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Abstract

We build an infinite-horizon dynamic deterministic general equilibrium
model with imperfect markets (because of borrowing constraints), in which
heterogeneous agents invest in capital or/and financial asset, and consume.
There is a representative firm who maximizes its profit. Firstly, the existence
of intertemporal equilibrium is proved even if aggregate capital is not uniformly
bounded. Secondly, we study the interaction between the financial market and
the productive sector. We also explore the nature of physical capital bubble
and financial asset bubble as well.

Keywords: Infinite horizon, intertemporal equilibrium, financial friction, pro-
ductivity, efficiency, fluctuation, bubbles.
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1 Introduction

The recent financial crisis requires us to reconsider the role of the financial market
on aggregate economic activities. The financial market has been considered as one
of the main causes of recession or/and fluctuation. But, does the financial market
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always cause an recession in the productive sector? What is the role of the financial
market on the productive sector? What is the nature of bubbles?

To answer these questions, our approach is to construct a dynamic deterministic
general equilibrium model with heterogeneous agents, capital accumulation, and im-
perfect financial market. In our model, consumers differ in discount factors, reward
functions and initial wealths.1 Heterogeneous consumers invest, borrow, and con-
sume. They have two choices to invest: in productive sector and in financial sector.
At date t, if one invests in the physical capital, he (or she) will receive a return that
depends on the marginal productivity of the economy at next date. In the financial
market, if he (or she) buys one unit of financial asset at date t, he (or she) will be
able to resell this asset and also receive ξt+1 units of consumption good as dividend.2

When agents want to borrow, they are required to hold some amounts of physical
capital as collateral. The market value of collateral must be greater than the value
of debt. Because of this constraint, the financial market is imperfect.

The first contribution of our paper concerns the existence of intertemporal equi-
librium. Becker, Boyd III, and Foias (1991) demonstrated the existence of intertem-
poral equilibrium under borrowing constraints with inelastic labor supply. Kubler
and Schmedders (2003) constructed and proved the existence of Markov equilibrium
in an infinite-horizon asset pricing model with incomplete markets and collateral
constraints, but without capital accumulation. Such a Markov equilibrium was also
proved to be competitive equilibrium. Becker, Bosi, Le Van, and Seegmuller (2014)
proved the existence of a Ramsey equilibrium with endogenous labor supply and
borrowing constraint on physical capital; however, they only considered an implicit
financial market and assumed that no one can borrow. In these papers, they needed
some assumptions (about endowments as in Kubler and Schmedders (2003), and
about production function as in Becker, Boyd III, and Foias (1991), Becker, Bosi,
Le Van, and Seegmuller (2014)) to ensure that aggregate capital and consumption
stocks are uniformly bounded. Here we allow growth for the physical quantities
(consumption, capital stocks, outputs). Our framework is rich enough to cover both
productive sector and imperfect financial market.3 Moreover, in our proof of the
existence of an intertemporal equilibrium, we allow non-stationary and even lin-
ear production functions and do not need that aggregate capital and consumption
stocks be uniformly bounded. We firstly prove that there exists an equilibrium for
each T−truncated economy. We then obtain a sequence of equilibria (indexed by T )
which will be proved to have a limit for the product topology. Last, we prove that
such limit is an intertemporal equilibrium.

Analyzing the relationship between the financial market and the productive sector
is our second contribution. We explore three important points.

The first one concerns the recession in the productive sector by which we mean
a situation where no one invests in this sector. Although there are many sources for

1A detailed survey on the effects of heterogeneity in macroeconomics can be found in Guvenen
(2012)

2This asset may be interpreted as land, or security (Santos and Woodford , 1997), or stock
(Kocherlakota , 1992)...

3However, for simplicity, we assume exogenous supply of labor.
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recession as war, policy shocks, financial shocks..., we focus on productivity of the
productive sector. Our finding is summarized as follows.

(i) When the productivity is high enough, the productive sector never falls in
recession.

(ii) When the productivity is low, the productive sector will fall in recession at
infinitely many dates (not necessary at all dates) because the agents prefer
financial assets to physical capital.

(iii) However, at some dates, even when the productivity is low, financial assets may
be beneficial to the productive sector by providing financial support for the
purchase of the physical capital. Thanks to that, a recession may be avoided.

Moreover, high productivity and good dividends may prevent this sector to
collapse, i.e., to converge to zero when time goes to infinity.

The second point concerns fluctuations of the aggregate capital path (Kt). We
prove that, under some mild conditions, there exists an infinite sequence of time (tn)
such that Ktn = 0 for every n, but lim sup

t→∞
Kt > 0.

The third point focuses on the efficiency intertemporal equilibrium. An intertem-
poral equilibrium is called to be efficient if its aggregate capital path is efficient in the
sense of Malinvaud (1953). When the production technology is stationary such that
F ′(∞) < δ and the financial dividends are bounded from above and away from zero,
we prove that every equilibrium is efficient. Our finding is different from Becker,
Dubey, and Mitra (2014) where they give an example of inefficient Ramsey equilib-
rium in a model with only physical capital.

In the last part of the paper, we studies physical and financial bubbles and the
connection between these bubbles.

We say that there is a financial asset (resp., physical capital) bubble if the market
price of the financial asset (resp., physical capital) is greater than the fundamental
value of the financial asset (resp., physical capital). Note that the fundamental values
of both physical capital and financial asset are endogenously defined and depends on
the structure of these assets.

Our definition of financial bubble is in line with Kocherlakota (1992), Santos
and Woodford (1997), Huang and Werner (2000), Le Van, Pham, and Vailakis
(2014). Different from these papers, we study financial bubble when production is
taken into account. We show that when the present value of output is finite, financial
bubble is ruled out,4 and we also prove that this is only a sufficient condition ruling
out financial bubble. Moreover, this is an endogenous condition since the present
value of output is endogenously defined. We also give a condition (on exogenous
parameters of the economy) which rules financial bubble: the production technology
is stationary such that F ′(∞) < δ and the financial dividends are bounded from

4Our no-bubble result is consistent with the well-known result in Kocherlakota (1992), Santos
and Woodford (1997), Huang and Werner (2000) where they proved that there is no financial
asset bubble if the fundamental value of the aggregate endowments is finite.
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above and away from zero. As discussed above, every equilibrium is efficient under
these conditions.

Our finding shows that when the ratios of the financial dividends to the total
outputs are bounded away from below then there exists no financial bubble at equi-
librium. We then give examples where these ratios tend to zero, and financial bubbles
arise.

The concept physical bubble is firstly introduced by Becker, Bosi, Le Van, and
Seegmuller (2014) in a model with only physical capital. In their framework phys-
ical bubble is ruled out because the technology is stationary and capital returns
are bounded from below. Then Bosi, Le Van, and Pham (2014) allowed for non-
stationary technologies and found out that physical bubble exists if and only if the

sum (over time) of expected capital returns (ρt) is finite, i.e.,
∞∑
t=1

ρt < ∞. In our

paper, the presence of financial asset affects the existence of physical bubble. The
reason is that the financial asset affects the discount factors of the economy and then
the expected capital returns. An interesting point is that when financial dividends
(ξt) are not too low (in the sense that lim sup

t→∞
ξt > 0) then physical bubble is ruled

out.
We also give examples where the technology is not stationary and dividends are

low, and there is physical bubble at equilibrium. Interestingly physical and financial
bubbles may co-exist at equilibrium.

Other literature: Our paper is related to several strands of research.
(i) The first strand concerns General equilibrium with incomplete markets. An

excellent introduction to asset pricing models with incomplete markets and infinite
horizon can be found in Magill and Quinzii (2008). On collateral equilibrium,
Geanakoplos and Zame (2002) proved the existence of collateral equilibrium in a
two-period models that incorporates durables gooods and collateralized securities.
By extending Geanakoplos and Zame (2002), Araujo, Pascoa, and Torres-Martinez
(2002) proved the existence of equilibrium for an infinite horizon models with col-

lateral requirement on selling financial assets. Pham (2013) proved the existence of
collateralized monetary equilibrium in an infinite horizon monetary economy. Note
that, in these papers, they did not take into account the role of the productive sector.

(ii) Credit market frictions and aggregate economic activity: Our paper is also
related to Kiyotaki and Moore (1997). However, they did not take into account the
existence of intertemporal equilibrium. Some other significant researchs (Scheinkman
and Weiss (1986), Bernanke, Gertler, and Gilchrist (1999), Matsuyama (2007),
Gertler and Kiyotaki (2010), Christiano, Motto, and Rostagno (2010)) explained
why credit market frictions can make impact on aggregate econnomic activity. Gabaix
(2011) proposes that idiosyncratic firm-level shocks can explain an important part

of aggregate movements. Brunnermeier and Sannikov (2014) incorporated financial
sector in a macroeconomic model with continuous time. See Brunnermeier, Eisen-
bach, and Sannikov (2012) for a complete review on macroeconomics with financial
frictions.

(iii) On the efficiency of capital paths. Malinvaud (1953) introduced the con-
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cept of efficiency of a capital path and gave a sufficient condition of the efficiency:
lim
t→∞

PtKt = 0 , where (Pt) is a sequence of competitive prices, (Kt) is the capital

path.5 Following Malinvaud, Cass (1972) considered capital path which is uniformly
bounded away from zero. Under the concavity of the stationary production function
and some mild conditions, he proved that a capital path is inefficient if and only if
the sum (over time) of future values of a unit of physical capital is finite. Cass and
Yaari (1971) gave a necessary and sufficient condition for a consumption plan (C)
to be efficient, which can be stated that the inferior limit of differences between the
present value of any consumption plan and the plan (C) is negative. Our paper is
also related to Becker and Mitra (2012) where they proved that a Ramsey equilib-
rium is efficient if the most patient household is not credit constrained from some
date. Mitra and Ray (2012) studied the efficiency of a capital path with noncon-
vex production technologies and examined whether the Phelps-Koopmans theorem
is valid.

Our finding is different from their result because we introduce another long-lived
asset into a standard Ramsey model with heterogeneous agents. Exogenous dividends
of this asset play an important role on the efficiency of capital paths. It may make
aggregate capital paths efficient. Interestingly, thanks to financial dividends, an
efficient capital path may have zero capital stocks at some dates.6

The remainder of the paper is organized as follows. Section 2 presents the struc-
ture of economy. In Section 3, we discuss about the existence of intertemporal
equilibrium. Section 4 studies the interaction between the financial market and the
productive sector. The efficiency of intertemporal equilibrium is presented in Sec-
tion 5. Section 6 gives conditions to have no bubble on both markets. Section 7
concludes. Technical proofs can be found in Appendix.

2 Model

The model is an infinite-horizon general equilibrium model without uncertainty and
discrete time t = 0, . . . ,∞. There are two types of agents: a representative firm
without market power and m heterogeneous households. Each household invests in
physical asset and/or financial asset, and consumes.

Consumption good: there is a single consumption good. At each period t, the price
of consumption good is denoted by pt and agent i consumes ci,t units of consumption
good.

Physical capital: at time t, if agent i buys ki,t+1 ≥ 0 units of new capital, agent i
will receive (1− δ)ki,t+1 units of old capital at period t + 1, after being depreciated
(δ is the depreciation rate), and ki,t+1 units of old capital can be sold at price rt+1 .

5See Malinvaud (1953), Lemma 5, page 248.
6Another concept of efficiency is constrained efficiency. Constrained inefficiency occurs when

there exists a welfare improving feasible redistribution subject to constraints (these constraints
depend on models). About the constrained efficiency in general equilibrium models with financial
asset and without capital accumulation, see Kehoe and Levine (1993), Alvarez and Jermann
(2000), Bloise and Reichlin (2011). About the constrained efficiency in the neoclassical growth
model, see Davila, Hong, Krusell, and Rios-Rull (2012).
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Financial asset: at period t, if agent i invests ai,t units of financial asset with
price qt, she will receive ξt+1 units of consumption good as dividend and she will be
able to resell ai,t units of financial asset with price qt+1. This asset may be land, or
security (Santos and Woodford , 1997), or stock (Kocherlakota , 1992)...

