations by having P = (~1−~τ) ·~qT, where~1 is a vector
of ones and~q is the vector composed by the shares of each type (and hence, the sum of its
elements equals one). With this, the solution of the maximization problem is:

β
∂((P ·VT)j)

∂τj
= −β ∑

i 6=j
qi

t ·V(j, i) = H′(τj) (2.7)

For simplicity, let me assume that H(τ) = 1/2τ2, and since V(j, i) is non-positive, that
V(j, i) = −c · v(j, i), with c > 0 constant and v(j, i) ≥ 0. With all these assumptions, we
can write the solution of the maximization problem:

τj = β · c ∑
i 6=j

qi
t · v(j, i) (2.8)

We can now return to the dynamic of the population. It is easy to show that the general
solution the evolution of qj

t is:(3)

∆qj
t = qj

t+1 − qj
t = (τj − τ) · qj

t with τ =
n

∑
i=1

τiqi
t (2.9)

(3)For details, please see Appendix A.
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It is worth noting that any constant factor that shows up in Eqn. (2.8) will also appear
in τ and therefore in ∆qj

t. This will only change the speed of the evolution process; the
equilibrium will be the same. Following this, we do not need to worry about the constant
factors β and c in Eqn. (2.8). From Eqn. (2.9) it is straightforward that at equilibrium,
when ∆qj

t = 0, for all surviving types j (i.e. q∗j > 0), τj = τ ∀j. In words this means
that the transmission effort τj that, for those types that did not disappear in the evolution
process (q∗j > 0), is the same (or constant). This is the equilibrium condition.

The continuous case

The idea is to extend the model to one with continuous types of agents. Now agents’
type α will lie in the continuous segment [0, 1]. Therefore, the distribution of the popula-
tion will be f (α) ≥ 0, with ∫ 1

0
f (α)dα = 1 (2.10)

The condition that τk = τ for all types of agents can be rewritten as following, using the
result of Eqn. (2.8):

∫ 1

0
v(j, α) f (α)dα = τ(j) = constant ∀j | f (j) > 0 (2.11)

In other words, this means that a population whose dynamic is ’defined’ by the function
v(·) will converge into a distribution f (α) when condition (2.11) is met. As with other re-
sults in population dynamics, there may exist more than one converging distribution f (α)
for a given dynamic, and the final distribution of the population depends on the initial
state of the population distribution (see for example Zeeman (1980) [14] and Friedman
(1998) [5]). Another way to use condition (2.11) is to ask: Which v(·) dynamics (if there
are any) would converge to a population defined by f (α)?

In order to start answering this question, let us try two simple examples. First, let us
answer this question with the following f (α):

f (α) =
1
2

δ(0) +
1
2

δ(1) (2.12)

where δ(x) is Dirac delta function(4) centred in x. This means that f (α) is a polarized pop-
ulation in which half of the people are concentrated in α = 0 and the other half in α = 1. In
order to simplify the formulation, note that v(j, α) is actually a function of the difference
of j and α. Hence, we can rename it v(j− α), which will be handy later on. It turns out

(4)Dirac delta function or δ function is zero everywhere except at zero, with an integral of one over the
entire real line.
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that condition (2.11) simply becomes v(j) + v(1− j) = constant, for j = 0 and j = 1. This
is just because v(0) + v(1) = v(1) + v(0), which is always true, no matter which function
v(·) we use. This means that this polarized distribution is a solution of any v(·) dynamics.

