The impact of randomness on the distribution of wealth: Some economic aspects of the Wright-Fisher diffusion process
Nicolas Bouleau, Christophe Chorro

To cite this version:

HAL Id: halshs-01162452
https://halshs.archives-ouvertes.fr/halshs-01162452v2
Submitted on 20 Jul 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The impact of randomness on the distribution of wealth: Some economic aspects of the Wright-Fisher diffusion process

Nicolas BOULEAU, Christophe CHORRO

2015.24R
Version révisée
The impact of randomness on the distribution of wealth: Some economic aspects of the Wright-Fisher diffusion process

Nicolas Bouleau * Christophe Chorro†

First version March 2015
This version July 2015

Abstract

In this paper we consider some elementary and fair zero-sum games of chance to study the impact of random effects on the wealth distribution of \(N\) interacting players. Even if an exhaustive analytical study of such games between many players may be tricky, numerical experiments highlight interesting asymptotic properties, in particular, we underscore that randomness plays a key role in concentrating the wealth to the extreme with a single player. From a mathematical perspective, we interestingly recover for small and high-frequency transactions some diffusion limits extensively used in population genetics. Finally, the impact of small tax rates on the preceding dynamics is discussed for several regulation mechanisms. We show that taxation of income is not sufficient to overcome the extreme concentration process contrary to a uniform taxation of capital that stabilizes the economy preventing agents to be ruined.

Keywords: Wealth distribution, Fair zero-sum games, Wright-Fisher diffusions, Inequalities, Impact of modes of taxation.

JEL classification: C32, C63, D31.

1 Introduction

1.1 Motivations

Since the seminal work of the Italian economist and sociologist Vilfredo Pareto [42], researchers have paid a lot of attention to describe, analyze and model wealth accumulation processes. In 1953, Champernowne [11] was the first to propose an exogenous multiplicative Markov chain model of stochastic wealth returns to generate Pareto’s shape of wealth distributions paving the way to the so-called proportional random growth approach (See for example, [34] [35] or [5]). More recently, equilibrium models were developed to study the characteristics of the wealth accumulation process as the result of agents’ optimal consumption-savings decisions (See for example, [4] or [23]).

We consider in this paper an economy simplified to the extreme and reduced to random games between agents, the games being fair in expectation. This situation may be seen as a basic model of randomness in the physical world or modeling the effect of volatility on prices, considering that at least for the first order of magnitude the games may be considered with zero expectations.

* Cired, Ecole des Ponts-ParisTech.
† Corresponding author. Centre d’Economie de la Sorbonne, Maison des Sciences Economiques, 106 bd de l’Hôpital, 75013 Paris, France. Email: cchorro@univ-paris1.fr.
focus is therefore on social and collective phenomena appearing in this purely speculative framework with or without regulation mechanisms. In some sense our approach may be related to multiplicative Random Asset Exchange Models recently introduced in Econophysics (See [30] or [48], Chap. 8) to describe the evolution of wealth distribution in an economically interacting population. In fact, in these models, the interactions between two agents simply result in a well-chosen random redistribution of their assets without taking into account the possible underlying microfoundations. We follow this line to emphasize that, in our simple model, social inequalities are driven primarily by chance, rather than by differential abilities.

Our main objective is to study the dynamic of some elementary Markov games of chance to highlight the impact of random effects on the wealth distribution of interacting players. Surprisingly, even if zero-sum games of chance (supposed to be fair in expectation) are played at any round, wealth distribution converges toward the maximal inequality case. This qualitative behavior has already been empirically observed in the literature (See [47] Chap. 15, [3], [20] and [28]) but few papers have provided a theoretical framework to prove that luck alone may generate extreme disparities in wealth dynamics. Notable exceptions are [6] and [7] for the so-called Yard sale model in Econophysics and [35], [23] and [5] where investors are faced with an uninsurable idiosyncratic investment risk. In this paper, similar conclusions on wealth condensation are both supported by numerical and mathematical arguments at the very least for small and high-frequency transactions where Wright-Fisher diffusion processes naturally appear as limit models. To our knowledge, this is the first time this so-called family of stochastic processes, widely studied in theoretical population genetics (See [16] or [17]), is used for wealth concentration problems providing new interesting economic interpretations of these classical dynamics. We also investigate the impact of some regulation mechanisms on the qualitative behavior of the considered models, in particular, our findings provide a very simple agent-based framework for understanding how the Beta distribution, widely used in the literature as descriptive models for the size distribution of income ([44], [8]), arises in wealth repartition problems.

Let us start by some elementary definitions and examples.

1.2 Fair elementary zero-sum games of chance (FEG)

We consider two players playing during \(n \in \mathbb{N}^* \) consecutive rounds a zero-sum game of chance. If we denote by \((P^i_k)_{k \in \{1, \ldots, n\}}\) the payoff process (defined on the probability space \((\Omega, \mathcal{A}, \mathbb{P})\)) of the player \(i \in \{1, 2\} \), starting from a constant initial wealth \(X^i_0 \), we have \(P^1_k = -P^2_k \) (zero-sum game) and the wealth process is given by

\[
X^i_k = X^i_0 + \sum_{1 \leq j \leq k} P^i_j.
\]

By game of chance we mean, in this paper, a game whose outcome depends on some random experiments. Contrary to what happen in game theory, we do not consider strategic interactions between players. The evolution of wealth only depends on a random redistribution mechanism between the interacting players through the payoff process. At this stage, our approach may be related to the Random Asset Exchange Models recently introduced in Econophysics (See [30] or [48], Chap. 8) to describe the evolution of wealth distribution in an economically interacting population. In fact, the economy is considered here in its simplest form: every time two players interact, wealth is transferred from one the other according to some elementary fixed rules without taken into considerations their neoclassical foundations. Moreover, the zero-sum hypothesis implies that no wealth is imported, exported, generated, or consumed, wealth can only change hands. Working in a closed economic system will allow us to think in terms of proportions of wealth instead of absolute values.
Definition 1. We say that the preceding zero-sum game of chance is fair in expectation on $(\Omega, \mathcal{A}, \mathbb{P})$ (and we will write **FEG** for fair elementary game) if $\forall k \in \{1, \ldots, n\}, \mathbb{E}_\mathbb{P}[P_k] = 0$.

Remark: Let us emphasize that considering games fair in expectation is philosophically the most natural if we have no additional reason for the presence of biases, and that it was indeed the first historical approach of the purse taken by Louis Bachelier in [2] who supposed that "the expectation of the speculator is zero".

A game is fair in expectation as soon as the random variables P_k^i are symmetric (e.g. for the classical two players fair coin flipping game where each player wins or losses one unit), but this condition is not necessary (and not really economically relevant) as we are going to see in the following one stage (n=1) examples:

- **Example 1:** Calabash game. (See [10], p. 57)

 In its simplest form, this traditional African game also known as the gourd game is between two players. Each player uses seeds of a certain color and all the seeds have an identical form. At each turn, each player puts into the gourd as many seeds as he wants. The gourd is a sort of large hollowed-out melon where care has been taken to leave inside a stem on which a single seed can sit. The gourd is shaken until one of the seeds comes to rest on this stem and the player of the corresponding color collects all the seeds in the gourd. After this, players exchange the seeds so as to keep the same color. For the one stage game, if we denote by N_i^1 the number of seeds bet by player i ($0 < N_i^1 \leq X_0^i$), we have

 $$P_1^1 = N_2^1 1_{U_1 \leq \frac{X_1^i}{N_1^i+N_2^i}} - N_1^1 1_{U_1 > \frac{N_1^i}{N_1^i+N_2^i}}$$

 where U_1 follows a uniform distribution on $[0, 1]$. The game is a FEG.