Table 1: Household i’s balance sheet at date t

Expenditures Revenues
Consumption ptci,t θiπt share of profit
Capital investment pt(ki,t+1 − (1− δ)ki,t) rtki,t capital return

from date t− 1
Financial asset qtai,t (qt + ptξt)ai,t−1 financial delivery

from date t− 1

Each household i takes the sequence of prices (p, q, r) = (pt, qt, rt)
∞
t=0 as given and

solves the following problem

(Pi(p, q, r)) : max
(ci,t,ki,t+1,ai,t)

+∞
t=0

[ +∞∑
t=0

βtiui(ci,t)
]

(1)

subject to : ki,t+1 ≥ 0 (2)

budget constraint : pt(ci,t + ki,t+1 − (1− δ)ki,t) + qtai,t

≤ rtki,t + (qt + ptξt)ai,t−1 + θitπt (3)

borrowing constraint: (qt+1 + pt+1ξt+1)ai,t ≥ −f i
[
pt+1(1− δ) + rt+1

]
ki,t+1, (4)

where f i ∈ [0, 1] is borrowing limit of agent i. f i is an exogenous parameter and set
by law. This parameter can be viewed as an index of the financial development of
the economy

In our setup, the borrowing constraint is endogenous. Agent i can borrow an
amount but the repayment of this amount does not exceed a fraction of the market
value of his physical capital. This fraction, f i, is less than 1, i.e., the market value
of collateral of each agent is greater than its debt. We can prove that borrowing
constraint (4) is equivalent to qtai,t ≥ −f iptki,t+1.7

For each period, there is a representative firm which takes prices (pt, rt) as given
and maximizes its profit by choosing physical capital amount Kt.

(P (pt, rt)) : max
Kt≥0

[
ptFt(Kt)− rtKt

]
(5)

(θit)
m
i=1 is the share of profit at date t. θi := (θit)t is exogenous, θit ≥ 0 for all i and

m∑
i=1

θit = 1.

7See Remark 4.1.
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2.1 Equilibrium

We define an infinite-horizon sequence of prices and quantities by

(p, q, r, (ci, ki, ai)
m
i=1, K, L)

where, for each i = 1, . . . ,m,

(ci, ki, ai) :=
(
(ci,t)

+∞
t=0 , (ki,t+1)+∞

t=0 , (ai,t)
+∞
t=0

)
∈ R+∞

+ × R+∞ × R+∞
+ × R+∞,

(p, r, q) :=
(
(pt)

+∞
t=0 , (rt)

+∞
t=0 , (qt)

+∞
t=0

)
∈ R+∞ × R+∞

+ × R+∞,

(K) :=
(
(Kt)

+∞
t=0

)
∈ R+∞

+ .

We also denote z0 := (p, q, r), zi := (ci, ki, ai) for each i = 1, . . . ,m, zm+1 = (K) and
z = (zi)

m+1
i=0 .

Denote E the economy which is characterized by a list(
(ui, βi, ki,0, ai,−1, f

i, θi)mi=1, (Ft, ξt)
∞
t=0, δ

)
.

Definition 1. A sequence of prices and quantities
(
p̄t, q̄t, r̄t, (c̄i,t, k̄i,t+1, āi,t)

m
i=1, K̄t

)+∞

t=0
is an equilibrium of the economy E if the following conditions are satisfied:

(i) Price positivity: p̄t, q̄t, r̄t > 0 for t ≥ 0.

(ii) Market clearing: at each t ≥ 0,

good :
m∑
i=1

(c̄i,t + k̄i,t+1 − (1− δ)k̄i,t) = Ft(K̄t) + ξt,

capital : K̄t =
m∑
i=1

k̄i,t,

financial asset :
m∑
i=1

āi,t = 1.

(iii) Optimal consumption plans: for each i, (c̄i,t, k̄i,t+1, āi,t)
∞
t=0 is a solution of the

problem (Pi(p̄, q̄, r̄)).

(iv) Optimal production plan: for each t ≥ 0, K̄t is a solution of the problem
(P (p̄t, r̄t)).

The following result proves that aggregate capital and consumption supplies are
bounded for the product topology.

Lemma 1. 1. Capital and consumption supplies are in a compact set for the prod-
uct topology.
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2. Moreover, they are uniformly bounded if (ξt)t are uniformly bounded and there
exists t0 and an increasing, concave function G such that the two following
conditions are satisfied: (i) for every t ≥ t0 we have Ft(K) ≤ G(K) for every
K, (ii) there exists x > 0 such that G(y) + (1 − δ)y + sup

t
ξt ≤ y for every

y ≥ x.8

Proof. Note that
m∑
i=1

ci,t +Kt+1 ≤ (1− δ)Kt + Ft(Kt) for every t ≥ 0

Denote

D0 := F0(K0) + (1− δ)K0 + ξ0,

Dt := Ft(Dt−1) + (1− δ)Dt−1 + ξt ∀t ≥ 0.

Then
m∑
i=1

ci,t + Kt+1 ≤ Dt for every t ≥ 0. Since Dt is exogenous, capital and

consumption supplies are in a compact set for the product topology.
We now assume that time t0 and the function G (in the statement of Lemma 1)

exist. Let denote ξ := sup
t
ξt. We are going to prove that 0 ≤ Kt ≤ max{Dt0 , x} =:

K. Indeed, Kt ≤ K for every t < t0. For t ≥ t0, we have

Kt+1 =
m∑
i=1

ki,t+1 ≤ G(Kt) + (1− δ)Kt + ξ.

Then Kt0 ≤ G(Kt0−1) + (1− δ)Kt0−1 + ξ ≤ G(K) + (1− δ)K + ξ ≤ K. Iterating the
argument, we find Kt ≤ K for each t ≥ 0.

Consumptions are bounded because
m∑
i=1

ci,t ≤ Ft(Kt) + (1− δ)Kt + ξ.

3 The existence of equilibrium

Standard assumptions are required.
Assumption (H1): ui is in C1, ui(0) = 0, u′i(0) = +∞, and ui is strictly

increasing, concave, continuously differentiable.
Assumption (H2): Ft(·) is strictly increasing, concave, continuously differen-

tiable, Ft(0) ≥ 0.
Assumption (H3): For every t ≥ 0, 0 < ξt <∞.
Assumption (H4): At initial period 0, ki,0, ai,−1 ≥ 0, and (ki,0, ai,−1) 6= (0, 0)

for i = 1, . . . ,m. Moreover, we assume that
m∑
i=1

ai,−1 = 1 and K0 :=
m∑
i=1

ki,0 > 0.

8Condition (i) and (ii) are satisfied if sup
t
ξt < ∞ and the technology is stationary such that

F ′(∞) < δ (this condition is satisfied for Cobb Douglas production function). Indeed, F ′(∞) < δ
implies that F ′(K) < δ and then F (K)− δK is decreasing for K large enough. By combining with

the fact that lim
K→∞

F (K)
K = F ′(∞), we obtain that F (K) − δK < 0 for every K large enough and

lim
K→∞

(F (K)− δK) = −∞.
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Remark 3.1. Here we differ from Becker, Bosi, Le Van, and Seegmuller (2014) by
allowing non-stationary technology. We also accept the AK production technology.

First, we prove the existence of equilibrium for each T− truncated economy ET .
Second, we show that this sequence of equilibria converges for the product topology
to an equilibrium of our economy E . The value added in our proof is that we do
not need that aggregate capital stocks are uniformly bounded, and we allow non-
stationary technologies. Moreover, incorporating financial market with borrowing
constraints also requires some new techniques in order to prove the existence of
intertemporal equilibrium.

To prove the existence of equilibrium for T− truncated economy ET , we prove
the existence of the bounded economy ETb and then by using the concavity of the
utility function, we will prove that such equilibrium is also an equilibrium of ET .

3.1 The existence of equilibrium for T− truncated economy
ET

We define T− truncated economy ET as E but there are no activities from period
T+1 to the infinity, i.e., ci,t = ai,t−1 = ki,t = Kt = 0 for every i = 1, . . . ,m, t ≥ T+1.
Then we define the bounded economy ETb as ET but all variables (consumption de-
mand, capital supply, asset holding, capital demand) are in a compact set, say Sb.9
See Appendix for details.

Lemma 2. Under Assumptions (H1)-(H4), there exists an equilibrium for ETb .

Proof. See Appendix 8.1.

Let’s consider
(
pt, qt, rt, (ci,t, ki,t+1, ai,t)

m
i=1, Kt

)T
t=0

an equilibrium of the economy

ETb . Borrowing constraint (4) implies that

−ai,t ≤
f i
[
pt+1(1− δ) + rt+1

]
ki,t+1

qt+1 + pt+1ξt+1

≤ f i
ki,t+1

ξt+1

(1− δ +
rt+1

pt+1

)

≤ f i
(1− δ)Kt+1 + Ft+1(Kt+1)

ξt+1

≤ Dt+1

ξt+1

(6)

By combining with the fact that
m∑
i=1

ai,t = 1, we see that (ai,t)
T
t=0 is in a compact

set of RT+1. Therefore, we conclude that
(
pt, qt, rt, (ci,t, ki,t+1, ai,t)

m
i=1, Kt

)T
t=0

is in a
compact set, say S of R3m+4. This compact set does not depend on the set Sb. Hence,
we can choose Sb big enough such that S ⊂ Sb. By this way, each equilibrium of ETb
is also an equilibrium of ET .

Lemma 3. An equilibrium of ETb is an equilibrium for ET .

Proof. See Appendix 8.2.

9In order to use Kakutani’s theorem, we need to introduce ETb .
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3.2 The existence of an equilibrium in E
To take the limit of sequence of equilibria, we need the following assumption.

Assumption (H5): For each agent i, her utility is finite

∞∑
t=0

βtiui(Dt(F, δ,K0, ξ0, . . . , ξt)) <∞. (7)

Remark 3.2. With stationary technology, condition 7 is satisfied if there exists b <
∞ such that, for every i ∈ {1, . . . ,m},

∞∑
t=0

βti max
s≤t
{ξs} <∞, (8)

∞∑
t=0

βti(F
′(b) + 1− δ)t max

s≤t
{ξs, 1} <∞. (9)

Proof. See Appendix 8.4.

Note that there exist some cases where although F ′(∞) > δ and (ξt)t are not
uniformly bounded, but conditions (8) and (9) still hold. For example, if there exist
b <∞ and α > 1 such that ξt ≤ αt and αβi(F

′(b) + 1− δ) < 1, then conditions (8)
and (9) hold.

Theorem 1. Under Assumptions (H1)-(H5), there exists an equilibrium in the
infinite-horizon economy E.

Proof. See Appendix 8.3. We consider the limit of sequences of equilibria in ET ,
when T →∞. We use convergence for the product topology.

4 Financial market vs productive sector

In this section, we will study the interaction between the financial market and the
productive sector. For simplicity, we only consider stationary technology.

Let
(
pt, qt, rt, (ci,t, ki,t+1, ai,t)

m
i=1, Kt

)
t

be an equilibrium. Denote µi,t, νi,t+1 the
multiplier associated with the budget constraint, the borrowing constraint, respec-
tively, of the agent i at date t. Denote λi,t+1 the multiplier associated with constraint
ki,t+1 ≥ 0. We have

βtiu
′
i(ci,t) = ptµi,t (10)

ptµi,t = (rt+1 + (1− δ)pt+1)(µi,t+1 + f iνi,t+1) + λi,t+1 (11)

qtµi,t = (qt+1 + pt+1ξt+1)(µi,t+1 + νi,t+1). (12)

Note that ki,t+1λi,t+1 = 0 and

νi,t+1

(
(qt+1 + pt+1ξt+1)ai,t + f i(pt+1(1− δ) + rt+1)ki,t+1

)
= 0.
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Lemma 4. We have, for each t,

qt
qt+1 + pt+1ξt+1

= max
i

{µi,t+1

µi,t

}
≤ pt
rt+1 + (1− δ)pt+1

. (13)

Moreover, the equality holds if there exists i such that ki,t+1 > 0.