Let us now try with a more complex example:

f (α) = C1 δ(0) + C2 + C1 δ(1) with 2C1 + C2 = 1 (2.13)

In this one we have also a (semi)polarized distribution, where there are people in the
intermediate values of α. These intermediate people are distributed uniformly. Solving
again for condition (2.11)(5), we get the following:

C1(v(j) + v(1− j)) + C2

( ∫ j

0
v(j− x)dx +

∫ 1

j
v(x− j)dx

)
= constant (2.14)

Functional solutions for this integral equation can be hard to find. A way to find (at least)
some of them would be to transform it into a differential equation and try to find some
solutions in that domain. By calling w(j) =

∫ j
0 v(x)dx, and hence w′(j) = v(j), we can

transform the previous equation into:

C1 ·
(
w′(j) + w′(1− j)

)
+ C2 ·

(
w(j) + w(1− j)

)
= constant (2.15)

Since this particular distribution f (α) is symmetric, I focused on searching for solutions
that are symmetric around zero, meaning that v(−j) = v(j). Two solutions for this equa-
tion are:(6)

v(j) = K− a · c · e−a|j| with a = C2/C1 ∧ K = a · c (2.16)

v(j) = b · sin
( (4k− 3)π

2
· |j|
)

with b > 0 (see footnote (6)) ∧ k ∈N (2.17)

Constant K in (2.16) is such that v(0) = 0, and c is an arbitrary positive number. Taking
these solutions into account, we now have a family of solutions, just by making a positive
linear composition of different cases of (2.16) and (2.17). It is worth noting that in the
case of the sine solution (2.17), when adding a higher-order sine (higher values of k), one
should pay attention to its factor, since we want the final v(j) to be an increasing function.
In Fig. 1, some examples for both cases are plotted.

(5)For details, please see Appendix B.
(6)The parameter b in solution (2.17) is linked to C1, C2 and k, and therefore, this is a solution for a specific

combination of C1 and C2. In order to have a generic solution for any C1 and C2, a linear combination of
sines is needed (with different values of k). For details on this point and on the development of the solutions,
please refer to Appendix B.
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Figure 1: Some examples of solutions for v(j).

3 General Solution

It is easy to see that finding an algebraic solution for any given distribution f (α) is
not possible, and therefore I will rely on simulations and a numerical solution. In order
to do so, I propose an algorithm that finds a solution, for a given distribution f (α). The
algorithm starts from an initial guess for v0(j) and converges to a solution of v(j). As
expected, the solution found will depend on the initial guess.

The algorithm is the following:(7) take an initial guess of v(j) = v0(j). Compute
τ0(j) =

∫ 1
0 v0(j − α) f (α)dα for j ∈ [0, 1] (which is the expression in (2.11)). If τ0(j) is

constant(8) (for 0 ≤ j ≤ 1), then v0(j) is a solution. If not, define an adjustment function as:

a0(j) =
1

τ0(1− 2j)
(3.1)

and compute a new guess function v1(j) = a0(j) · v0(j). Compute the new τ1(j) and
restart the process.

The intuition for choosing this adjustment function is the following: We want to find
a v(j) function that, when plugged into the equilibrium condition (Eqn. (2.11)), gives us
a constant value for τ(j). Now, when moving j between zero and one, this integral (the
equilibrium condition) is the multiplication of f (α), and v(j − α) that ’moves’ along it.
Therefore, if we do not get a constant value for τ(j), we want to correct v(j) such that

(7)Properties of the algorithm can be found in Appendix C. I show that if at some iteration k, vk(j)
is a solution, the algorithm converges, and that if it converges, then vk(j) is a solution. I do not show
that the algorithm will always converge, although simulations’ results suggest it does. The algorithm was
programmed in R language and is available upon request.

(8)Or close enough to be constant, depending on the desired precision.
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it does. The multiplicative inverse accounts for this purpose. As to for the factor 2 in j,
this is due to the fact that the range of v(j) is between −1 and 1, where it is only [0, 1] for
τ(j). Finally, the (1− 2j) term, which is just a vertical mirror of the function (expanded
by 2, as just explained), comes from the fact that we are making this ’sweep’ in the inverse
direction (note α in v(j− α), inside the integral in condition (2.11)).

With this algorithm it is possible to find solutions for more complex distribution func-
tions – in particular, cases where the distribution is not symmetric. Returning to the initial
goal, we can find v(j) functions that account for the evolution of a Kantian trait that can
explain, at least in part, the behaviour found in the Dictator Game experiments. Different
papers can be used as sources of information, and I focus on Engel (2011) [4], which is
a meta study on Dictator Games. It is useful for my purpose since it compiles a large
amount of experiments and responses. In Fig. 2 of this work, he shows the result of 328
treatments with full range information, composed of the answers of 20,813 people. I repli-
cate this in Fig. 2a in the coming pages.