- **Example 2:** Digital options.

 Suppose that player 1 sells (or buys) to player 2 a cash-or-nothing call option with strike K and maturity T on a risky asset whose value at time T is denoted by S_T. If the no-arbitrage transaction price is associated to an equivalent martingale measure Q and if we suppose that the risk-free rate r is equal to zero, we classically have (See [13], Chap. 2)

 $$P_1^1 = (\mathbb{E}_Q[1_{S_T \geq K}] - 1)1_{S_T \geq K} + \mathbb{E}_Q[1_{S_T \geq K}]1_{S_T < K}$$

 and the game is fair in expectation on (Ω, \mathcal{A}, Q).

 In the two next examples, we suppose that $X_0^1 + X_0^2 = 1$ (reasoning in proportion of the total initial wealth $X_0^1 + X_0^2$ instead of using absolute values) and that each player bet a fixed amount a of its initial wealth1.

- **Example 3:** The Yard-Sale model. (See [6] and [28])

1For real world transactions, it is reasonable to consider the multiplicative exchange case (contrary to the additive one) where the amount of money bet by each economical agent is proportional to its wealth because wealthy people tend to invest more than the less wealthy. The parameter $1 - a$ may be seen as a measure of the saving propensity supposed to be constant among all the participants to ensure an identical involvement. For example, this kind of mechanism is considered in [9], [28] or [30] in the framework of Econophysics.
In the so-called Yard-Sale model, each player may win or loose with the same probability a fraction \(a \) of the wealth of the poorest. In other words,

\[
P_i^1 = a \left[\min(X_i^0, 1 - X_i^0)1_{U_1 \leq 0.5} - \min(X_i^0, 1 - X_i^0)1_{U_1 > 0.5} \right]
\]

where \(U_1 \) follows a uniform distribution on [0,1] and the game is fair in expectation.

- Example 4: Elementary market games with proportional bets.

Let player \(i \) bet a fixed amount \(a \) of its initial wealth and win the game with probability \(X_i^0 \), we have

\[
P_i^1 = a(1 - X_i^0)1_{U_1 \leq X_i^0} - aX_i^01_{U_1 > X_i^0}
\]

where \(U_1 \) follows a uniform distribution on [0,1] and the game is fair in expectation. This model may be seen as a randomized version of the Calabash game (See Appendix A) and is similar to the greedy proportional exchange model mentioned in the discussion of [30].

The remainder of the paper is organized as follows. In Section 2, we provide a numerical study of elementary market games with proportional bets\(^2\) and show, in agreement with the conclusions of [24], that in our model, economic mobility is decreasing in inequality and increasing in tax rate. In Section 3, we theoretically study our two players Markov chain game to prove high concentration phenomena and, for small transactions, we find its continuous time limit by transforming the time scales and state spaces appropriately. In Section 4, the results are extended in the presence of capital tax rates where the symmetric Beta distribution appears as a steady state probability of the system. Section 5 concludes. Some mathematical proofs are postponed in Appendix where we extend the two players analysis to the \(N \) players case.

2 Numerical study of elementary market games with proportional bets

We consider in this section a population of \(N = 100 \) players\(^3\) with uniformly distributed initial wealth: \(\forall i \in \{1, \ldots, 100\}, X_i^0 = 1/100 \). For each stage we select randomly and independently two players that play an elementary market game with proportional bets (See Example 4) with \(a = 10\% \). Even if FEG are played at each round, the randomness clearly induces disparities in wealth between economical agents.

In Figure 1, we represent the distribution of the wealth and of its increasing rearrangement after a large number of steps. We can see that inequalities become greater and greater while a poor may become richer and a rich may become poorer at each stage\(^4\). In particular the percentage of players that own less than the average wealth increases from around 50\% after 100 transactions to around 90\% after 100000: poverty traps appear, as underlined in Figure 2. To support this intuition, we represent in Figure 3 the evolution of the Gini coefficient [25] and of the Lorentz curve [37] as functions of the number of transactions. We remark without ambiguities that the repartition of

\(^2\)A similar analysis has been performed for the Yard-Sale model with analogous conclusions. Nevertheless, one of the main advantages of elementary market games with proportional bets is their natural extension to the \(N \)-agent case (See Appendix B).

\(^3\)Analogous results have been numerically obtained for \(N = 1000 \) players even if the number of simulations increases drastically.

\(^4\)The emergence of inequalities is also numerically observed in [47] for others fair games of chance even if the convergence toward the maximal inequality situation is not reported.
Figure 1: The first line (resp. the second line) represents the distribution of the wealth (resp. the distribution of the increasing rearrangement of wealth) of the $N = 100$ players after $n = 100$ (first column), $n = 1000$ (second column), $n = 10000$ (third column) and $n = 100000$ (fourth column) FEG starting from uniformly distributed initial wealth.

wealth converges, according to these classical indicators, toward the maximal inequality case even if elementary exchange mechanisms are fair in expectation5.

Figure 2: Five individual wealth trajectories: creation of poverty traps

5In simulations that are not reported here, we can also observe that the Gini coefficient of the economy in an
Figure 3. Gini coefficient (left) and Lorentz curve (right). The value of the Lorentz curve $L(p)$ represents the percentage of the poorer players that possess p percent of the total wealth. For 100, 1000, 10000 and 100000 transactions, the Lorentz curve moves away further and further from the line of perfect equality. The Gini coefficient equals $1 - 2A$ where A is the integral of the Lorentz curve. A Gini coefficient of zero expresses perfect equality. A Gini coefficient of one expresses maximal inequality.

We have exhibited numerical evidences indicating that our model gives rise to a situation of strong concentration in which all the wealth ends up in the hands of a single oligarch in spite of an uniform initial repartition of wealth and the hypothesis that fair games are played each round. Here, randomness is the only source of inequalities. Recently, similar results have been numerically obtained in the literature for the Yard-sale model ([6], [28]) and for slight different frameworks where households, identical in terms of their patience and their abilities, are faced with an uninsurable idiosyncratic investment risk ([23], [5]).

In a second step we study the impact of a simple redistribution mechanism on the preceding dynamics: we consider, at any stage, a proportional capital tax rate b that is collected and uniformly reallocated to the two players. If we come back to Example 4, the one stage payoff function becomes

$$P^i_1 = -bX^i_0 + a(1 - X^i_0)1_{U_1 \leq X^i_0} - aX^i_11_{U_1 > X^i_0} + \frac{b}{2}.$$

We perform a numerical study similar to the untaxed case: in a population of $N = 100$ players with uniformly distributed initial wealth: $\forall i \in \{1, ..., 100\}$, $X^i_0 = 1/100$, we select randomly and independently two players that play an elementary market game with proportional bets and taxes with $a = 10\%$ and $b = 1\%$. The impact of the small tax parameter b is substantial as observed comparing Figures 1 and 4. The wealth distribution remains mostly uniform stages after stages, the effect of randomness is regulated\(^6\). In particular the percentage of players that own less than the average wealth stabilizes around 60%. In Figure 5, we also see that the proportion of wealth owned at each time by the richest player goes to 1 in the untaxed case and is around 0.03 when $b = 1\%$. Similarly, we have represented in Figure 6 the impact of b on the Gini coefficient of the population after $n = 100000$ transactions. Even for very small values of b the Gini coefficient reduces drastically. Nevertheless, even if we consider very high tax rates, the Gini coefficient of the economy seems to be stable around 0.1 and never converges toward the egalitarian situation.