Proof. Since
m∑
i=1

ai,t = 1, there exists i such that ai,t > 0, and then νi,t+1 = 0. As a

consequence, we get
qt

qt+1 + pt+1ξt+1

= max
i

{µi,t+1

µi,t

}
.

It is easy to see that
pt

rt+1 + (1− δ)pt+1

≥ max
i

{µi,t+1

µi,t

}
. Assume that ki,t+1 > 0,

we have λi,t+1 = 0, and then

pt
rt+1 + (1− δ)pt+1

=
µi,t+1 + f iνi,t+1

µi,t
≤ µi,t+1 + νi,t+1

µi,t
=

qt
qt+1 + pt+1ξt+1

.

Therefore, we have pt
rt+1+(1−δ)pt+1

= max
i

{µi,t+1

µi,t

}
.

Remark 4.1. According to Lemma 4, we have that

f i(pt+1(1− δ) + rt+1)ki,t+1 = f i
pt(qt+1 + ξt+1pt+1)

qt
ki,t+1. (14)

As a consequence, borrowing constraint (4) is equivalent to qtai,t ≥ −f iptki,t+1.

In our framework, consumers have two possibilities to invest: in financial asset
and/or in physical capital. We would like to know when consumers invest in physical
capital and/or in financial asset. Note that the real return of the physical capital is
rt+1

pt+1
+ 1 − δ, and the physical capita’s maximum real return is F ′(0) + 1 − δ. The

real return of the financial asset is
qt+1
pt+1

+ξt+1

qt
pt

.

The following results show the respective roles of the productivity and the finan-
cial dividends.

Lemma 5. If
qt+1
pt+1

+ξt+1

qt
pt

≥ (F ′(0) + 1 − δ) then consumers do not invest in physical

capital, i.e., Kt+1 = 0.

Proof. Suppose that
qt+1
pt+1

+ξt+1

qt
pt

≥ (F ′(0) + 1 − δ). If Kt+1 > 0, there exists i ∈
{1, · · · ,m} such that ki,t+1 > 0. According to Lemma 4, we have

max
i
{βiu

′
i(ci,t+1)

u′i(ci,t)
} =

1
rt+1

pt+1
+ 1− δ

.
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FOC of Kt+1 implies that rt+1

pt+1
= F ′(Kt+1) < F ′(0), hence max

i
{βiu

′
i(ci,t+1)

u′i(ci,t)
} >

1

F ′(0) + 1− δ
.

We also have max
i
{βiu

′
i(ci,t+1)

u′i(ci,t)
} =

qt
pt

qt+1
pt+1

+ξt+1
. This implies that

qt
pt

qt+1

pt+1
+ ξt+1

>
1

F ′(0) + 1− δ
,

contradiction!

Lemma 5 says that if the maximum real return of the physical capital is less than
the financial asset’s return, households do not invest in the physical capital.

Economic recession: We say that there is an economic recession at date t if
no one invests in this sector, i.e., the aggregate capital equals zero, Kt = 0. The
following result points out the importance of the competitiveness of the productive
sector.

Proposition 1. Assume that there exists ξ > 0 such that ξt ≥ ξ for every t ≥ 0 and
F ′(0) ≤ δ. Then there is an infinite sequence (tn)∞n=0 such that Ktn = 0 for every
n ≥ 0.

Proof. We claim that there exists an infinite increasing sequence (tn)∞n=0 such that
qtn
ptn

+ ξtn >
qtn−1

ptn−1
for every n ≥ 0.

Indeed, if not, there exists t0 such that qt+1

pt+1
+ ξt+1 ≤ qt

pt
for every t ≥ t0. Combining

with ξt ≥ ξ for every t ≥ 0 and by using induction argument, we can easily prove
that

qt0
pt0
≥ qt+t0
pt+t0

+ tξ

for every t ≥ 0. Let t→∞, we have
qt0
pt0

=∞, contradiction!10

Therefore, there exists a sequence (tn) such that for every n ≥ 0, qtn
ptn

+ ξtn >
qtn−1

ptn−1
> 1 ≥ F ′(0) + 1− δ. Lemma 5 implies that Ktn = 0 for every n ≥ 0.

Proposition 1 shows that if the productivity is low, i.e. F ′(0) < δ, recession
will appear at infinitely many dates. Since the bound ξ does not depend on the
technology, we see that economic recession is not from the financial market, but
from the fact that the productive sector is not competitive. This result suggests that
we should invest in technology to improve the competitiveness of productive sectors
in order to avoid recession.

We illustrate Proposition 1 by the following example.

10Our result in Proposition 1 is still valid if the condition ”ξt ≥ ξ > 0 for every t ≥ 0” is replaced

by ”
∞∑
t=0

ξt =∞”.
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Example 1. (Kt = 0 for every t ≥ 1)
Consider an economy with two agents i and j such that

βi = βi = β ∈ (0, 1), ui(x) = uj(x) =
x1−σ

1− σ
,

K0 > 0, β(F ′(0) + 1− δ) ≤ 1,

ai,−1 = θi =
ki,0
K0

= a ∈ (0, 1),

ξ0; ξt = ξ ∀t ≥ 1, f i = f j = 0,

where q0, ξ0, ξ,K0 are such that

1 ≥ β(F ′(0) + 1− δ)
(F (K0) + (1− δ)K0 + ξ0

ξ

)σ
,(F (K0) + (1− δ)K0 + ξ0

ξ

)σ
=
q0

ξ

1− β
β

.

An equilibrium is given by the following

Allocations: ai,t = a, aj,t = 1− a ∀t ≥ 1,

ki,t = kj,t = 0 ∀t ≥ 1,

ci,0 = a(F (K0) + (1− δ)K0 + ξ0), ci,t = aξ, ∀t ≥ 1,

cj,0 = (1− a)(F (K0) + (1− δ)K0 + ξ0), cj,t = (1− a)ξ, ∀t ≥ 1,

Prices: pt = 1 ∀t; r0 = F ′(K0), rt = F ′(0) ∀t ≥ 1,

q0, qt = ξ
β

1− β
∀t ≥ 1.

Proof. See Appendix 8.4.

We say that the productive sector is competitive if mini βi(F
′(0) + 1 − δ) > 1.

It is extremely competitive if F ′(0) = +∞. Note that (F ′(0) + 1 − δ) mini βi >

1 is equivalent to F ′(0) >
1

mini βi
− 1 + δ, where

1

mini βi
− 1 + δ is the highest

investment cost if we use some interest rates to define the discount factors βi. In
Proposition 2 and its two corollaries, we consider the case where the productive
sector is competitive.

Proposition 2. Assume that there exist t ≥ 0, T ≥ 1 such that ξt ≥ ξt+T . If
(F ′(0) + 1− δ) mini βi > 1, there exists 1 ≤ s ≤ T such that Kt+s > 0.

Proof. See Appendix 8.4.

Corollary 1. Assume that there exists an infinite decreasing sequence (ξtn)∞n=0, i.e.,
ξtn ≥ ξtn+1 for every n ≥ 0. If (F ′(0) + 1 − δ) mini βi > 1, there exists an infinite
sequence (τn)n≥0 such that Kτn > 0 for every n ≥ 0 at any equilibrium.

Corollary 2. Assume that ξt = ξ > 0 for every t ≥ 0. If (F ′(0) + 1− δ) mini βi > 1,
we have Kt > 0 for every t ≥ 1 at any equilibrium.
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We continue our exposition by the following result:

Proposition 3. If βi(F
′(0) + 1− δ)u′i(ξt+1) > u′i(

F (Kt) + (1− δ)Kt + ξt
m

) for every

i = 1, . . . ,m, we have Kt+1 > 0.

Proof. See Appendix 8.4.

On the one hand, Proposition 3 proves that if the productivity F ′(0) = ∞ then
Kt+1 > 0 at equilibrium. On the other hand, Proposition 3 also shows that the
financial market plays an important role in the productive sector. Indeed, consider
an equilibrium where Kt = 0. Assume also that ξt is high enough such that, for
every i,

βi(1− δ)u′i(ξt+1) > u′i(
ξt
m

). (15)

According to Proposition 3, we get that Kt+1 > 0. This is due to the fact that part
of the financial dividend is used to buy physical capital.

Economic collapse: We say that the economy falls in collapse if lim inf
t→∞

Kt = 0.

In what follows, we will find out factors which help us to avoid economic collapse.
A natural question is whether the aggregate capital stock Kt is bounded from

below. To answer this question, the following result is useful:

Proposition 4. Given K ≥ 0, ξ > 0, let Gi(K, ξ) be defined by

u′i(Gi(K, ξ)) = (F ′(K) + 1− δ
)
βiu
′
i(F (K) + (1− δ)K + ξ).

At equilibrium, there exists i such that

ξt ≤ Kt+1 +mGi(Kt+1, ξt+1). (16)

Proof. See Appendix 8.4.

Interpretation: by definition, the quantity Gi(Kt+1, ξt+1) is an upper bound
of the consumption good of the agent i at date t when this agent expects that the
aggregate capital at date t + 1 is Kt+1. If we choose i such that Gi(Kt+1, ξt+1) =
max
j
Gj∈{1,··· ,m}(Kt+1, ξt+1) then mGi(Kt+1, ξt+1) is an upper bound of the aggregate

consumption at date t. As a consequence, we see that

mGi(Kt+1, ξt+1) +Kt+1 ≥
m∑
i=1

ci,t +Ki,t+1 ≥ ξt.

Since u′, F ′ are decreasing and F is increasing, we can see that Gi(Kt+1, ξt+1) is
increasing in Kt+1 and ξt+1. Moreover, we have Gi(0, ξt+1) = 0 if F ′(0) =∞.

In the following result, by using (16) and the properties of the function Gi, we
can give a lower bound of Kt+1.
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Corollary 3. 1. Assume that ξt > mGi(0, ξt+1) for every i. At equilibrium, we
have

Kt+1 ≥ min
i

{
Bi(ξt, ξt+1)

}
> 0 (17)

where Bi(ξt, ξt+1) is defined11 by

ξt = Bi(ξt, ξt+1) +mGi

(
Bi(ξt, ξt+1), ξt+1

)
. (18)

2. Assume that ξt = ξ > 0 for any t. We also assume that ξ > mGi(0, ξ) for
every i. Then

Kt+1 ≥ min
i

{
Bi(ξ, ξ)

}
> 0 (19)

which means that (Kt) is uniformly bounded away from zero.

Note that if Gi(Kt+1, ξt+1) ≤ ξt then the inequality (16) does not make sense.
That’s why we need the condition ξt > mGi(0, ξt+1).12 Under this condition, Kt+1

is bounded from below by min
i
{Bi(ξt, ξt+1)} which is a strictly positive exogenous

quantity. This quantity may be not uniformly bounded away from zero.
In the second part of Corollary 3 we give simple conditions under which there is

no economic collapse.The economic intuition for this fact is the following: Condition
ξ > mGi(0, ξ) is satisfied if and only if F ′(0) is high, i.e., the productivity is high.
When the productivity is high,13 agents invest in the productive sector, and therefore
economic collapse will be avoided.

We end this section by the following result showing that a fluctuation of (ξt) may
create a fluctuation of (Kt).

Corollary 4. (Fluctuation of the capital stocks)
Assume that

(i) βi = β, ui(c) = c1−σ

1−σ , and F ′(0) ≤ δ.

(ii) ξ2t → ξe, ξ2t+1 → ξo when t→∞.