Recalling the Introduction, the DG is played between two agents, who will be chosen
randomly to be the Proposer (Dictator) and Responder. We are interested in the Pro-
poser’s action,(9) and each agent has a 50% chance to be elected as such. He or she will
choose to give a share of the money they receive when chosen Proposer. Therefore, in
order to use this information, I will transform the DG responses (give rate) into what I
call Kantian trait. As stated in the Introduction and following Cerda (2015) [3], I can asso-
ciate a Kantian ’measurement’ to each respondent based on his give rate. Therefore, each
person is defined by a α value (his Kantian trait) when he is acting acting in a way that
maximizes the following utility function:

U(·) = (1− α) ·UH(·) + α ·UK(·) (3.2)

where UH(·) is the utility function for an homo-oeconomicus agent and UK(·) is the one
for the Kantian person. A Kantian person is defined as one who maximizes his utility
assuming that everyone acts as he does. One useful feature of this approach is that it
transforms different experiments’ results into a single measurement of what we could
call a Kantian trait. In the case of the DG, the utility function is a function that transforms
money (or the asset used in the DG) into utility. Typically this is a consumption utility
function, with the classic properties of being increasing and concave. Using different util-
ity functions, one can map different give rates (between zero and one half) into Kantian
traits α, which will lie in the segment [0, 1]. To see this, let u(·) be the consumption utility
function in the DG experiment, γ the fraction shared by the Proposer (give rate), and C

(9)The Responder has no say in this game.

10
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the amount received by this agent. Therefore we have, for the homo-oeconomicus agent,
the fully Kantian agent, and the general case, the following maximization programs:

max
0≤γ≤1

1
2

u((1− γ)C)︸ ︷︷ ︸
UH(·)

→ γ∗ = 0 (3.3)

max
0≤γ≤1

1
2

u((1− γ)C) +
1
2

u(γC)︸ ︷︷ ︸
UK(·)

→ γ∗ = 1/2 (3.4)

max
0≤γ≤1

(1− α) · 1
2

u((1− γ)C) + α ·
[1

2
u((1− γ)C) +

1
2

u(γC)
]

(3.5)

The 1/2 value comes from the chance of being chosen as Proposer or Responder. There-
fore, for the homo-oeconomicus case, he or she only evaluates when they are chosen as
Proposer. From the point of view of the Kantian person, who decides assuming that ev-
eryone will act as they do there are gains when being a Proposer (with one half chance)
and Responder (the other half), hence the formulation in (3.4). For the first two cases we
have two straight solutions, no matter which utility function u(·) we use. For the homo-
oeconomicus agent (α = 0), the give rate is zero (γ∗ = 0), as in Eqn. (3.3). For the fully
Kantian agent (α = 1, Eqn. (3.4)), the give rate is equal to one half (γ∗ = 1/2). As for
those agents with 0 ≤ α ≤ 1, the value of γ∗ that solves the maximization program, in
Eqn. (3.5), is:

u′(γC) = αu′((1− γ)C) (3.6)

Therefore, the relationship between α and the pair (γ, C) will depend on the choice of
u(·), as in the following examples:

u(c) = ln(c) → α =
γ

1− γ
(3.7)

u(c) =
1

1− ε
c1−ε → α =

( γ

1− γ

)ε
(3.8)

In these cases, I used a Constant Relative Risk Aversion (CRRA) utility function, with ε as
the measure of risk aversion (ε = 1 in the first case). Given this special form of the utility
function, we find that the relationship does not depend on the amount of money to share,
but only on give rate. In general, give rates do not substantially change with the amount
to share, except when it comes to big ranges in the amount to divide, as in Novakova and
Flegr (2013) [9].(10)

(10)Usually DGs are played with different amounts of money involved, although there is not normally a
substantial difference among these values. The authors investigate a bigger difference, ranging approxi-