\(^6\)A similar mechanism of taxation is numerically studied in [3] with analogous conclusions.
Figure 4: The first line (resp. the second line) represents the distribution of the wealth (resp. the distribution of the increasing rearrangement of wealth) of the $N = 100$ players after $n = 100$ (first column), $n = 1000$ (second column), $n = 10000$ (third column) and $n = 100000$ (fourth column) FEG starting from uniformly distributed initial wealth with $a = 0.1$ and $b = 0.01$.

Figure 5: Proportion of wealth owned at each time by the richest player in the $N = 100$ players and $n = 100000$ transactions game. The top curve corresponds to the untaxed case and lower curve to a tax rate of 1%.
Figure 6: Dependence of the Gini coefficient on the tax rate \(b \) in a population of \(N = 100 \) players after \(n = 100000 \) transactions.

To conclude this section, we examine the economic mobility implied by the model with or without taxes to capture the capacity of individuals to move across the wealth distribution through time. Accordingly, we consider two mobility indicators. First we represent in Figure 7 the rank of the wealthiest agent in the population,

Figure 7: Identification of the wealthiest player in the \(N = 100 \) players and \(n = 100000 \) transactions game with and without capital taxes.

then, we measure in Figure 8 the Pearson correlation function \(C(t) \) of the rank of the players:
∀ \(t > 5000 \)

\[
C(t) = \frac{\sum_{i=1}^{N} (R_i(t) - \frac{N}{2})(R_i(5000) - \frac{N}{2})}{\sqrt{\sum_{i=1}^{N} (R_i(t) - \frac{N}{2})^2 \sum_{i=1}^{N} (R_i(5000) - \frac{N}{2})^2}}
\]

where \(R_i(t) \) is the rank of the \(i \)-th player at time \(t \).

![Figure 8: Pearson correlation functions as a function of \(t \) corresponding (from the top to the bottom) to a tax rate \(b \) of 0, 1, 5 and 10%. A strong correlation coefficient over time corresponds to a lack of economic mobility.](image)

When the capital tax rate increases, we observe that richest individuals tend not to remain the richest ones over time. Concentration of wealth and mobility are intrinsically linked in our approach. As already numerically observed in [24], we can conclude that economic mobility is decreasing in inequality and increasing in tax rate.

In the next part we start the mathematical study of elementary market games with proportional bets\(^8\) to theoretically recover the extreme concentration phenomena empirically observed.

3 Mathematical study of elementary market games with proportional bets

3.1 Elementary market games with proportional bets: the two players case

Let us consider the repeated version of the elementary market game with proportional bets described in Example 4. If we denote by \(X_n^i \) the wealth of player \(i \) after \(n \) transactions, we have \(X_n^1 + X_n^2 = 1 \) (zero-sum game) and

\(^{7}\)Since our model starts from a situation where all the players own the same proportion of the wealth, we first run 5000 transactions and then compute the Pearson correlation function \(C(t) \) of the rank of the players at time \(t > 5000 \) with respect to the ranks observed at time \(t = 5000 \).

\(^{8}\)The same elementary study may be done for the Yard-Sale model of Example 3 and will be the object of a companion paper that is interesting by itself because it allows to recover some classical results of Econophysics using a purely probabilistic approach.
\[X_{n+1}^i = X_n^i + a(1 - X_n^i)1_{U_{n+1} \leq X_n^i} - aX_n^i1_{U_{n+1} > X_n^i} \]

where \((U_k)_{k \in \mathbb{N}^*}\) is a sample of the uniform distribution on \([0, 1]\). The sequence \((X_n^i)_{n \in \mathbb{N}}\) is a Markov chain with

\[
E[X_{n+1}^i \mid X_n^i] = (X_n^i + a(1 - X_n^i))X_n^i + (X_n^i - aX_n^i)(1 - X_n^i) = X_n^i.
\]

Thus \((X_n^i)_{n \in \mathbb{N}}\) is a non-negative and bounded martingale that converges almost-surely and in \(L^p\) \((1 \leq p < \infty)\) toward a random variable \(X_{\infty}\) that is invariant with respect to the transition probability of the chain given by

\[P(x, dy) = x\delta_{x+a(1-x)}(dy) + (1-x)\delta_{x-ax}(dy) \]

where \(\delta_\alpha(dy)\) is the Dirac mass at the point \(\alpha \in \mathbb{R}\). Passing to the limit in the relation

\[
E[(X_{n+1}^i - X_n^i)^2 \mid X_n^i] = X_n^i a^2 (1 - X_n^i)^2 + (1 - X_n^i) a^2 (X_n^i)^2 = a^2 X_n^i (1 - X_n^i)
\]

we deduce that \(X_{\infty} \in \{0, 1\}\) and from \(E[X_{\infty}^i \mid X_n^i] = X_n^i\) that \(X_{\infty}\) follows a Bernoulli distribution of parameter \(X_0^i\).

After a infinite number of transactions, one player concentrates all the wealth as empirically observed in the numerical exercise of Section 2. Nevertheless it is easy to see that it is not possible for one player to be ruined after a finite number of rounds because the random variable \(X_n\) ranges across the interval \([(1-a)^nX_0^i, 1+(1-a)^n(X_0^i-1)]\). If we want to obtain theoretical approximations of almost-bankruptcy times, analytic computations quickly become prohibitive. In the next part, we give a precise answer to this question at the very least in the case of small and high-frequency transactions.

Remark: In the repeated version of the elementary calabash game described in Example 1, the situation is different, due to the fact that bets are discrete. Let \(X_n^i\) be the wealth of player \(i\) after \(n\) transactions and \(N_n^i\) the number of seeds bet by player \(i\) at stage \(n\) with 0 < \(N_n^i\) < \(X_n^i\) if \(X_n^i \neq 0\) and \(N_n^i = 0\) otherwise (the game is finished when one of the player is ruined). We have \(X_n^1 + X_n^2 = N\) (zero-sum game) and

\[X_n^i = X_0^i + \sum_{1 \leq n \leq k} P_j \]

where

\[P_n = N_n^2 1_{U_n < \frac{N_1^2}{N_1^2 + N_2^2}} - N_n^1 1_{U_n > \frac{N_1^2}{N_1^2 + N_2^2}} \]

and where \((U_n)_{n \in \mathbb{N}^*}\) is a sample of the uniform distribution on \([0, 1]\). If we denote by \((\mathcal{F}_n)_{n \in \mathbb{N}^*}\) the filtration generated by the \((U_n)_{n \in \mathbb{N}^*}\), supposing that the processes \((N_n^1)_{n \in \mathbb{N}^*}\) and \((N_n^2)_{n \in \mathbb{N}^*}\) are predictable, the process \((X_n^i)_{n \in \mathbb{N}}\) is a bounded martingale fulfilling

\[E[(X_{n+1}^i - X_n^i)^2 \mid \mathcal{F}_n] = N_{n+1}^1 N_{n+1}^2. \]

Thus, in this case, one of the players is almost-surely ruined in finite time.