(iii) ξe >
mξo(

β(F ′(0) + 1− δ)
) 1
σ

.

We have

(i) There is an infinite sequence (tn)∞n=0 s.t. Ktn = 0 for every n ≥ 0.

(ii) lim sup
t→∞

Kt > 0.

11Note that Bi(ξt, ξt+1) is increasing in ξt and decreasing in ξt+1.
12This condition is satisfied if ξt is high or/and F ′(0) is high.
13F ′(0) may be finite.
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Proof. The first point is a direct consequence of Proposition 1. Let us prove the
second point. Assume that lim sup

t→∞
Kt = 0. According to (16), we have, for each t,

ξ2t ≤ K2t+1 +mGi(K2t+1, ξ2t+1) (20)

Let t tend to infinity, we get ξe ≤ mGi(0, ξ
o). Under Assumptions of Corollary 4, it

can be computed that

Gi(0, ξ
o) =

ξo(
β(F ′(0) + 1− δ)

) 1
σ

.

As a result, we obtain

ξe ≤ mξo(
β(F ′(0) + 1− δ)

) 1
σ

,

which is an contradiction.

5 On the efficiency of equilibria

In this section, we study the efficiency of intertemporal equilibrium. First, following
Malinvaud (1953), we define the efficiency of a capital path as follows.

Definition 2. Let Ft be a production function, δ be the capital depreciation rate,
(ξt)

∞
t=0 is an exogenous positive sequence. A feasible path of capital is a positive

sequence (Kt)
∞
t=0 such that 0 ≤ Kt+1 ≤ Ft(Kt) + (1 − δ)Kt + ξt for every t ≥ 0 and

K0 is given. The aggregate feasible consumption at date t is defined by

Ct := Ft(Kt) + (1− δ)Kt + ξt −Kt+1.

A feasible path is efficient if there is no other feasible path (K ′t) such that C ′t ≥ Ct
for every t with strict inequality for some t.

Definition 3. We say that an intertemporal equilibrium is efficient if its aggregate
feasible capital path (Kt) is efficient.

Definition 4. We define the discount factor of the economy from initial date to date
t as follows

Q0 := 1, Qt :=
t∏

s=1

γs, t ≥ 1 (21)

where γt+1 := max
i∈{1,...,m}

βiu
′
i(ci,t+1)

u′i(ci,t)
.

Lemma 6. An equilibrium is efficient if lim inf
t→∞

QtKt+1 = 0.

Proof. See Malinvaud (1953) and Bosi, Le Van, and Pham (2014).
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According to Lemma 4 we have at equilibrium(
Qt+1

(
1− δ +

rt+1

pt+1

)
−Qt

)
Kt+1 = 0.

By using this relation and the same argument in Bosi, Le Van, and Pham (2014),
we obtain that, for any feasible path (K ′t),

T∑
t=0

QtCt +QTKT+1 ≥
T∑
t=0

QtC
′
t (22)

The condition lim inf
t→∞

QtKt+1 = 0 is a kind of transversality condition which allows

us to obtain that

lim inf
T→+∞

T∑
t=0

Qt (Ct − C ′t) ≥ 0. (23)

As a result, the path (Kt, Ct) is efficient.
Becker, Dubey, and Mitra (2014) give an example of inefficient Ramsey equilib-

rium in a model with only physical capital. The production function in their model
satisfies F ′(∞) = 0 and they consider full depreciation of the capital. The following
result shows that financial dividends, for such models, may make production paths
efficient. Actually, the result is more general.

Proposition 5. We assume that the production functions are stationary and con-
cave, F ′(∞) < δ, and lim sup

t→∞
ξt <∞. If lim sup

t→∞
ξt > 0, every equilibrium is efficient.

Proof. Since technologies are stationary and lim sup
t→∞

ξt <∞, we easily see that (Kt)

is uniformly bounded (using Lemma 1).
Since lim sup

t→∞
ξt > 0, there exists a constant Λ and a sequence (tn) such that

Ktn+1 ≤ Λξtn for every n large enough.
According to Lemma 4, we have qt

pt
Qt = ( qt+1

pt+1
+ ξt+1)Qt+1. As a consequence, we

obtain
q0

p0

=
∞∑
t=1

Qtξt + lim
t→∞

qt
pt
Qt.

Recall that p0, q0 > 0, hence
∞∑
t=1

Qtξt < ∞. Therefore, we have lim
t→∞

Qtξt = 0 which

implies that lim
n→∞

QtnKtn+1 = 0. According to Lemma 6, the capital path is efficient.

6 Bubbles

We will first consider the productive sector and define physical asset bubble. Let(
pt, qt, rt, (ci,t, ki,t+1, ai,t)

m
i=1, Kt

)
t

be an equilibrium. According to Lemma 4, we have:
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Lemma 7. For each t, we have

1 ≥ (1− δ +
rt+1

pt+1

)γt+1 (24)

where γt+1 := max
i∈{1,...,m}

βiu
′
i(ci,t+1)

u′i(ci,t)
. We have equality if Kt+1 > 0.

Definition 5. The expected return ρt+1 is defined by

max
i∈{1,...,m}

βiu
′
i(ci,t+1)

u′i(ci,t)
=

1

1− δ + ρt+1

(25)

Note that we always have the following no-arbitrage condition

1

1− δ + ρt+1

=

qt
pt

qt+1

pt+1
+ ξt+1

.

Moreover, according to Lemma 7, we have ρt+1 = rt+1

pt+1
= F ′t+1(Kt+1) if Kt+1 > 0.

We now have 1 = (1 − δ + ρt)γt and so Qt = (1 − δ + ρt+1)Qt+1 for each t ≥ 0.
By interating, we get

1 = (1− δ + ρ1)Q1 = (1− δ)Q1 + ρ1Q1

= (1− δ)(1− δ + ρ2)Q2 + ρ1Q1 = (1− δ)2Q2 + (1− δ)ρ2Q2 + ρ1Q1

= · · ·

= (1− δ)tQt +
t∑

s=1

(1− δ)t−1ρtQt.

Interpretation: In this framework, the physical capital can be viewed as a long-
lived asset whose price (in term of consumption good) at initial date equals 1. If one
buys one unit of the physical capital at date 0, he or she will anticipate as follows:

1. At date 1, one unit (from date 0) of this asset will give (1−δ) units of the phys-
ical capital and ρt units of consumption good as its dividend. This argument
is formalized by 1 = (1− δ)Q1 + ρ1Q1.

2. At date 2, (1 − δ) units of the physical capital will give (1 − δ)2 units of the
physical capital and (1 − δ)ρ2 units of consumption good. This argument is
formalized by (1− δ)Q1 = (1− δ)2Q2 + (1− δ)ρ2Q2.

The fundamental value of the physical capital at date 0 can be defined by

∞∑
t=1

(1− δ)t−1ρtQt.

Definition 6. We say that there is a physical capital bubble if 1 >
∞∑
s=1

(1− δ)t−1ρtQt.
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We state the necessary and sufficient conditions to have bubbles on the physical
asset market.

Proposition 6. The three following statement are equivalent

(i) There is a physical capital bubble.

(ii) lim
t→∞

(1− δ)tQt > 0.

(iii)
∑∞

t=1 ρt < +∞.

Proof. The proof is similar to the one in Bosi, Le Van, and Pham (2014).

Let us now move to the financial asset market. It is easy to obtain the following
relation

qt
pt

= γt+1(
qt+1

pt+1

+ ξt+1)

Qt
qt
pt

= Qt+1(
qt+1

pt+1

+ ξt+1). (26)

Therefore, for each t ≥ 1, we have

q0

p0

= γ1(
q1

p1

+ ξ1) = Q1ξ1 + γ1
q1

p1

= Q1ξ1 + γ1γ2(
q2

p2

+ ξ2)

= Q1ξ1 +Q2ξ2 +Q2
q2

p2

= . . . =
t∑

s=1

Qsξs +Qt
qt
pt
.

In our framework, the financial asset is a long-lived asset which gives dividends at
each date.

1. At date 1, one unit (from date 0) of this asset will give back 1 unit of the same
asset and ξ1 units of consumption good as its dividend. This is represented by
q0
p0

= Q1ξ1 +Q1
q1
p1

2. At date 2, one unit of long lived asset will give one unit of the same asset and
ξ2 units of consumption good. This is represented by Q1

q1
p1

= Q2ξ2 +Q2
q2
p2

, and
so on.

This leads us to have the following concept:

Definition 7. The fundamental value of the financial asset is

FV0 :=
+∞∑
t=1

Qtξt. (27)
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The sequence (Qt) may not be in l1, see Section 6.2.
Denote b0 := lim

t→+∞
Qt

qt
pt

, b0 is called financial asset bubble. We have

q0

p0

= b0 + FV0. (28)

It means that the market price of the financial asset equals its fundamental value
plus its bubble.

Definition 8. We say there is a bubble on financial asset if the price of financial
asset is greater than its fundamental value: q0

p0
> FV0.

Remark 6.1. Our definitions of physical and financial bubbles still holds for non-
stationary technologies.

We give another definition of low interest rates for the financial asset market. We
recall budget constraints of agent i at date t− 1 and t.

pt−1(ci,t−1 + ki,t − (1− δ)ki,t−1) + qt−1ai,t−1 ≤ rt−1ki,t−1 + (qt−1 + pt−1ξt−1)ai,t−1 + θiπt−1

pt(ci,t + ki,t+1 − (1− δ)ki,t) + qtai,t ≤ rtki,t + qt(1 +
ptξt
qt

)ai,t−1 + θiπt

One can interpret that if agent i buys ai,t−1 units of financial asset at date t−1 with

price qt−1, she will receive (1+
ptξt
qt

)ai,t−1 units of financial asset with price qt at date

t. Therefore,
ptξt
qt

can be viewed as the real interest rate of the financial asset at date

t.

Definition 9. We say that interest rates are low at equilibrium if

∞∑
t=1

ptξt
qt

<∞. (29)

Otherwise, we say that interest rates are high.

We now give a relationship between financial bubble and low interest rates of the
financial asset market.

Proposition 7. There is a financial asset bubble if and only if interest rates are low.

Proof. See Le Van, Pham, and Vailakis (2014).

We now present our result on bubbles.

Proposition 8. (1) Assume that the production functions are stationary. Then at
equilibrium there exists no bubble on the physical asset market.
(2) We assume that the production functions are stationary, F ′(∞) < δ and 0 <
lim inf
t→∞

ξt ≤ lim sup
t→∞

ξt <∞. Then there is no bubble on the financial asset market.
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Proof. See Appendix 8.4.

The structure of physical capital is characterized by a list (K0, δ, (Ft)t) of the
initial physical capital, the rate of depreciation, and production functions. The
structure of financial asset is characterized by its dividends (ξt). Our definition of
bubbles is based on discount factors that are endogenously determined and depend
on the structure of both physical capital and financial asset. As a consequence, the
existence of physical (resp., financial) bubbles depends not only on the structure of
this asset but also on the structure of financial asset (resp., physical capital.)

The first statement of Proposition 8 claims that with stationary technology and
without any condition on (ξt), physical bubble is ruled out.

In Becker, Bosi, Le Van, and Seegmuller (2014), they worked with an endogenous
labor supply model and needed some specific conditions of the production function
to ensure that the capital stocks are uniformly bounded; by using the boundedness
of capital stocks, they proved that physical bubble is ruled out. However, we do not
require any specific condition of the production function, and we also allow for AK
technology. By the way, their result can be viewed as a particular case of our result.