11

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2015.32



Concerning the value of ε, figures too different from ε = 1 will produce a loss of
information (when transforming from γ to α). With this consideration, and bearing in
mind that the log function has been widely adopted in the literature, I use an ε equal to
one.(11) Finally, for those people that gave more than one half, we should ask ourselves
if we should discard them when transforming the distribution to a Kantian equivalent
or, as I do, assume that these people are fully Kantian and the extra give comes from
either miscalculation, misunderstanding, another motivation, or a combination of these
factors. This assumption is in line with some detailed results found in O’Garra & Krantz
(2014) [10],(12) as in the follow-up questions (which were open-ended) for dictators. These
questions were aimed at identifying the reasons for their choices and are in line with my
previous statement. In any case, if we were to discard this information, the main result
does not change much (results are included in Appendix D). In Fig. 2 below the original
results of Engel and its transformation to Kantian measurement are plotted.(13) The two

(a) Distribution of give rates, from Engel (2011).
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(b) Distribution in Kantian measurement.

Figure 2: Results from DG meta study and its equivalent in Kantian measurement.

arrows in α = 0 and α = 1 in Fig. 2b are Dirac delta functions representing the two groups
of people that cluster in these values, where the straight line is the density function of peo-
ple with a Kantian measurement α in between. To arrive at this distribution, we have to
find the parameters of this straight line (intercept and slope) that, when converted to their
equivalent give rates γ, best fit the data. It turns out that a quasi-linear decreasing distri-

mately between $1 and $10,000, although their study is a survey and no real money was actually provided.
(11)For some examples and a deeper explanation, please see Appendix E.
(12)I greatly thank Tanya O’Garra of the Center for Research on Environmental Decisions, Earth Institute,

Columbia University for providing me with the data from her Dictator Game study.
(13)I greatly thank Professor Dr. Christoph Engel of the Max Plank Institute for Research on Collective

Goods, for providing me with the data of his meta study on Dictator Games.
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bution fits the data quite well (which was suggested by the original histogram in Fig. 2a);
this distribution does not vary much when we use different transformations between α

and γ. The slope and intercept will change a bit, maintaining a decreasing trend. On the
other hand, the cluster of people giving zero are translated into the Dirac delta in α = 0,
and people giving 50% or more are transformed into the Dirac delta in α = 1. These
two magnitudes are, of course, invariable with respect to the previous transformation.
In the case of the depicted distribution of α (Fig. 2b), I used a simple linear relationship,
although different transformations lead to very similar results.

Setting this distribution as f (α) and using the aforementioned algorithm, I derive
some solutions for v(·), which are depicted in Fig. 3. There are some interesting things
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Figure 3: Examples of solutions for v(·).

to note. First (and somehow expected), the v(·) function is not symmetric in zero. This
comes from the fact the f (α) is not symmetric either, and therefore the only way for v(·)
to match condition 2.11 is not to be symmetric(14). Also, even if we can have different
functions v(·) that meet this condition, both sides of it have a similar shape with respect
to zero (although their ratio is not constant).(15) Following the remark that both sides of
the solutions have a similar shape, it could be that restricting the solution of v(·) to be
concave, departing from zero to both sides, could give us an unique solution, if the goal

(14)An easy way to see this is to check for the extreme agents α = 0 and α = 1.
(15)For the solution depicted in solid line, a guess function vo(j) = |j| was used. For the other two exam-

ples, signified by dashed and pointed lines, more concave curves (always symmetric in zero) were used.
The asymmetry is reached by the algorithm itself.
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were to find only one solution.

Second, an interesting feature to note is that this difference on both sides of v(·) means
that a fully homo-oeconomicus parent has a greater ’dislike’ (or disutility) of having a
fully Kantian child than the way around. Linked to this observation and to the previous
paragraph, we also find that the ratio of the two extremes of v(·), namely v(−1)/v(1),
is quite close to the ratio of the two clusters of people, 0.2981/0.3611, no matter which
solution of v(·) we use (for this given transformation between γ and α).(16) These two
clusters, as was shown in Fig. 2b, agree with the semi-uniform part of the distribution of
f (α).