3.2 Elementary market games with proportional bets: Continuous time case

In this section we prove that the sequence of stochastic processes obtained from the preceding Markov chains by transforming the time scales and state spaces appropriately\(^9\) weakly converges to a diffusion

\(^9\)The convergence result we obtain in this section is in some sense an answer to the following remark of Sheng in [47] p. 493: "Then there arise some difficulties in the conversion problem, which place some restrictions on the choice of the size and number of bets."
process, the latter being more amenable to analysis.

Let \(f : \mathbb{R} \to \mathbb{R} \) be a measurable and bounded mapping. For all \(a \in \mathbb{R}_+ \) and \(x \in]0, 1[\) we define the generator \(A_a \) of the elementary market game with parameter \(a \):

\[
A_a[f](x) = \mathbb{E}[f(X_1^1) - f(X_0^1) \mid X_0^1 = x] = xf(x + a(1 - x)) + (1 - x)f(x - ax) - f(x).
\]

In particular, when \(f \) is of class \(C^\infty \) with a compact support in the interval \([0, 1[\), we obtain from Taylor expansion that \(\frac{1}{a}A_a f \) uniformly converges toward \(\frac{1}{2}x(1 - x)f''(x) \) when \(a \) goes to 0.

Considering the process \((Z_t^a)_{t \in \mathbb{R}_+} \) that is the rescaled (at frequency \(a^2 \)) continuous time linear interpolation of the sequence \((X^n_1)_{n \in \mathbb{N}} \) with \(X_0^1 = x \):

\[
\begin{align*}
Z_{na^2}^a &= X_n^1 \quad \forall n \geq 0 \\
Z_{(n+\theta)a^2}^a &= Z_{na^2}^a + \theta(Z_{(n+1)a^2}^a - Z_{na^2}^a) \quad \theta \in [0, 1] \quad \forall n \geq 0,
\end{align*}
\]

we obtain from classical arguments (See for example [49] Chap. 11) the uniform weak convergence of \((Z_t^a)_{t \in \mathbb{R}_+} \) when \(a \) goes to 0 toward the diffusion process \((X_t^1)_{t \in \mathbb{R}_+} \), associated to the infinitesimal generator

\[
A[f](x) = \frac{1}{2}x(1 - x)f''(x),
\]

that is the unique strong solution of the Stochastic differential equation

\[
dX_t = \sqrt{X_t(1 - X_t)}dB_t \quad 0 < X_0 < 1
\]

where \(B_t \) is a standard Brownian motion\(^{10}\).

The diffusion process (2) is known in mathematical genetics as the Wright-Fisher process. It is often encountered as diffusion approximation of classical discrete stochastic models used in populations genetics (See [16] Chap. 7 or [17] Chap. 3)\(^{11}\). To our knowledge, only few applications of this process (also known as Jacobi diffusion) exist in the economic or financial literature. Notable exceptions are [12] to model interest rates, [33] in the framework of exchange rates modeling, [26] that uses its multi-dimensional extension (See Appendix B) to capture the dynamics of discrete transition probabilities and [40] that proves that the distribution of market weights is related to Wright-Fisher diffusions in the volatility-stabilized market models of [21] (See also [22] for a survey concerning stochastic portfolio theory). One of the interesting aspect of the present paper, is to provide a new and simple Markov chain approximation of (2) in the framework of wealth repartition problems.

\(^{10}\)This result of convergence requires the existence and the unicity of the martingale problem associated to the generator \(A \) that is equivalent to the weak existence and the unicity in distribution of the solution of the associated stochastic differential equation. Here, (2) having H"{o}lderian coefficients of order \(\frac{1}{2} \), from the Yamada-Watanabe theorem (See [45] p. 360) we even deduce the strong existence and unicity of the solution of (2).

\(^{11}\)If we consider a fixed population of size \(N \) (representing for example genes) with individuals that can be of two different types (two alleles), the simplest neutral Wright-Fisher model of evolution assumes that generation \((k + 1)\) is formed from generation \(k \) by choosing \(N \) genes at random with replacement. If we denote by \(Y_{n+1}^N \) the number of individuals of type 1 in generation \(n \), we have

\[
P(Y_{n+1}^N = i | Y_n^N = j) = C_N^i \left(\frac{i}{N} \right)^i \left(1 - \frac{i}{N} \right)^{N-i}
\]

and the process \(X_t^{(N)} = \frac{1}{N} Y_t^{(N)} \) weakly converges toward the Wright-Fisher diffusion (See [27]). Moreover, in this case, the fixation time corresponding to the disappearance of type 2 individuals is finite almost surely (contrary to what happens for the ruin time in elementary games with proportional bets).
The points 0 and 1 are absorbing since the constant processes 0 and 1 are solutions of (2). The process \((X_t)_{t \in \mathbb{R}_+}\) is then a continuous and uniformly integrable martingale that converges almost-surely toward 1 with probability \(X_0\) and toward 0 with probability \((1 - X_0)\). The mapping

\[u(x) = -2[(1 - x) \log(1 - x) + x \log x] \]

being null at the boundary of \([0, 1]\) and fulfilling \(Au = -1\) on \([0, 1]\), we obtain from the Dynkin’s formula (See [15] Chap. 13) that

\[u(x) = \mathbb{E}[T \mid X_0 = x] \]

where \(T\) is the hitting time of the boundary \(\{0, 1\}\). Thus, \(T\) is in \(L^1\) and so almost-surely finite. In particular starting from \(X_0 = \frac{1}{2}\), the mean hitting time is \(2 \log 2\).\(^{12}\)

Remark: Using the same approach, we can even show that \(e^T\) is in \(L^1\). In fact, the mapping \(h(x) = x(1 - x)\) fulfills \(Ah = -h\), thus defining \(\xi = h + u + 1\) we have \(AE + h + 1 = 0\) and \(\lim \xi = 1\) at the boundary of \([0, 1]\). From the proof of Th. 13.17 in [15] we deduce that

\[\xi(x) = \mathbb{E}_x[\exp\left\{ \int_0^T \frac{1 + h(X_s)}{\xi(X_s)} \right\} ds]. \]

The result follows because the continuous mapping \(\frac{1 + h(x)}{1 + u(x) + h(x)}\) is bounded below (its minimum is reached at \(\frac{1}{2}\) and is equal to \(\frac{5}{5 + 8 \log(2)}\)).

In the Markov chain case, it is not possible for one player to be ruined after a finite number of rounds. When we pass to the limit, the stepsize of the chain is shortened proportionally to \(a^2\) that goes to zero. If for small \(\varepsilon > 0\), \(T_\varepsilon\) denotes the Markov chain exit time from \([\varepsilon, 1 - \varepsilon]\), when \(a\) is small enough, \(T_\varepsilon\) should\(^{13}\) be of order \(u(x)/a^2\) that is a decreasing function of \(a\) (the ruin time is smaller for more speculative games). This intuition is confirmed by the simulations presented in Table 1.