In Bosi, Le Van, and Pham (2014) they considered a model with only physical
capital and show that physical bubble exists if the technologies are given by Ft(K) =

AtK with
∞∑
t=1

At < ∞. In our framework (with both physical capital and financial

asset), however, this is not sufficient to have physical bubble because the following
condition must be satisfied:14

+∞∑
t=1

ξt
(1− δ)t

<∞. (30)

As discussed above, the reason is that the structure of financial asset (ξt) affects
the discount factors (Qt) and the expected returns (ρt), and therefore the existence
of physical bubbles. According to condition (30), there is no physical bubble if
dividends of financial asset are not too low in the sense that lim sup

t→∞
ξt > 0 whatever

the form of technologies. In the following example we point out that there may be a
physical bubble when the technology is not stationary and ξt tends to zero.

Example 2. Assume that (15) is satisfied and Assume that βi = β, ui(c) = c1−σ

1−σ , σ ∈

(0, 1); Ft(K) = AtK or Ft(K) = Anln(1 + K) for any t;
∞∑
t=1

At < ∞. Assume that

ξt+1 <

(
β(1−δ)

) 1
σ

m
ξt for any t.

Then there exists physical bubble. Indeed, condition (15) is satisfied since we

have ξt+1 <

(
β(1−δ)

) 1
σ

m
ξt. As a consequence, Kt > 0 for any t, which implies that

ρt = F ′t(Kt) ≤ At. According to Proposition 6, physical bubble exists. Observe also
that Condition (30) is satisfied.

14This condition is followed by the proof of the first statement of Proposition 8.
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We now discuss about the second statement of Proposition 8. With stationary
technolgy, we need some additional conditions to eliminate financial bubbles. Con-
ditions F ′(∞) < δ and lim sup

t→∞
ξt <∞ are natural and to ensure that the aggregate

capital stocks are uniformly bounded from above. We also require lim inf
t→∞

ξt > 0

under which we get that
+∞∑
t=1

Qt <∞.15 Since the output is uniformly bounded from

above, the present value of the aggregate consumption good is finite, i.e.,

∞∑
t=0

QtYt <∞,

where Yt := F (Kt) + (1 − δ)Kt. Our result is consistent with the following well-
known result (see Kocherlakota (1992), Santos and Woodford (1997), Huang and
Werner (2000)): there is no financial bubble if the present value of the aggregate
endowment is finite.16 However, in Remark 6.3 we will prove that this is only a
sufficient condition ruling out financial bubble.

When one of the conditions in Proposition 8 is violated, bubbles may occur (see
examples in Sections 6.1 and 6.2).

In the following result, we assume that f i = 1 for any i, i.e., all agents can borrow
with maximum level.17 In this case we can weaken conditions in Proposition 8: there
is no condition on dividends and the productivity A may be greater than 1.18

Proposition 9. Assume that f i = 1 for every i and the production functions are
stationary and linear, i.e., Ft(K) = AK for every t. Then there is no financial
bubble and every equilibrium is efficient.

Proof. Since the production function is linear, the zero profit condition is satisfied.
By using the same argument in proof of Proposition 8, we have

T∑
t=0

Qtci,t +QTki,T+1 +QT
qT
pT
ai,T = (

r0

p0

+ 1− δ)ki,0 + (
q0

p0

+ ξ0)ai,−1 < +∞.

This implies that
∑∞

t=0Qtci,t exists, and so does lim
t→∞

Qtki,t+1 +Qt
qt
pt
ai,t.

According to Remark 4.1, when f i = 1, the borrowing constraint of agent i at
date t is equivalent to Qtki,t+1 +Qt

qt
pt
ai,t ≥ 0.

If lim
t→∞

Qtki,t+1 + Qt
qt
pt
ai,t > 0, there exists t0 such that Qtki,t+1 + Qt

qt
pt
ai,t > 0

for every t ≥ t0. Point 2 of Lemma 20 implies that Qt
Qt0

=
Si,t
Si,t0

for every t ≥ t0.

According to point 1 of Lemma 20, we get lim
t→∞

Qtki,t+1 +Qt
qt
pt
ai,t = 0, contradiction.

15Because we always have
+∞∑
t=1

Qtξt ≤ q0
p0
<∞.

16In their frameworks, the present value of the aggregate endowment is finite if and only if the
the present value of the aggregate consumption good is finite

17Note that a financial bubble may occur if this condition is violate (see Section 6.1.2).
18However, we implicitly require that A satisfies Assumption (H5).

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2014.85R (Version révisée)



23

Therefore, we have, for every i, lim
t→∞

Qtki,t+1 + Qt
qt
pt
ai,t = 0. By summing over i, we

get that

lim
t→∞

QtKt+1 +Qt
qt
pt

= 0.

As a consequence, there is no financial bubble and every equilibrium is efficient.

6.1 In search of bubbles

Proposition 8 suggests that bubbles cannot appear in economies where the output,
the capital stocks, and dividends are uniformly bounded away from zero and from
above. In this section, we give series of examples where bubbles arise. We will focus
on the form of technologies and the size of dividends (ξt).

Let us denote I := {1, 2, · · · ,m}. Before presenting examples of equilibrium with
bubbles, we give sufficient conditions for a sequence

(
pt, qt, rt, (ci,t, ki,t+1, ai,t)i∈I , Kt

)
t

to be an equilibrium. The utility may satisfy ui(0) = −∞.

Proposition 10. Assume that f i = 0 for any i.
If a sequence

(
(ci,t, ki,t+1, ai,t, σi,t, νi,t)i∈I , Kt, pt, qt, rt

)
t

satisfies

(i) ∀t, ∀i, ci,t > 0, ki,t+1 > 0, ai,t > 0, σi,t > 0, νi,t > 0,
∀t,Kt > 0, pt = 1, qt > 0, rt > 0

(ii) First order conditions

1

rt+1 + 1− δ
=
βiu
′
i(ci,t+1)

u′i(ci,t)
+ σi,t

qt
qt+1 + ξt+1

=
βiu
′
i(ci,t+1)

u′i(ci,t)
+ νi,t

σi,tki,t+1 = 0 and νi,tai,t = 0

(iii) Transversality conditions

lim
t→∞

βtiu
′
i(ci,t)ki,t+1 = lim

t→∞
βtiu

′
i(ci,t)qtai,t = 0.

(iv) ∀t, Ft(Kt)− rtKt = max{Ft(k)− rtk : k > 0}

(v) ci,t + ki,t+1 − (1− δ)ki,t + qtai,t = rtki,t + (qt + ξt)ai,t−1 + θitπt
where πt = Ft(Kt)− rtKt

(vi) Kt =
∑

i∈I ki,t

(vii)
∑

i∈I ai,t = 1

then the sequence
(
pt, qt, rt, (ci,t, ki,t+1, ai,t)i∈I , Kt

)
t

is an equilibrium.

Proof. The proof is left to the reader.

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2014.85R (Version révisée)



24

We now present some examples of (non)bubbles for physical asset market and
financial asset market as well.

We assume that there are 2 consumers H and F

ui(c) = ln(c), βi = β ∈ (0, 1), f i = 0 ∀i = {H,F} (31)

δ ∈ (0, 1). (32)

Their initial endowments are respectively kH,0 = 0, aH,−1 = 0, kF,0 > 0, aF,−1 = 1..
Their shares of the profits are

For t ≥ 0, θH2t = 1, θH2t+1 = 0

θF2t = 0, θF2t+1 = 1.

The production functions are

Ft(K) = atK + b (33)

where at, b > 0 and β(1 − δ + at) ≤ 1 for any t. Note that πt = b for any t. Recall
that we assume that labor supply is exogenous. Hence, this production function
corresponds to the production function Ft(K,L) = atK + bL when labor is taken
into account. When the exogenous labor supply is 1 then we come back to (33).

Allocations of the consumer H:

kH,2t = 0, aH,2t−1 = 0 (34)

cH,2t−1 = (1− δ + r2t−1)K2t−1 + q2t−1 + ξ2t−1 (35)

kH,2t+1 = K2t, aH,2t = 1 (36)

cH,2t = π2t −K2t+1 − q2t (37)

Allocations of the consumer F :

kF,2t = K2t, aF,2t = 1 (38)

cF,2t−1 = π2t−1 −K2t − q2t−1 (39)

kF,2t+1 = 0, aF,2t = 0 (40)

cF,2t = (1− δ + r2t)K2t + q2t + ξ2t. (41)

Prices and the aggregate capital: for any t, pt = 1, rt = at, and

Kt+1 + qt =
β

1 + β
b (42)

qt+1 + ξt+1 = qt(at+1 + 1− δ) (43)

qt, Kt > 0 (44)

We prove in Appendix 8.4 that this sequence of allocations and prices is an
equilibrium.
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6.1.1 No bubbles

Let at = δ for any t.

Let (ξt) be such that
∞∑
t=1

ξt = f < β
1+β

b. Let us define financial asset prices by

q0 := f (45)

qt := f −
t∑

s=1

ξs (46)

and the aggregate capital by Kt+1 := β
1+β

b− qt.
We have

∑
t

ρt =
∑
t

at =∞. Therefore there is no physical capital bubble.

Financial bubble is ruled out because q0 =
∞∑
t=1

ξt =
∞∑
t=1

Qtξt.

6.1.2 Financial bubble without physical bubble

Let at = δ for any t. (ξt) such that
∞∑
t=1

ξt = f < β
1+β

b.

Let us define q0 ∈ (f, β
1+β

b) and qt := q0 −
t∑

s=1

ξs and Kt+1 := β
1+β

b− qt.

In this case, physical bubble is ruled out but there is financial bubble since q0 >

f =
∞∑
t=1

Qtξt. Moreover, there is a continuum of bubble prices q0.

Remark 6.2. In this example of financial bubble, the technology is stationary but
we require two conditions:

1.
∞∑
t=1

ξt <
β

1+β
b, which implies that the condition lim inf

t→∞
ξt > 0 in Proposition 8 is

not satisfied.

2. f i = 0 for any i. This means that the condition f i = 1 for any i, as required
in Proposition 9, is not satisfied.

Remark 6.3. When at = δ, we see that Qt = 1 for any t and therefore

∞∑
t=0

Qt(Ft(Kt) + (1− δ)Kt) ≥
∞∑
t=0

Qtb =∞.

Hence the present value of output is infinite in both cases: non financial bub-
ble (Section 6.1.1) and financial bubble (Section 6.1.2). Therefore the fact that the
present value of output is finite is only a sufficient condition ruling out financial
bubble.

 
Documents de Travail du Centre d'Economie de la Sorbonne - 2014.85R (Version révisée)



26

6.1.3 Physical bubble without financial bubble

Let (at) be such that
∞∑
t=1

at < ∞ then there exists physical bubble. We choose (ξt)

such that

∞∑
s=1

ξs
(1− δ + a1) · · · (1− δ + as)

= fv <
β

1 + β
b. (47)

We then choose q0 = fv and (qt) by

q0 =
t∑

s=1

ξs
(1− δ + a1) · · · (1− δ + as)

+
qt

(1− δ + a1) · · · (1− δ + at)
(48)

In this case, there exists no financial bubble.

6.1.4 Both assets have bubbles

Let (at) be such that
∞∑
t=1

at < ∞ then there exists physical bubble. We choose (ξt)

such that

∞∑
s=1

ξs
(1− δ + a1) · · · (1− δ + as)

= fv <
β

1 + β
b. (49)

We then choose q0 > fv and (qt) by

q0 =
t∑

s=1

ξs
(1− δ + a1) · · · (1− δ + as)

+
qt

(1− δ + a1) · · · (1− δ + at)
. (50)

Then there exists a financial bubble.

6.2 On the connections between the absence of bubbles and
the fact that (Qt) ∈ l1

In Gilles and LeRoy (1992), for a sequence of dividends ξ = (ξt)t ∈ l∞–the space of
bounded sequences., and a linear function P = (Pt) ∈ l1, they define the fundamental

value of a long-lived asset with dividend (ξt) as
∞∑
t=1

Ptξt. In particular, (Pt) does not

depend on (ξt).
Our approach differs from Gilles and LeRoy (1992) on the following points:

1. We do not require that (ξt) ∈ l∞. Instead, ξt may tend to infinity when t tends
to infinity.
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2. The discount factors (Qt) in our framework endogenously depend on dividends
ξ = (ξt)t.