Recalling that having population dynamics with direct and oblique transmission means
that a parent will exert effort depending on the actual distribution of the population and
the shape of the function v(·), we could think of this function as being a distillation of
the parents dislike or disutility of having a child with a different trait compared to theirs.
Therefore, this means that the result of having a population with a (slight) majority of
homo-oeconomicus people comes, at least in part, from the fact that these people consider
being Kantian to be a much worse option. One line of thought that could be explored is
the following: it seems that homo-oeconomicus people are selfish compared to Kantian
ones, since the latter care for other people. Therefore, it seems reasonable to think that
homo-oeconomicus people use a stronger myopic empathy when evaluating their off-
spring’s utility, as compared to Kantian parents. Since the essence of the function v(·)
comes from this myopic empathy, this explanation fits well the difference between the
positive and negative side of the function v(·): They are the homo-oeconomicus dislike
and the Kantian one, respectively. It would be interesting to better understand the social
and psychological reasons behind this point, although this vein of thought escapes the
scope of the present paper.

Another compelling reason to explore this last point more precisely would relate to
understanding how to change a society that is not exhibiting green behaviour into a green
one, in line with the topic discussed in Cerda (2015) [3]. If there is a way to modify the
function v(·) through education, active information or another social manner, then the
society would become more Kantian, which would in turn make it greener.

(16)Using other transformations between γ and α, as in Appendix E will change this ratio, and in that case
this statement might not hold true any more. This might signal that the distribution shown in Fig. 2b would
be a better fit.
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4 Conclusions

The present work connects the trait transmission mechanism to the well-known re-
sults in Dictator Games experiments. To do so, first I develop a continuous version of a
trait transmission process and I solve for the question: Which trait ’transition function’
v(·) would make a population evolve into a specific distribution of that trait? To answer
this question, I find the condition that has to be met and develop an algorithm for those
cases where analytical solutions are not possible.

Then by mapping the results of the DG into a Kantian trait distribution, I rephrase
previous question into the following one: What force is behind this observed distribution
of a specific trait, that trait being in this case the the Kantian morale? This force has to do
with parents’ desire, more or less, of having their offspring resemble themselves. It turns
out, as was already clear in the trait transmission literature, that this force shapes the con-
stitution of the society. In the specific case of a Kantian trait and using DG experiments’
results, I find that homo-oeconomicus people have a stronger dislike or disutility of hav-
ing a child with a different trait as compared to their Kantian counterparts. Following the
origin of the parent’s will behind the trait transmission, we know that myopic empathy is
(at least one) reason for wanting our children to be as we are. Hence, homo-oeconomicus
people seem to be more myopic than the Kantian ones, which make sense when we con-
sider the definitions of being Kantian and homo-oeconomicus. Homo-oeconomicus peo-
ple tend to be more selfish, where Kantian ones are more empathic. It turns to be ironic,
assuming all these assumptions as true, that Kantian people, in caring more for their fel-
lows, are jeopardizing their own (evolutionary) existence.

As mentioned in the previous section, it would be interesting to better understand the
origins of the function v(·), the one responsible for the transmission forces that shape our
society, at least in the Kantian arena. A better understanding is not only appealing for its
own merits, but could also help to figure out how to move societies to become greener. A
second line of future research could to find out a more general mathematical solution of
the function v(·).
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A General evolution equation for a n type population

Having an n-type population, let us call qi
t the share of type i at time t. Recalling the

definition of the transition probabilities given in Eqn. (2.5), we have:

Pii = τi + (1− τi)qi
t Pij = (1− τi)qj

t ∀i 6= j (A.1)