<table>
<thead>
<tr>
<th>(a)</th>
<th>"Theoretical" ruin time</th>
<th>Empirical ruin time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>139</td>
<td>144</td>
</tr>
<tr>
<td>0.08</td>
<td>216</td>
<td>218</td>
</tr>
<tr>
<td>0.05</td>
<td>552</td>
<td>529</td>
</tr>
<tr>
<td>0.03</td>
<td>1533</td>
<td>1464</td>
</tr>
<tr>
<td>0.01</td>
<td>13900</td>
<td>13294</td>
</tr>
</tbody>
</table>

Table 1: Theoretical and empirical ruin times for elementary market games with proportional bets: The theoretical ruin time corresponds to the Wright-Fisher approximate \(\frac{2 \log(2)}{a^2}\) while the empirical one is obtained as the average first exit time from \([\varepsilon, 1 - \varepsilon]\) obtained for 1000 independent runs of the Markov chain game with \(X_0 = X_2 = 0.5\).

\(^{12}\)For the Yard-Sale model of Example 3, a similar study may be performed. Nevertheless, in this case, the mean hitting of the associated diffusion approximation is almost surely infinite; the concentration phenomena are slower in this model.

\(^{13}\)This intuition is reinforced from the following theoretical result: if \(T_\varepsilon^a\) denotes the exit time of the process \(Z^a\) from \([\varepsilon, 1 - \varepsilon]\), \(T_\varepsilon^a\) converges in distribution when \(a\) goes to zero toward the corresponding diffusion exit time ([19] Problem 3, Chap. 10).
4 The buffering effect of a tax rate in the economy

In this section we study the impact of a small tax rate on the dynamic of the preceding Markov chain. One of the simplest hypothesis is to consider a proportional capital tax rate that is collected at any stage and uniformly reallocated to the players. With a tax rate b (b fulfilling $0 < a + b < 1$), the transition of the Markov chain becomes

$$X_{n+1}^i = (1 - b)X_n^i + a(1 - X_n^i)1_{U_{n+1} < X_n^i} - aX_n^i1_{U_{n+1} > X_n^i} + \frac{b}{2}$$

where $(U_k)_{k\in\mathbb{N}^*}$ is a sample of the uniform distribution on the unit interval\(^{14}\). This game remains a zero-sum game that is not a FEG in general. In fact, we deduce easily from the preceding dynamic that

$$\mathbb{E}[X_{n+1}^1 - X_n^1] = -b(1 - b)^n(X_0^1 - \frac{1}{2}).$$

Thus the game is FEG if and only if $X_0^1 = \frac{1}{2}$ (uniform initial wealth) when $b > 0$ and favors the poorest player at any step\(^{15}\) for different initial endowments. The state space of this Markov chain being compact there exists at least one invariant distribution that is not a priori unique\(^{16}\).

In spite of its simplicity, it is a priori difficult to obtain explicitly one invariant measure of such a Markov chain when $b \neq 0$\(^{17}\). Therefore, we study the diffusion limit of the model for small and high-frequency transactions. Following a similar approach as in Section 3.2, if $f : \mathbb{R} \rightarrow \mathbb{R}$ is a measurable and bounded mapping, $\forall a \in \mathbb{R}_+$ and $x \in [0, 1[$ the generator A_a of the elementary taxed market game with parameters a and b becomes

$$A_a[f](x) = \mathbb{E}[f(X_1^1) - f(X_0^1) \mid X_0^1 = x] = xf(1 - b)x + a(1 - x) + \frac{b}{2} + (1 - x)f((1 - b)x - ax + \frac{b}{2}) - f(x).$$

In particular, when f is of class C^∞ with a compact support in the interval $[0, 1[$, we obtain from Taylor expansion that $\frac{1}{a^2}A_a f$ uniformly converges toward

$$A[f](x) = \frac{1}{2}x(1 - x)f'' + \frac{\lambda}{2}(1 - 2x)f'$$

when a goes to 0 and $b = \lambda a^2$. The infinitesimal generator A is associated to the diffusion

$$dX_t = \sqrt{X_t(1 - X_t)}dB_t + \frac{\lambda}{2}(1 - 2X_t)dt \quad 0 < X_0 < 1 \quad (3)$$

where B_t is a standard Brownian motion. This diffusion process is classically known (See [16] Chap. 7.2) as the one dimensional Wright-Fisher diffusion with mutations, the mutation rates being identical

\(^{14}\)Another natural choice for the redistribution mechanism is to impose the following dynamic

$$X_{n+1}^i = (1 - ba)X_n^i + a(1 - X_n^i)1_{U_{n+1} < X_n^i} - aX_n^i1_{U_{n+1} > X_n^i} + \frac{ba}{2},$$

in this case the parameter b may be interpreted as a proportional transaction cost. All the results of this section remain valid taking $b = \lambda a$ instead of $b = \lambda a^2$.

\(^{15}\)Nevertheless, it may be seen as asymptotically FEG because $\mathbb{E}[X_{n+1}^1 - X_n^1] \rightarrow 0$.

\(^{16}\)The proof of the unicity of such a stationary distribution is not crucial for our purpose because this distribution won’t be explicitly known. Moreover, any of these possible invariant distributions will be well approximated, for small and high-frequency transactions, by the unique invariant stationary distribution of the Wright-Fisher diffusion with mutations (See the proof of the Th. 2.2 of [19] p. 418).

\(^{17}\)The same holds for the Wright-Fisher Markov chain with mutations.
we obtain the following FEG
\[A[f](x) = \frac{1}{2} x(1-x)f'' + b(x)f', \]
the scale function is given by
\[s(x) = \int_{1/2}^{x} \exp\left[-\int_{y}^{x} \frac{2b(z)}{z(1-z)} dz\right] dy. \]
Thus, the process being recurrent (0 or 1 are inaccessible) if and only if \(s(0+) = -\infty \) and \(s(1-) = +\infty \) (See [45] Ex. 3.21 p. 298), for the Wright-Fisher diffusion with mutations no players are ruined in finite time as long as \(\lambda > 1 \). When it is strictly greater than 1, the tax rate \(\lambda \) induces a diversity in the economy similar to the mutation rate impact in the genetic mixing. For the Markov chain game, this condition implies \(b > a^2 \). For example, when \(a = 10\% \) the only condition to stabilize the economy is to impose a tax rate strictly greater than the realistic value of 1%.

Remark: Interestingly, it is easy to see in our economy simplified to the extreme that a tax on the income yields a completely different asymptotic result from a tax on the owned capital. In fact, if we are interested in the players’ ruin problem (equivalent to know if the points \(0^+ \) and \(-\infty \) are in a mixed situation where wealth concentration occurs during relatively long periods but is tempered by mobility effects. Here, contrary to our untaxed case, the economy never collapses even if the social mobility induced by the drift of the diffusion process remains smaller than the one observed in the presence of the capital tax rate.

\[X^i_{n+1} = X^i_n + a(1 - \frac{b}{2})(1 - X^i_n)1_{U_{n+1} < X^i_n} - a(1 - \frac{b}{2})X^i_n1_{U_{n+1} > X^i_n}. \]

Here, we simply recover the untaxed dynamic with changed parameters, thus, when \(b \) is a constant, the diffusion limit is related to the Wright-Fisher diffusion without mutations up to the factor \((1 - \frac{b}{2})^2 \):
\[dX_t = (1 - \frac{b}{2})^2 \sqrt{X_t(1-X_t)} dB_t. \]