19

3. Since (Qt) is endogenous, we do not know whether (Qt) ∈ l1.20

It would be interesting to study the connections between the absence of bubbles
and the fact that (Qt) ∈ l1.

First, on the physical bubble we have

Proposition 11. If (Qt) ∈ l1 then there is no physical bubble.

Proof. If there is a physical bubble, we have, according to Proposition 6,
∑∞

t=1 ρt <
+∞. Therefore there exists t0 > 1 and ρ ∈ (0, δ) such that ρt < ρ for any t ≥ t0. As
a consequence we get that

∞∑
t=1

Qt =
1

t0−1∏
s=1

(1− δ + ρs)

∑
t≥t0

1

(1− δ + ρt0) · · · (1− δ + ρt)

≥ 1
t0−1∏
s=1

(1− δ + ρs)

∑
t≥t0

1

(1− δ + ρ)t
.

Since 1− δ + ρ < 1, we obtain that (Qt) 6∈ l1.

The converse of this proposition is not true. Indeed, we consider the example as
in Section 6.1.1 where at = δ > 0. In this case (Qt) = (1, 1, . . . , 1) 6∈ l1. However
there is no financial bubble.

We now consider the connections between the existence of financial bubble and
the fact that (Qt) ∈ l1. In the case where the output is uniformly bounded from
above, according to the proof of Proposition 8, we have: if (Qt) ∈ l1 then financial
bubble is ruled out. However, the inverse sense is not true. Indeed, in the example
in Section 6.1.1 we see that financial bubble is ruled out but (Qt) 6∈ l1 since Qt = 1
for any t.

In what follows we will show that when the output is not uniformly bounded
from above, (Qt) ∈ l1 does not imply that financial bubble is ruled out.

Let us consider the production function as follows

Ft(K) = aK + bt (51)

19Indeed, if (Qt) do not depend on ξ = (ξt)t then so do the expected returns (ρt) and the sum
∞∑
t=1

ρt. However, according to Example 2 we see that
∞∑
t=1

ρt < ∞ if ξt+1 <

(
β(1−δ)

) 1
σ

m ξt for any t.

According to condition (30), there is no physical bubble (equivalently
∞∑
t=1

ρt =∞) if ξt = ξ > 0 for

any t. These two observations show that the sum
∞∑
t=1

ρt depends on ξ = (ξt)t, contradiction!

20However, according to the fact that
∞∑
t=1

Qtξt ≤ q0
p0
<∞, we have (Qt) ∈ l1 if lim inf

t→∞
ξt > 0.
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where a > δ and b > 1− δ+a. In this case we see that πt = bt tends to infinity when
t tends to infinity.

As Section 6.1 there are two consumers H and F whose allocations are given as
follows.

Allocations of the consumer H:

kH,2t = 0, aH,2t−1 = 0 (52)

cH,2t−1 = (1− δ + r2t−1)K2t−1 + q2t−1 + ξ2t−1 (53)

kH,2t+1 = K2t, ah,2t = 1 (54)

cH,2t = π2t −K2t+1 − q2t (55)

Allocations of the consumer F :

kF,2t = K2t, aF,2t = 1 (56)

cF,2t−1 = π2t−1 −K2t − q2t−1 (57)

kF,2t+1 = 0, aF,2t = 0 (58)

cF,2t = (1− δ + r2t)K2t + q2t + ξ2t. (59)

We assume that b > 1 > β(1− δ + a) and

β

1 + β
>
∞∑
t=1

ξt
(1− δ + a)t

=: Fv.

We choose q0 ∈ [Fv,
β

1+β
), and pt = 1, rt = at for any t ≥ 0. (Kt, qt)t≥1 are given

by

Kt+1 + qt =
β

1 + β
πt =

β

1 + β
bt (60)

qt+1 + ξt+1 = qt(at+1 + 1− δ). (61)

It means that qt = (1 − δ + a)t
(
q0 −

t∑
s=1

ξs
(1−δ+a)s

)
. We see that qt > 0 and qt <

q0(1− δ + a)t < β
1+β

bt. Hence Kt+1 = β
1+β

bt − qt > 0.
We can verify that the above sequence of prices and allocations is an equilibrium.
We have that Qt = 1

(1−δ+a)t
then (Qt) ∈ l1.

When we choose q0 > Fv then there exists financial bubble. But if we choose
q0 = Fv then there is no financial bubble. In both cases we always have (Qt) ∈ l1. It
means that (Qt) ∈ l1 does not rule out financial bubble.

7 Conclusion

We build an infinite-horizon dynamic deterministic general equilibrium model in
which heterogeneous agents invest in capital and/or financial asset, and consume.
We proved the existence of intertemporal equilibrium in this model, even if aggregate
capital is not uniformly bounded and technologies are not stationary.
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By using this framework, we studied the relationship between the financial market
and the productive sector: when productivity is high enough, the economy will
produce at any period; when productivity is low and financial dividends are bounded
away from zero, the productive sector will produce nothing at infinitely many dates;
in some cases, dividends would be used for the purchase of the physical capital to
produce.

We pointed out impacts of the financial asset. Fluctuations on financial dividends
(ξt) can create fluctuations on the aggregate capital path (Kt). However, if financial
dividends are bounded away from zero and capital stocks are uniformly bounded,
every equilibrium is efficient and there exist neither bubble on the financial asset
market nor on the physical asset market.

We found out the nature of physical and financial bubbles. Physical bubble exists
if and only if the sum (over time) of expected capital returns is finite. Financial
bubble exists if and only if the sum (over time) of interest rate (in term of financial
asset) is finite. The condition that the present value of output is finite is only a
sufficient condition ruling out financial bubble. We give series of examples for both
physical and financial bubbles/no-bubbles.

8 Appendix

8.1 Existence of equilibrium for truncated bounded econ-
omy

We define the bounded economy ETb as ET but all variables (consumption demand,
capital supply, asset investment, capital demand) are bounded.

Ci := [0, Bc]
T+1, Bc > 1 + max

t≤T
Ft(BK) + (1− δ)Bk + max

t≤T
ξt,

Ki := [0, Bk]
T , Bk > DT := 1 + max

t≤T
Dt(K0, ξ0, . . . , ξt)

Ai := [−Ba, Ba]
T , Ba > 1 +B

K := [0, BK ]T+1, BK > 1 +mBk,

where B such that B > max{max
t≤T

Dt
ξt
, 1 +mmax

t≤T
Dt
ξt
}.

Denote ∆ := {z0 = (p, q, r) : 0 ≤ pt, qt, rt ≤ 1, pt + qt + rt = 1 ∀t = 0, . . . , T}.

8.1.1 Existence of equilibrium for ε-economy

For each ε > 0 such that 2mε < 1, we define ε−economy ET,εb by adding ε units of
each good (consumption good, physical capital, and financial asset) for each agent
at date 0. In the economy ET,εb , each agent has strictly positive endowment in each
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good. More precisely, the feasible set of agent i is given by

CT,ε
i (p, q, r) :=

{
(ci,t, ki,t+1, ai,t)

T
t=0 ∈ RT+1

+ × RT+1
+ × RT+1

+ : (a) ki,T+1, ai,T = 0,

(b) p0(ci,0 + ki,1 − (1− δ)(ki,0 + ε)) + q0ai,0

≤ p0ε+ r0(ki,0 + ε) + (q0 + p0ξ0)(ai,t−1 + ε) + θiπ0

(c) for each 1 ≤ t ≤ T :

0 ≤ (qt + ptξt)ai,t−1 + f i(rt + (1− δ)pt)ki,t
pt(ci,t + ki,t+1 − (1− δ)ki,t) + qtai,t ≤ (qt + ptξt)ai,t−1 + rtki,t + θiπt

}
.

We also define BT,ε
i (p, q, r) as follows.

BT,ε
i (p, q, r) :=

{
(ci,t, ki,t+1, ai,t)

T
t=0 ∈ RT+1

+ × RT+1
+ × RT+1

+ : (a) ki,T+1, ai,T = 0,

(b) p0(ci,0 + ki,1 − (1− δ)(ki,0 + ε)) + q0ai,0

< p0ε+ r0(ki,0 + ε) + (q0 + p0ξ0)(ai,t−1 + ε) + θiπ0

(c) for each 1 ≤ t ≤ T :

0 < (qt + ptξt)ai,t−1 + f i(rt + (1− δ)pt)ki,t
pt(ci,t + ki,t+1 − (1− δ)ki,t) + qtai,t < (qt + ptξt)ai,t−1 + rtki,t + θiπt

}
.

We write CT
i (p, q, r), BT

i (p, q, r) instead of CT,0
i (p, q, r), BT,0

i (p, q, r).

Definition 10. A sequence of prices and quantities
(
p̄t, q̄t, r̄t, (c̄i,t, k̄i,t+1, āi,t)

m
i=1, K̄t

)T
t=0

is an equilibrium of the economy ET,εb if the following conditions are satisfied:

(i) Price positivity: p̄t, r̄t, q̄t > 0 for t ≥ 0.

(ii) All markets clear:
Consumption good

m∑
i=1

(c̄i,0 + k̄i,1 − (1− δ)(k̄i,0 + ε)) = 2mε+ F0(K̄0) + ξ0

m∑
i=1

(c̄i,t + k̄i,t+1 − (1− δ)k̄i,t) = Ft(K̄t) + ξt

Physical capital

K̄0 =
m∑
i=1

(k̄i,0 + ε), K̄t =
m∑
i=1

k̄i,t.

Financial asset

m∑
i=1

āi,0 =
m∑
i=1

(āi,−1 + ε),
m∑
i=1

āi,t+1 =
m∑
i=1

āi,t.
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(iii) Optimal consumption plans: for each i,
(
c̄i,t, k̄i,t+1, āi,t

)∞
t=0

is a solution of the

maximization problem of agent i with the feasible set CT,ε
i (p, q, r).

(iv) Optimal production plan: for each t ≥ 0, (K̄t) is a solution of the problem
(P (p̄t, r̄t)).

Lemma 8. BT,ε
i (p, q, r) 6= ∅ and B̄T,ε

i (p, q, r) = CT,ε
i (p, q, r).

Proof. We rewrite

BT,ε
i (p, q, r) :=

{
(ci,t, ki,t+1, ai,t)

T
t=0 ∈ RT+1

+ × RT+1
+ × RT+1

+ : ki,T+1, ai,T = 0,

0 < p0(ε+ (1− δ)(ki,0 + ε) + ξ0(ai,t−1 + ε)− ci,0 − ki,1)

+ r0(ki,0 + ε) + q̄0(ai,t−1 + ε− ai,0) + θiπ0

and for each 1 ≤ t ≤ T :

0 < qtai,t−1 + f ir̄tki,t + pt(ξtai,t−1 + f i(1− δ)ki,t)
0 < pt((1− δ)ki,t + ξtai,t−1 − ci,t − ki,t+1) + rtki,t + q̄t(ai,t−1 − ai,t) + θiπt.

Since ε, ki,0 + ε, ai,t−1 + ε > 0, we can choose ci,0 ∈ (0, Bc), ki,1 ∈ (0, Bk), and
ai,0 ∈ (0, Ba) such that

0 < p0(ε+ (1− δ)(ki,0 + ε) + ξ0(ai,t−1 + ε)− ci,0 − ki,1)

+ r0(ki,0 + ε) + q̄0(ai,t−1 + ε− ai,0) + θiπ0.

By induction, we see that Bi(p, q, r) is not empty.

Remark 8.1. When ε = 0, BT,ε
i (p, q, r) is empty when p0 = r0 = 0, p1 = r1 = 0,

and ai,−1 = 0. That’s why we need to introduce ET,εb .