Therefore, the share of type i at time t + 1 will simply be:

qi
t+1 = Piiqi

t + ∑
j 6=i

Pjiqj
t

=
(

τi + (1− τi)qi
t

)
qi

t + ∑
j 6=i

(
(1− τ j)qi

t

)
qj

t

= qi
t

(
τi + (1− τi)qi

t + ∑
j 6=i

(1− τ j)qj
t

)
= qi

t

(
τi +

n

∑
j=1

(1− τ j)qj
t

)
= qi

t

(
τi +

n

∑
j=1

qj
t −

n

∑
j=1

τ jqj
t

)
qi

t+1 = qi
t

(
τi + 1− τ

)
∆qi

t = qi
t+1 − qi

t = qi
t (τ

i − τ) with τ =
n

∑
i=1

τiqi
t

B Solving for an specific f (α)

I find some solutions v(j) that solve problem defined by the Eqn. (2.11), rewritten here:

∫ 1

0
v(j, α) f (α)dα = τ(j) = constant ∀j | f (j) > 0 (B.1)

for f (α) = C1 δ(0) + C2 + C1 δ(1) with 2C1 + C2 = 1. One way to solve this integral equa-
tion is to make use of non-standard calculus and performing the computations within
the hyperreals (approach that is more straightforward). With this set-up, we have that
f (0) (where the first Dirac delta is centred) is equal to a infinite hyperreal, such that
f (0) · ε = C1, with ε being an infinitesimal hyperreal. In the same fashion, we have
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that f (1) · ε = C2. Hence,

τ(j) =
∫ 1

0
v(j, α) f (α)dα = v(j) f (0) ε + C2

∫ j

ε
v(j− α)dα + C2

∫ 1−ε

j
v(j− α)dα + v(1− j) f (1) ε

= v(j) C1 + C2

( ∫ j

ε
v(j− α)dα +

∫ 1−ε

j
v(j− α)dα

)
+ v(1− j) C1

(returning to the real domain) = C1
(
v(j) + v(1− j)

)
+ C2

( ∫ j

0
v(j− α)dα +

∫ 1

j
v(j− α)dα

)
(changing variable inside integrals) = C1

(
v(j) + v(1− j)

)
+ C2

( ∫ j

0
v(x)dx +

∫ 1−j

0
v(x)dx

)
(replacing w(j) =

∫ j

0
v(x)dx) = C1

(
v(j) + v(1− j)

)
+ C2

(
w(j) + w(1− j)

)
(B.2)

which has to be constant (equilibrium condition).

Finding general solutions for this problem can be a colossal task. One approach to
find some solutions is to look for them in following equations:

C1 v(j) + C2 w(j) = constant for 0 ≤ j ≤ 1 (B.3)

C1 v(j) + C2 w(1− j) = constant for 0 ≤ j ≤ 1 (B.4)

It is easy to see that solutions for (B.3) and (B.4) are also solutions for (B.2). This approach
obviously restricts the possible solutions to be found, but it also eases that task at hand.

Using (B.3), I found that the family of functions v(j) = K− a · c · e−a|j| (with a = C2/C1)
is a solution for f (α) = C1 δ(0) +C2 +C1 δ(1) with 2C1 +C2 = 1. I verify this by checking
that the following expression is constant:

τ(j) = C1
(
v(j) + v(1− j)

)
+ C2

(
w(j) + w(1− j)

)
= C1

(
v(j) + v(1− j)

)
+ C2

( ∫ j

0
v(x)dx +

∫ 1−j

0
v(x)dx

)
= C1

(
K− ac e−a|j| + K− ac e−a|1−j|)+ C2

( ∫ j

0
K− ac · e−a|x|dx +

∫ 1−j

0
K− ac · e−a|x|dx

)
= 2KC1 − acC1e−aj − acC1e−a(1−j) + C2

(
Kx
∣∣∣j
0
+ ce−ax

∣∣∣j
0
+ Kx

∣∣∣1−j

0
+ ce−ax

∣∣∣1−j

0

)
= 2KC1 − acC1e−aj − acC1e−a(1−j) + C2

(
Kj + ce−aj − c + K(1− j) + ce−a(1−j) − c

)
= 2KC1 + C2K− 2C2c + ce−aj(C2 − C1a) + e−a(1−j)(C2 − C1a)

= 2KC1 + C2K− 2C2c (since a = C2/C1)

= constant
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In a similar way, it can be shown that v(j) = b · sin
(
(4k−3)π

2 · |j|
)

is a solution. In this case,
we focus on solving for (B.4). Because of the properties of the trigonometric functions, in
particular their derivatives and reflections in π/2,(17) we are able to find these types of
solutions. The idea is to make the range of [0, 1] of j coincide, with a change of variable,
with [0, π/2], [0, 5π/2], etc. The proof follows the same line as the one before and it is left
to the reader.