In particular, the parameter \(b \) is not sufficient to prevent the convergence toward the maximal inequality case and its only effect is to slow down the ruin. In fact, when \(T_b \) is the hitting time of the

\[^{18}\text{In order to obtain at the limit the Wright-Fisher diffusion with different mutation rates}
\]
\[dX_t = \sqrt{X_t(1-X_t)} dB_t + \frac{\lambda_2}{2} (1 - X_t) dt - \frac{\lambda_1}{2} X_t dt \]
we simply have to consider two different tax rates \(b_i = \lambda_i a^2 \) for the players.

\[^{19}\text{In [23], the authors study the characteristics of the wealth accumulation process as the result of agents’ optimal consumption-savings decisions when investors are faced with an uninsurable idiosyncratic investment risk represented by independent geometric Brownian motions with the same coefficients. In particular, for the two players case, the proportion } X^i_1 \text{ of the total wealth in the economy held by the first player at time } t \text{ is given by the following diffusion process}
\]
\[dX^i_1 = \Gamma^2 X^i_1(1-X^i_1)(1-2X^i_1) dt + \sqrt{2\Gamma} X^i_1(1-X^i_1) dB_t \]
where \(\Gamma \) is the instantaneous standard deviation of his return. Interestingly, this diffusion is once again a classical model of population genetics known as the Karlin model (See for example [29] Eq. (37)) with a stabilizing drift toward \(\frac{1}{2} \) sufficiently strong to make \(\{0, 1\} \) inaccessible. In this case, \(X^1 \) oscillates back and forth between the boundaries but it takes a long time to move from the neighborhood of one boundary to the other. With respect to our study, we are in a mixed situation where wealth concentration occurs during relatively long periods but is tempered by mobility effects. Here, contrary to our untaxed case, the economy never collapses even if the social mobility induced by the drift of the diffusion process remains smaller than the one observed in the presence of the capital tax rate.
boundary \{0, 1\} for the associated diffusion, we have by analogy with the untaxed case

\[E[T_b \mid X_0 = x] = -\frac{2}{(1 - \frac{b}{2})^2}[(1 - x) \log(1 - x) + x \log x]. \]

In [43] where players follow optimal consumption-bequest plans the same distinction has been pointed out between capital and income taxes with similar conclusions.

In the presence of tax \((\lambda > 0)^{20}\), looking for an invariant measure \(m\) on \([0, 1]\) fulfilling

\[\int_0^1 A[f](x)g(x)dm(x) = \int_0^1 A[g](x)f(x)dm(x) \]

for \(f\) and \(g\) of class \(C^\infty\) with a compact support in the interval \([0, 1]\), we find a Beta probability distribution

\[m(dx) = \frac{[x(1 - x)]^{(\lambda-1)}}{\beta(\lambda, \lambda)}dx \]

that is symmetric with respect to the uniform initial wealth case \(x = \frac{1}{2}\).

If \(\lambda > 1\), there is a strong restoring force in the direction of \(x = \frac{1}{2}\) because the tax rate is high, if \(\lambda = 1\), the Lebesgue measure on \([0, 1]\) is invariant and if \(0 < \lambda < 1\), the restoring force is partially offset, the density of the invariant measure approaches infinity near the boundaries 0 and 1 remaining of finite mass. In all these cases, the Wright-Fisher diffusion is ergodic and converges in distribution toward the invariant probability measure. In Figure 9, we have represented the invariant density functions of the Wright-Fisher diffusion with mutations for different values of the tax rate \(\lambda\) to compare them with the empirical distribution of \(X_{100000}^1\) in the Markov chain market game with \(b = \lambda a^2\). In both cases we start from a maximal inequality case \((\lambda = 0)\) to be more and more concentrated around \(x = \frac{1}{2}\) when \(\lambda\) increases.

![Figure 9: Invariant density function of the Wright-Fisher diffusion with mutations for different values of \(\lambda\) (left part) and empirical distribution (using 1000 independent Monte Carlo simulations) of \(X_{100000}^1\) in the Markov chain market game with parameters \(a = 0.1\) and \(b = \lambda a^2\) (right part).](image)

\(^{20}\)When \(\lambda < 0\) (meaning that a fixed tax is collected and redistributed proportionally to the wealth of the players), we can prove following [41] that the limit of the continuous time wealth process almost surely belongs to the vertices of the simplex.
To complete the analogy between the Markov chain market game and the limiting Beta distribution we compare their associated Gini coefficients and small wealth probabilities (that is the probability that at least one player owns less than a fixed small ε). For this purpose, remind that (See [44]) the Gini coefficient associated with the Beta(λ, λ) distribution is given by

$$Gini(\lambda) = \frac{2\beta(2\lambda, 2\lambda)}{\lambda\beta(\lambda, \lambda)^2}.$$

Moreover, at stationarity, the small wealth probability fulfills

$$m\left(\{X^1_t \leq \varepsilon\} \cup \{X^2_t \leq \varepsilon\}\right) \sim \frac{2\varepsilon^\lambda}{\beta(\lambda, \lambda)\lambda} = p(\lambda).$$

In particular, when $\varepsilon < \frac{1}{4}$, from the properties of the Beta function (See [1] Chap. 6), we can prove\(^{21}\) that p is naturally a decreasing function of λ (the small wealth probability decreases when the tax rate increases) and that, in accordance with intuition,

$$\lim_{\lambda \to 0} p(\lambda) = 1 \text{ and } \lim_{\lambda \to \infty} p(\lambda) = 0,$$

when λ is small, one player concentrates, with probability one, an arbitrary big proportion of the wealth while a sufficiently strong capital taxation almost surely prevents this concentration to occur. In Table 2 (resp. Table 3) we compare, for different values of λ, the Gini coefficient (resp. small wealth probability) obtained from the Beta(λ, λ) distribution and the empirical Gini coefficient (resp. empirical small wealth probability) obtained from 1000 independent realizations of X^1_{100000} in the Markov chain market game with $b = \lambda a^2$: the results are close together.

<table>
<thead>
<tr>
<th>λ</th>
<th>Theoretical Gini coefficient</th>
<th>Empirical Gini coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.33</td>
<td>0.32</td>
</tr>
<tr>
<td>2</td>
<td>0.26</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>0.17</td>
<td>0.18</td>
</tr>
<tr>
<td>8</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>10</td>
<td>0.12</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Table 2: Comparison between the Gini coefficient obtained theoretically from the Beta(λ, λ) distribution and the empirical Gini coefficient obtained from 1000 independent realizations of X^1_{100000} in the Markov chain market game with $a = 0.1$ and $b = \lambda a^2$.

\(^{21}\)If we denote by ψ_n the polygamma function of order n (See [1] Chap. 6), we have $\log(p(\lambda))' = \log(\varepsilon) + g(\lambda)$ where

$$g(\lambda) = -2(\psi_0(\lambda) - \psi_0(2\lambda)) - \frac{1}{\lambda} = \psi_0(\lambda + \frac{1}{2}) - \psi_0(\lambda + 1) + 2\log(2).$$

Since $g'(\lambda) = \psi_1(\lambda + \frac{1}{2}) - \psi_1(\lambda + 1)$ we can see that g is an increasing function (ψ_1 being a decreasing one) bounded by $2\log(2)$. Thus, if $\varepsilon < \frac{1}{4}$, p is strictly decreasing. From $\beta(\lambda, \lambda) \sim \frac{2\varepsilon^\lambda}{\lambda^2}$ and $\beta(\lambda, \lambda) \sim \frac{2\varepsilon^\lambda}{\sqrt{\lambda}^\lambda}$ we deduce easily that

$$\lim_{\lambda \to 0^+} p(\lambda) = 1 \text{ and } \lim_{\lambda \to \infty} p(\lambda) = 0.$$

16
Table 3: Comparison between the small wealth probability ($\varepsilon = 0.1$) obtained theoretically from the Beta(λ, λ) distribution and the empirical small wealth probability obtained from 1000 independent realizations of X_{100000}^1 in the Markov chain market game with $a = 0.1$ and $b = \lambda a^2$.