Lemma 9. Bi(p, q, r) is lower semi-continuous correspondence on ∆. Ci(p, q, r) is
upper semi-continuous on ∆ with compact convex values.

Proof. Clearly, since Bi(p, q, r) is non-empty and has open graph.

We define Φ := ∆×
m∏
i=1

(Ci ×Ki ×Ai)×K. An element z ∈ Φ is in the form z =

(zi)
m+1
i=0 where z0 := (p, q, r), zi := (ci, ki, ai) for each i = 1, . . . ,m, and zm+1 = (K).
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We now define correspondences. First, we define ϕ0 (for additional agent 0)

ϕ0 :
m∏
i=1

(Ci ×Ki ×Ai)×K → 2∆

ϕ0((zi)
m+1
i=1 ) := arg max

(p,q,r)∈∆

{
p0

( m∑
i=1

(ci,0 + ki,1 − (1− δ)(ki,0 + ε)−mε− F0(K0)− ξ0)
)

+ q0

m∑
i=1

(ai,0 − ai,−1 − ε) + r0(K0 −
m∑
i=1

(ki,0 + ε))

+
T∑
t=1

pt
( m∑
i=1

(ci,t + ki,t+1 − (1− δ)ki,t − Ft(Kt)− ξt
)

T∑
t=0

rt
(
Kt −

m∑
i=1

ki,t
)

+
T−1∑
t=1

qt

m∑
i=1

(ai,t − ai,t−1)
}
.

For each i = 1, . . . ,m, we define

ϕi : ∆→ 2Ci×Ki×Ai

ϕi((p, q, r)) := arg max
(ci,ki,ai)∈Ci(p,q,r)

{ T∑
t=0

βtiui(ci,t)
}
.

For each i = m+ 1, we define

ϕm+1 : ∆→ 2K

ϕi((p, q, r)) := arg max
(K)∈K

{ T∑
t=0

ptFt(Kt)− rtKt

}
.

Lemma 10. The correspondence ϕi is lower semi-continuous and non-empty, con-
vex, compact valued for each i = 0, 1, . . . ,m+ 1.

Proof. This is a direct consequence of the Maximum Theorem.

According to the Kakutani Theorem, there exists (p̄, q̄, r̄, (c̄i, k̄i, āi)
m
i=1), K such

that

(p̄, q̄, r̄) ∈ ϕ0((c̄i, k̄i, āi)
m
i=1) (62)

(c̄i, k̄i, āi) ∈ ϕi((p̄, q̄, r̄)) (63)

(K) ∈ ϕm+1((p̄, q̄, r̄)). (64)
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Denote

X̄0 :=
m∑
i=1

(ci,0 + ki,1 − (1− δ)(ki,0 + ε)− F0(K0)− ξ0) (65)

X̄t :=
m∑
i=1

(ci,t + ki,t+1 − (1− δ)ki,t − Ft(Kt)), t ≥ 1 (66)

Ȳ0 = K̄0 −
m∑
i=1

(k̄i,0 + ε), Ȳt = K̄t −
m∑
i=1

k̄i,t, t ≥ 1 (67)

Z̄0 =
m∑
i=1

(āi,0 − ε− āi,−1), Z̄t =
m∑
i=1

(āi,t − āi,t−1), t ≥ 1. (68)

For every (p, q, r) ∈ ∆, we have

T∑
t=0

(pt − p̄t)X̄t +
T−1∑
t=0

(qt − q̄t)Z̄t +
T∑
t=0

(rt − r̄t)Ȳt ≤ 0. (69)

By summing the budget constraints over i, we get that, for each t,

p̄X̄t + q̄Z̄t + r̄Ȳt ≤ 0. (70)

As a consequence, we have, for every (p, q, r) ∈ ∆,

ptX̄t + qtZ̄t + rtȲt ≤ p̄X̄t + q̄Z̄t + r̄Ȳt ≤ 0. (71)

Therefore, we have X̄t, Z̄t, Ȳt ≤ 0, which mean that

m∑
i=1

c̄i,0 + k̄i,1 ≤ mε+ (1− δ)
m∑
i=1

(k̄i,0 + ε) + F0(K̄0) + ξ0 (72)

m∑
i=1

c̄i,t + k̄i,t+1 ≤ (1− δ)
m∑
i=1

k̄i,t + Ft(K̄t), t ≥ 1

K̄0 ≤
m∑
i=1

(k̄i,0 + ε), K̄t ≤
m∑
i=1

k̄i,t, t ≥ 1 (73)

m∑
i=1

āi,0 ≤
m∑
i=1

(āi,−1 + ε),
m∑
i=1

āi,t ≤
m∑
i=1

āi,t−1, t ≥ 1. (74)

Lemma 11. p̄t, q̄t, r̄t > 0 for t = 0, . . . , T .

Proof. If p̄t = 0, we obtain that c̄i,t = Bc > n+ (1− δ)Bk + Ft(Bk) + ξt. Therefore,

we get c̄i,t + k̄i,t+1 > (1− δ)
m∑
i=1

k̄i,t + Ft(K̄t), contradiction. As a result, p̄t > 0.

If r̄t = 0, the optimality of (K̄) implies that Kt = BK . However, we have k̄i,t ≤ Bk

for every i, t. Consequently,
m∑
i=1

k̄i,t ≤ mBk + n < BK = Kt, contradiction to (73).

Therefore, we get r̄t > 0.
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If q̄t = 0, we have āi,t = Ba for each i. Thus,
m∑
i=1

āi,t ≥ mBa > 1 + Ba. However,

we have
m∑
i=1

āi,t ≤
m∑
i=1

āi,−1 +mε = 1 +mε < 1 +Ba, contradiction!

Lemma 12. X̄t = Z̄t = Ȳt = 0.

Proof. Since prices are strictly positive and the utility functions are strictly increas-
ing, all budget constraints are binding. By summing budget constraints (over i) at
date t we have.

p̄tX̄t + q̄tZ̄t + r̄tȲt = 0. (75)

By combining this with the fact that X̄t, Z̄t, Ȳt ≤ 0, we obtain X̄t = Z̄t = Ȳt = 0.

The optimalities of (ci, ai, ki) and (K) are from (63) and (64).

8.1.2 When ε tends to zero

We have so far proved that for each εn = 1/n > 0, where n is interger number and
high enough, there exists an equilibrium, say

equi(n) :=
(
p̄t(n), q̄t(n), r̄t(n), (c̄i,t(n), k̄i,t(n), āi,t(n))mi=1, K̄t(n)

)T
t=0
,

for the economy ET,εnb . Note that p̄t(n) + q̄t(n) + r̄t(n) = 1, we can assume that21

(p̄(n), q̄(n), r̄(n), (c̄i(n), k̄Ti (n), āi(n))mi=1, K̄
T (n))

n→∞−−−→ (p̄, q̄, r̄, (c̄i, k̄i, āi)
m
i=1, K̄).

Markets clearing conditions: By taking limit of market clearing conditions for
economy ET,εnb , we obtain market clearing conditions for the economy ETb .
Optimality of K̄t: Take K ≥ 0. We have p̄t(n)Ft(K)− r̄t(n)K ≤ p̄t(n)Ft(K̄t(n))−
r̄t(n)K̄t(n). Let n tend to infinity, we obtain that p̄tFt(K)− r̄tK ≤ p̄tFt(K̄t)− r̄tK̄t.
Therefore, the optimality of K̄t is proved.

Lemma 13. If p̄t > 0, we have r̄t > 0 for each t ≥ 0.

Proof. Assume that r̄t = 0. According to the optimality of K̄t, we have Ft(K) ≤
Ft(K̄) for every K ≥ 0. Then K̄t = BK > Dt−1. However, according to market
clearing condition, we have

K̄t+1 ≤ (1− δ)K̄t + Ft(K̄t) + ξt. (76)

As a consequence, K̄t < Dt−1, contradiction.

21In fact, since prices and allocations are bounded, there exists a subsequence (n1, n2, . . . , ) such
that equi(ns) converges. However, without loss of generality, we can assume that equi(n) converges.
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Corollary 5. We have q̄t + r̄t > 0 for each t ≥ 0.

Lemma 14. We have p̄0 + q̄0 > 0.

Proof. If p̄0 + q̄0 = 0, we get p̄0 = 0, r̄0 = 1. According to the optimality of K0, we
have K ≥ K0 for every K ≥ 0. Then, K0 = 0, contradiction.

The following result is very important and allows us to pass to the limit when ε
tends to zero. The economic intuition is that if agent i has something on hand, i.e.,
ai,−1 > 0 or ki,0 > 0, then the budget constraint of this agent is not empty.

Lemma 15. BT
i (p̄, q̄, r̄) 6= ∅ if p̄0 + q̄0 > 0, q̄t + r̄t > 0 for each t ≥ 0, and one of the

following condition is satisfied

1. q̄0 = 0.

2. q̄0 > 0 and ai,−1 > 0.

Proof. In the case when q̄0 = 0, we see that p̄0, r̄0 > 0. Since (ki,0, ai,−1) 6= (0, 0), we
can use the same argument in Lemma 8 to prove that BT

i (p̄, q̄, r̄) 6= ∅.
If q̄0 > 0 and ai,−1 > 0, we get ξ0ai,−1 > 0. BT

i (p̄, q̄, r̄) 6= ∅ is also proved by using
the same argument.

Lemma 16. We have p̄t, q̄t, r̄t > 0.

Proof. Since
m∑
i=1

ai,−1 = 1 > 0, there exists an agent i such that ai,−1 > 0. According

to Lemma 15, we have BT
i (p̄, q̄, r̄) 6= ∅. We are going to prove the optimality of

allocation (c̄i, k̄i, āi).
Let (ci, ki, ai) be a feasible allocation of the maximization problem of agent i with

the feasible set CT
i (p̄, q̄, r̄). We have to prove that

∞∑
t=0

βtiui(ci,t) ≤
∞∑
t=0

βtiui(c̄i,t).

Since BT
i (p̄, q̄, r̄) 6= ∅, there exists (h)h≥0 and (chi , k

h
i , a

h
i ) ∈ BT

i (p̄, q̄, r̄) such that
(chi , k

h
i , a

h
i ) converges to (ci, ki, ai). We have

p̄t(c
h
i,t + khi,t+1 − (1− δ)khi,t) + q̄ta

h
i,t < r̄tk

h
i,t + (q̄t + p̄tξt)a

h
i,t−1 + θiπt

0 < (q̄t + p̄tξt)a
h
i,t−1 + f i(r̄t + (1− δ)p̄t)khi,t.

Fix h. Let n0 (n0 depend on h) be high enough such that for every n ≥ n0,

(chi , k
h
i , a

h
i ) ∈ C

T,1/n
i (p̄(n), q̄(n), r̄(n)). Therefore, we have

∞∑
t=0

βtiui(c
h
i,t) ≤

∞∑
t=0

βtiui(c̄i,t(n)).

Let n tend to infinity, we obtain
∞∑
t=0

βtiui(c
h
i,t) ≤

∞∑
t=0

βtiui(c̄i,t).

Let h tend to infinity, we have
∞∑
t=0

βtiui(ci,t) ≤
∞∑
t=0

βtiui(c̄i,t). It means that we have

just proved the optimality of (c̄i, k̄i, āi).
We now prove p̄t > 0 for every t. Indeed, if p̄t = 0, the optimality of (c̄i, k̄i, āi)

implies that c̄i,t = Bc > (1− δ)K̄t + Ft(K̄t) + ξt, contradiction.
Therefore, it is easy to prove that q̄t > 0, r̄t > 0.

Lemma 17. For each i, (c̄i, k̄i, āi) is optimal.