C Properties of the Algorithm

As stated in Section 3, I show that if at some iteration k, vk(j) is a solution, the algo-
rithm converges, and that if it converges then vk(j) is a solution.

Let vk(j) be a solution. This means that τk(j) is constant for 0 ≤ j ≤ 1. Therefore, the
term 1/τk(j) is also constant, and hence the adjustment function ak(j) = 1

τk(1−2j) is also
constant. Let call this last constant K. From the iteration process we see that:

vk+1(j) = ak(j) · vk(j) = K · vk(j)

It is easy to see that K = 1. If not, having K < 1, would yield to vk(j) = 0, when k → ∞,
which would mean τ∞(j) = 0 and then a∞(j) = ∞, which is a contradiction. Similarly, if
K > 1 we get that a∞(j) = 0, again a contradiction. Therefore, K = 1.

On the other hand, if the iteration converges, it means that vk+1(j) = vk(j) for k bigger
than some fixed number. This means that ak(j) = 1, which in turn means that τk(j) =

constant, proving that vk(j) is a solution.

D Alternative Case: Disregarding give rates over 0.5

Here I find the v(·) solution for the Kantian trait of the DG, using a truncated version
of Engel’s (2011) [4] data. As stated in Section 3, here I perform the same operations, but I
discard all give rates bigger than 50%. To do this, I drop this information and recalculate
the fractions of give rates within this new universe. I then transform this information into
its Kantian distribution equivalent, and finally I find the solution function v(·) using the
algorithm previously mentioned. The histogram of the truncated information (give rate)
and some solutions are plotted in the following figure. To produce these solutions, the
same initial guesses for v0(·) were used as in Section 3. As we can observe, the solution
v(·) is once again asymmetrical, although its ’sides’ are yet alike. The difference between

(17)Meaning, for example, that sin(π/2− θ) = cos(θ).
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(a) Truncated distribution of give rates, using Engel
(2011).
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(b) Solutions of v(·) for the corresponding Kantian
distribution.

Figure 4: Truncated data for give rates and some solutions of v(·).

this and the function depicted in Fig. 3 (Page 13) is that in this one, the two sides (v(+)

and v(−)) are more different, following the stronger dissimilarity of the new clusters in
α = 0 and α = 1 (Fig. 4a). However, the essential result holds: the homo-oeconomicus
agent has a stronger dislike of having a Kantian child than the opposite case.
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E Using different utility functions for transforming give
rate into Kantian trait.

As stated in Section 3, choosing different utility functions in Eqn. (3.6) produces differ-
ent transformations from give rate γ into Kantian trait α. Always using a CRRA function,
I depict different transforms for different values of ε, their risk aversion measure:
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Figure 5: Examples of transforms from give rate to Kantian trait.

As one can observe from Fig. 5, using measures of risk aversion too different from
ε = 1 produces a loss of information. For example, with ε = 4, values of give rate be-
tween zero and 0.25 yield to almost the same Kantian trait, around zero. We find a similar
result if we use bigger values, as in the case of ε = 1/4.
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I turn now into how the distribution of the Kantian trait α could be, depending on the
choice of ε and then, how this would translate info the solution of v(·). In the following
figures I plot the case with ε = 0.9 and ε = 1:
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(a) Distribution in Kantian measurement with ε = 0.9
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(b) Solution v(·), with ε = 0.9

Figure 6: Results using ε = 0.9
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(a) Distribution in Kantian measurement with ε = 1
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(b) Solution v(·), with ε = 1

Figure 7: Results using ε = 1
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