To conclude this section, let us remark that the Beta distribution ([44]) and some of its generalizations (See [38] or [39]) have been widely used in the literature as descriptive models for the size distribution of income and are interesting alternatives to Pareto-like distributions. Here we find a very simple agent-based model for understanding how it can naturally appear in wealth repartition problems through fair elementary games and we see that the parameter of the obtained symmetric (about $\frac{1}{2}$) Beta distribution is related to the underlying capital tax rate.

In the technical appendix B, we extend the results of Sections 3 and 4 to the N players case with similar conclusions concerning the extreme concentration process without redistribution and concerning the impact of proportional capital taxes leading to an invariant Dirichlet distribution.

5 Conclusion

We have shown that a simplified economy of N agents who exchange by zero-sum games fair in expectation converges in the almost sure sense to the situation where a single agent concentrates all the wealth underlying that social inequalities may be driven primarily by chance, rather than by differential abilities. The mathematical study can be pushed more accurately by considering the limit diffusion process obtained for small and frequent transactions and we recover at the limit some classical models used in population genetics: the Wright-Fisher diffusions.

We also prove, in our framework, that the presence of a tax on the owned capital prevents the convergence to the extreme inequality even for a low tax level. The economy converges in this case to a random situation which mixes the respective fortunes of the agents. Surprisingly, when income taxes are considered, the dynamic is drastically different: a tax on the income only slows down the dynamics towards the extreme inequality.

Let us mention finally that this study can be extended thanks to other classical mathematical tools from population genetics that provide an interesting enlightening, namely the passage to an infinite population represented by a measure. This gives a new economic interpretation of the so-called Fleming-Viot process ([17]) that achieves a kind of zoom on the situation where only a few agents are not yet ruined.

22These results are postponed to the end of the document to make it easier to read and because the proofs for N players follow along the same lines as before.

23Such a representation has been used as soon as in 1982 by G. Debreu for another problem in [14] p. 125 et seq.
Acknowledgments

We are grateful to Geal Giraud for extensive feedback and numerous suggestions that substantially improved this paper.

Appendix A: Elementary market games with proportional bets may be seen as randomized versions of the calabash game of Example 1

Let us take in the framework of Example 1, $X_0^1(N) = [p_N N]$ (where $[x]$ denotes the integer part of x and where $(p_N)_{N \in \mathbb{N}^*}$ is a sequence in $[0,1]$ that converges toward $p \in [0,1]$) and

$$N_i^1(N) = 1 + \sum_{k=1}^{X_0^1(N)-1} H_k^i$$

where the $(H_k^i)_{(i,k) \in \{1,2\} \times \mathbb{N}^*}$ are independent random variables such that H_k^i follows a Bernoulli distribution of parameter $\frac{a X_0^1(N) - 1}{X_0^2(N) - 1}$. Thus, we obtain a one stage calabash game where the players randomly select the number of seeds with bets that are proportional in expectation to their initial wealth because $E[N_1^1(N)] = a X_0^1(N)$. From

$$X_1^1(N) = X_0^1(N) + N_1^2(N) 1_{U_1 \leq \frac{N_1^1(N)}{N_1^1(N) + N_2^1(N)} - N_1^1(N) 1_{U_1 > \frac{N_1^1(N)}{N_1^1(N) + N_2^1(N)}}},$$

if we suppose that the sequence $(H_k^i)_{(i,k) \in \{1,2\} \times \mathbb{N}^*}$ is independent of U_1 we have $\forall t \in \mathbb{R}$

$$E \left[e^{it \frac{X_1^1(N)}{N}} \right] = e^{it \frac{X_0^1(N)}{N}} E \left[e^{it \frac{N_1^2(N)}{N} \frac{N_1^1(N)}{N_1^1(N) + N_2^1(N)} + e^{it \frac{N_1^1(N)}{N} \frac{N_2^1(N)}{N_1^1(N) + N_2^1(N)}}} \right].$$

Since

$$\sum_{k=1}^{\infty} Var[H_k^i] < \infty \text{ and } \frac{1}{N}E \left[\sum_{k=1}^{N} H_k^i \right] \rightarrow a,$$

we deduce from the Kolmogorov’s strong law of large numbers (See [46], Th. 2.3.10) that $\frac{1}{N} \sum_{k=1}^{N} H_k^i$ converges almost surely toward a and that $\frac{N_1^1(N)}{N}$ (resp. $\frac{N_2^1(N)}{N}$) converges almost surely toward ap (resp. $a(1-p)$). Thus, by the dominated convergence theorem

$$E \left[e^{it \frac{X_1^1(N)}{N}} \right] \rightarrow e^{it (1-a)(1-p) + e^{it (a(1-p)+p)}} p$$

and $(\frac{X_0^1(N)}{N}, \frac{X_1^1(N)}{N})$ converges in distribution toward the elementary market game with proportional bets of Example 4.

Appendix B: N players games

The aim of this mathematical appendix is to extend the study of the preceding dynamics (with or without tax) to the N players case. This can be achieved via different transaction mechanisms but we suppose here that one player plays against all his opponents at each stage and we consider a
proportional tax on capital uniformly distributed among all the players. In other words, if we denote by $X_n = (X_1^n, \ldots, X_N^n)$ the vector of wealth after n rounds we have $\forall n \in \mathbb{N}, \forall i \in \{1, \ldots, N\}$,

$$X_{n+1} = (1 - (a + b))X_n + ae_i + \frac{b}{N}$$

with $a + b < 1$ and where e_i denotes the vector with a 1 in the ith coordinate and 0’s elsewhere. It is easy to see by induction that starting from a point X_0 in the simplex

$$\left\{ x = (x_1, \ldots, x_N) \in \mathbb{R}^N \mid \sum_{i=1}^{N} x_i = 1, x_i \geq 0 \right\},$$

$(X_n)_{n \in \mathbb{N}}$ stays in the simplex.

Now we study the asymptotic behavior of the vectorial Markov chain $(X_n)_{n \in \mathbb{N}}$ with or without tax, we present only the main lines that follow the 2 players case.

The case without tax, $b = 0$

The vector $(X_n)_{n \in \mathbb{N}}$ is once again a bounded martingale that converges almost surely and in $L^p 1 \leq p < +\infty$, toward X_∞ that is invariant with respect to the transition of the chain. From

$$\mathbb{E}||X_{n+1} - X_n||^2 \mid X_n = \sum_{i=1}^{N} \sum_{j \neq i} a^2 X_n^j + a^2(1 - X_n^i)^2 = a^2(1 - \sum_{i=1}^{N} (X_n^i)^2)$$

we deduce that X_∞ almost surely belongs to the vertices of the simplex and that $X_\infty = e_i$ with probability X_0^i.

To study the ruin times of the players, we consider the game with small and high frequency transactions: If F is a function from \mathbb{R}^N into \mathbb{R} of class C^∞ with compact support we have

$$A_a[F](x) = \mathbb{E}[F(X_1) - F(X_0) \mid X_0 = (x_1, \ldots, x_N)] = \sum_{i=1}^{N} x^i F((1 - a)X_0 + ae_i) - F(X_0).$$

Using the Taylor formula we prove that $\frac{1}{a} A_a[F](x)$ uniformly converges, when a goes to 0, toward

$$A[F](x) = \frac{1}{2} \sum_{i=1}^{N} x^i (1 - x^i) F''_{ij}(x) - \sum_{i \neq j} x^i x^j F''_{ij}(x) = \frac{1}{2} \sum_{i=1}^{N} x^i (1 - x^i) F''_{ij}(x) - \frac{1}{2} \sum_{i \neq j} x^i x^j F''_{ij}(x).$$

Letting $\delta_{ij} = 1$ if $i = j$ and 0 otherwise, the infinitesimal generator A becomes

$$A[F](x) = \frac{1}{2} \sum_{i \neq j} x^i (\delta_{ij} - x^j) F''_{ij}(x).$$

This generator is classically associated to the N-allele Wright-Fisher diffusion $(X_t)_{t \in \mathbb{R}^+}$ (See [16] Chap. 8) and the rescaled continuous time linear interpolation at frequency a^2 of the sequence $(X_n)_{n \in \mathbb{N}}$ converges in distribution toward $(X_t = (X_1^t, \ldots, X_N^t))_{t \in \mathbb{R}^+}$ fulfilling $\forall i \in \{1, \ldots, N\}$

$$dX_i^t = X_i^t \sqrt{X_i^t dB_i^1} + X_i^t \sqrt{X_i^t dB_i^2} + \cdots + (X_i^t - 1) \sqrt{X_i^t dB_i^1} + \cdots + X_i^t \sqrt{X_i^N dB_i^N}$$

19
where \((B^1, \ldots, B^N)\) are independent standard Brownian motions.\(^{24}\)

Following [36], we remark that the mapping \(u_N\) defined on the simplex by

\[
 u_N(x) = -2 \left[\sum_{i=1}^{N} \varphi(x^i) - \sum_{i<j} \varphi(x^i + x^j) + \sum_{i<j<k} \varphi(x^i + x^j + x^k) - \cdots \\
 \cdots + (-1)^N \sum_{i_1<j_2<\cdots<j_{N-1}} \varphi(x^{j_1} + x^{j_2} + \cdots + x^{j_{N-1}}) \right]
\]

where \(\varphi(x) = x \log x\), vanishes on the faces of the simplex and fulfills \(Au_N = -1\) on its interior.\(^{25}\) Thus, if \(T_N\) denotes the first hitting time of the faces of the simplex (that is the time when a first player is ruined),

\[
 \mathbb{E}[T_N | X_0 = (x_1, \ldots, x_N)] = u_N(x).
\]

In particular, starting from the uniform situation \(X_0 = (\frac{1}{N}, \ldots, \frac{1}{N})\) we have

\[
 \mathbb{E}[T_N | X_0 = (\frac{1}{N}, \ldots, \frac{1}{N})] = u_N(X_0) = 2 \sum_{k=1}^{N-1} (-1)^k C_N^k \varphi(\frac{k}{N})
\]

and this quantity converges toward 0 when \(N\) goes to infinity.\(^{26}\) In the same way, the mapping

\[
 w_N(x) = -2 \sum_{i=1}^{N} (1-x^i) \log(1-x^i)
\]

also fulfills \(Aw_N = -1\) on the simplex except for the vertices and is zero on the vertices. Thus if \(S_N\) denotes the first hitting time of the vertices (that is the time when all the players except one are ruined), \(S_N\) is almost-surely finite and we have

\[
 \mathbb{E}[S_N | X_0 = (\frac{1}{N}, \ldots, \frac{1}{N})] = -2N(1-\frac{1}{N}) \log(1-\frac{1}{N}) \rightarrow 2.
\]

Remark: Using the mapping \(h_N(x) = \sum_{i=1}^{N} x^i(1-x^i)\), we can prove in the spirit of Section 3.2 that \(S_N\) has a finite exponential moment.

The case \(b \neq 0\)

Supposing that \(b = \lambda a^2 > 0\), we can prove that the generator \(A_a\) associated to the \(N\) players game with proportional bet and tax converges toward

\[
 A_\lambda[F](x) = \frac{1}{2} \sum_{i,j=1}^{N} x^i(\delta_{ij} - x^i)F''_{ij}(x) + \sum_{i=1}^{N} \frac{\lambda}{N} (1-Nx_i)F'_i(x)
\]

that is the infinitesimal generator associated to the \(N\)-allele Wright-Fisher diffusion with a uniform mutation rate of \(\frac{\lambda}{N}\) (See [16] p. 314). The unique invariant probability measure of the associated diffusion is given by the following Dirichlet distribution:

\(^{24}\)Classically this convergence holds when the limit diffusion has a unique weak solution. For \(N = 2\), we have seen that the result is a simple consequence of the Yamada-Watanabe theorem (See [45] p. 360) for one dimensional diffusions. For the general case, this stochastic differential equation with bounded coefficients has a weak solution (See [32], Th. 2.2, Chap. 4). For the unicity, we can do an induction reasoning on the dimension \(N\) because in the interior of the simplex the coefficients are \(C^1\) and Lipschitz (classical conditions for strong existence and unicity) and because the faces of the simplex are absorbing sets for the diffusion with almost-surely finite hitting times (See also [18]).

\(^{25}\)If \(N = 2\), \(u_2(x) = -2|x^1 \log(x^1) + x^2 \log(x^2)|\) and we recover the function \(u\) of Section 3.2 because \(x_1 + x_2 = 1\).

\(^{26}\)If \(\varphi = \sum_{p \in \mathbb{Z}} a_p e^{2i\pi px}\) is the Fourier series representation of a the function \(\varphi\) we have \(u_N(X_0) = 2 \sum_{p \in \mathbb{Z}} a_p[(1 - e^{2i\pi p N})^N - 1] \rightarrow - \sum_p a_p\). But \(\varphi\) being of bounded variations, using the Dirichlet-Jordan test ([34]), we obtain \(\sum_p a_p = \varphi(0) = 0\).
\begin{equation*}
m_N(dx) = \frac{\Gamma(2\lambda)}{\Gamma(2\frac{\lambda}{N})^N} \prod_{i=1}^{N} x_i^{(2\frac{\lambda}{N}-1)} \, dx,
\end{equation*}

in particular, the marginal distributions are Beta\(\left(\frac{2\lambda}{N}, \frac{2(N-1)\lambda}{N}\right)\) distributions and the small wealth probability of any agent fulfills

\begin{equation*}
m_N\left(\{X_i^1 \leq \varepsilon\}\right) \sim \frac{N \varepsilon^{2\frac{\lambda}{N}}}{2^\beta \left(\frac{2\lambda}{N}, \frac{2(N-1)\lambda}{N}\right) \lambda} = p_N(\lambda).
\end{equation*}

Thus, we can prove that (See [1] Chap. 6 and Footnote 21)

\begin{equation*}
p_N(\lambda) \rightarrow 1, \quad \lim_{\lambda \rightarrow 0} p(\lambda) = \frac{N - 1}{N} \quad \text{and} \quad \lim_{\lambda \rightarrow \infty} p(\lambda) = 0.
\end{equation*}

References