Proof. By using the same argument in Lemma 16.
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8.2 Existence of equilibrium for truncated unbounded econ-
omy

Proof of Lemma 3 . Let
(
p̄t, q̄t, r̄t, (c̄i,t, k̄i,t+1, āi,t, )

m
i=1, K̄t

)T
t=0

be an equilibrium of

ETb . Note that ki,T+1 = ai,T = 0 for every i = 1, . . . ,m. We can see that conditions
(i) and (ii) in Definition 10 are satisfied. We will show that conditions (iii) and (iv)
in Definition 10 are also satisfied.

For Condition (iii), let zi :=
(
ci,t, ki,t+1, ai,t

)T
t=0

be a feasible plan of household i.

Assume that
T∑
t=0

βtiui(ci,t) >
T∑
t=0

βtiui(c̄i,t). For each γ ∈ (0, 1), we define zi(γ) :=

γzi + (1− γ)z̄i. By definition of ETb , we can choose γ sufficiently close to 0 such that
zi(γ) ∈ Ci ×Ki ×Ai. It is clear that zi(γ) is a feasible allocation.
By the concavity of the utility function, we have

T∑
t=0

βtiui(ci,t(γ)) ≥ γ
T∑
t=0

βtiui(ci,t) + (1− γ)
T∑
t=0

βtiui(c̄i,t)

>
T∑
t=0

βtiui(c̄i,t).

Contradiction to the optimality of z̄i. So, we have shown that conditions (iii) in
Definition 10 is satisfied. A similar proof for conditions (iv) in Definition 10 permits
us to finish our proof.

8.3 Existence of equilibrium for the infinite horizon economy

Proof of Theorem 1. We have shown that for each T ≥ 1, there exists an equilib-
rium for the economy ET . We denote (p̄T , q̄T , r̄T , (c̄Ti , k̄

T
i , ā

T
i )mi=1, K̄

T ) is an equilibrium
of T− truncated economy ET .
We can normalize by setting p̄Tt + q̄T + r̄Tt = 1 for every t ≤ T . According to (6), we
see that

0 < c̄Ti,t, K̄
T
t ≤ Dt

−āTi,t ≤
Dt+1

ξt+1

,
m∑
i=1

āTi,t = 1.

Therefore, we can assume that

(p̄T , q̄T , r̄T , (c̄Ti , k̄
T
i , ā

T
i )mi=1, K̄

T )
T→∞−−−→ (p̄, q̄, r̄, (c̄i, k̄i, āi)

m
i=1, K̄) (for the product topology ).

It is easy to see that all markets clear, and at each date t, K̄t is a solution of the
firm’s maximization problem. As in proof of the existence of equilibrium for bounded
T−truncated economy, we have
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(i) r̄t > 0 if p̄t > 0.

(ii) r̄t + q̄t > 0 for each t ≥ 0.

(iii) p̄0 + q̄0 > 0.

Lemma 18. We have p̄t > 0 for each t ≥ 0.

Proof. There exists i such that ai,−1 > 0. By using the same argument in Lemma
15, we see that BT

i (p̄, q̄, r̄) 6= ∅.
Let (ci, ki, ai) be a feasible alloation of the problem Pi(p̄, q̄, r̄). We have to prove

that
∞∑
t=0

βtiui(ci,t) ≤
∞∑
t=0

βtiui(c̄i,t). Note that, without loss of generality, we can only

consider feasible allocations such that p̄T (ci,T + ki,T+1− (1− δ)ki,t) + q̄i,Tai,t ≥ 0. We
define (c′i,t, k

′
i,t+1, a

′
i,t)

T
t=0 as follows:

ci,t = ki,t+1 = ai,t = 0 if t > T

a′i,t = ai,t, if t ≤ T − 1, ai,T = 0

c′i,t = ci,t, if t ≤ T − 1, k′i,t+1 = ki,t+1, if t ≤ T − 1

p̄T (c′i,T + k′i,T+1 − (1− δ)ki,t) = p̄T (ci,T + ki,T+1 − (1− δ)ki,t) + q̄i,Tai,t

We see that (c′i,t, k
′
i,t+1, a

′
i,t)

T
t=0 belongs to CT

i (p̄, q̄, r̄).

SinceBT
i (p̄, q̄, r̄) 6= ∅, there exists a sequence

(
(cni,t, k

n
i,t+1, a

n
i,t)

T
t=0

)∞
n=0
∈ BT

i (p̄, q̄, r̄)

with kni,T+1 = 0, ani,T = 0, and this sequence converges to (c′i,t, k
′
i,t+1, a

′
i,t)

T
t=0 when n

tends to infinity. We have

p̄t(c
n
i,t + kni,t+1 − (1− δ)kni,t) + q̄ta

n
i,t < r̄tk

n
i,t + (q̄t + p̄tξt)a

n
i,t−1 + θiπt(p̄t, r̄t)

We can chose s0 high enough such that s0 > T and for every s ≥ s0, we have

p̄st(c
n
i,t + kni,t+1 − (1− δ)kni,t) + q̄sta

n
i,t < r̄stk

n
i,t + (q̄st + p̄stξt)a

n
i,t−1 + θiπt(p̄

s
t , r̄

s
t ).

It means that (cni,t, k
n
i,t+1, a

n
i,t)

T
t=0 ∈ CT

i (p̄s, q̄s, r̄s). Therefore, we get
T∑
t=0

βtiui(c
n
i,t) ≤

s∑
t=0

βtiui(c̄
s
i,t). Let s tend to infinity, we obtain

T∑
t=0

βtiui(c
n
i,t) ≤

∞∑
t=0

βtiui(c̄i,t).

Let n tend to infinity, we have
T∑
t=0

βtiui(c
′
i,t) ≤

∞∑
t=0

βtiui(c̄i,t) for every T . As a conse-

quence, we have: for every T

T−1∑
t=0

βtiui(ci,t) ≤
∞∑
t=0

βtiui(c̄i,t).

Let T tend to infinity, we obtain
∞∑
t=0

βtiui(ci,t) ≤
∞∑
t=0

βtiui(c̄i,t).

Therefore, we have proved the optimality of (c̄i, k̄i, āi).
Prices p̄t, q̄t are strictly positive since the utility function of agent i is strictly

increasing. r̄t > 0 is implied by p̄t > 0.
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Lemma 19. For each i, (c̄i, k̄i, āi) is optimal.

Proof. Since p̄t, q̄t, r̄t > 0 and (ki,0, ai,−1) 6= (0, 0), we get that BT
i (p̄, r̄, q̄) 6= ∅. By

using the same argument in Lemma 18, we can prove that (c̄i, k̄i, āi) is optimal.

8.4 Other formal proofs

Proof of Remark 3.2. Indeed, assume that there exists b < ∞ such that (8) and
(9) for every i. Denote A = F ′(b), B = F (b). Since F (·) is increasing and concave,
we obtain F (x) ≤ Ax+ B for every x ≥ 0. Since definition of Dt(K0, ξ0, . . . , ξt), we
have

Dt(F, δ,K0, ξ0, . . . , ξt) ≤ (A+ 1− δ)t+1K0 + (A+ 1− δ)t(B + ξ0) + · · ·+ (B + ξt)

≤ (A+ 1− δ)t+1K0 + (B + max
s≤t
{ξs})

t∑
s=0

(A+ 1− δ)s

Since ui is concave, there exists ai > 0, bi > 0 such that ui(x) ≤ aix + bi for every
x ≥ 0. Then

∞∑
t=0

βtiui(Dt(F, δ,K0, ξ0, . . . , ξt)) ≤
∞∑
t=0

βti

(
aiDt(F, δ,K0, ξ0, . . . , ξt) + bi).

Case 1: A ≤ δ then Dt(F, δ,K0, ξ0, . . . , ξt) ≤ K0 + (t + 1)(B + max
s≤t

ξs). Combining

with (8), (9), and (77) we obtain (7).
Case 2: A > δ, then

Dt(F, δ,K0, ξ0, . . . , ξt) = (A+ 1− δ)t+1K0 + (A+ 1− δ)t(B + ξ0) + · · ·+ (B + ξt)

≤ (A+ 1− δ)t+1K0 + (B + max
s≤t
{ξs})

(A+ 1− δ)t+1 − 1

A− δ
.

Combining with (8), (9), and (77) we obtain (7).

Proof for Example 1. It is easy to see that all markets clear and the optimal
problem of firm is solved.

It is easy to see that all transversality conditions are satisfied. Therefore we have
to only check the optimality of household’s optimization problem by verifying the
FOCs (10, 11, 12).

FOCs of consumption n are hold because of the choices of multipliers.

FOCs of ah,t with h ∈ {i, j}. We have
µh,t+1

µh,t
= β for every t ≥ 1. Since

qt = ξ
β

1− β
for every t ≥ 1, we have

qt+1 + ξ

qt
=
µh,t+1

µh,t
for every t ≥ 1. At initial

date, we have to prove that
q0

q1 + ξ
=
µh,1
µh,0

, i.e.,

q0

ξ
(1− β) =

µh,1
µh,0

.
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FOC of kh,t with h ∈ {i, j}.
For t ≥ 2, we have to prove that

1

F ′(0) + 1− δ
≥ max

i

µi,t+1

µi,t
. This is true because

µh,t+1

µh,t
= β for every t ≥ 1 and β(F ′(0) + 1− δ) ≤ 1 .

At date 1, we have to prove that

1 ≥ µh,1
µh,0

(F ′(0) + 1− δ) ∀h ∈ {i, j}.

Therefore, we have only to check the following system

1 ≥ µh,1
µh,0

(F ′(0) + 1− δ) ∀h ∈ {i, j}.

q0

ξ
(1− β) =

µh,1
µh,0

, ∀h ∈ {i, j}.

We have

µi,1
µi,0

= β
u′i(aξ)

u′i(a(F (K0) + (1− δ)K0 + ξ0))
= β

(F (K0) + (1− δ)K0 + ξ0

ξ

)σ
,

µj,1
µj,0

= β
u′j(aξ)

u′j(a(F (K0) + (1− δ)K0 + ξ0))
= β

(F (K0) + (1− δ)K0 + ξ0

ξ

)σ
.

Our system becomes

1 ≥ β(F ′(0) + 1− δ)
(F (K0) + (1− δ)K0 + ξ0

ξ

)σ
,(F (K0) + (1− δ)K0 + ξ0

ξ

)σ
=
q0

ξ

1− β
β

.

Choose ξ, ξ0, k0, q0 to be satisfied this system.

Proof for Proposition 2. Assume that there exists t ≥ 0, T ≥ 1 such that ξt ≥
ξt+T . If (F ′(0) + 1− δ)βi > 1 for every i = 1, . . . ,m.
If Kt+s = 0 for every s = 1, . . . , T , we have

m∑
i=1

ci,t = F (Kt) + (1− δ)Kt + ξt,

m∑
i=1

ci,t+s +Kt+s+1 = ξt+s, ∀s = 1, . . . , T.

Therefore, we have

m∑
i=1

ci,t ≥ ξt ≥ ξt+T ≥
m∑
i=1

ci,t+T . (77)
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Consequently, there exists i ∈ {1, · · · ,m} such that ci,t ≥ ci,t+T , hence u′i(ci,t+T ) ≥
u′i(ci,t). As a consequence, we have that

( 1

F ′(0) + 1− δ

)T
≥

T∏
s=1

max
j

βju
′
j(cj,t+s)

u′j(cj,t+s−1)
≥ βTi u

′
i(ci,t+T )

u′i(ci,t)
≥ (βi)

T .

So 1 ≥ (F ′(0) + 1− δ)βi, contradiction!

Proof for Proposition 3 . Assume that βi(F
′(0)+1−δ)u′i(ξt+1) > u′i(

F (Kt) + (1− δ)Kt + ξt
m

)

for every i = 1, . . . ,m.
If Kt+1 = 0, the market clearing conditions imply that

m∑
i=1

ci,t = F (Kt) + (1− δ)Kt + ξt (78)

m∑
i=1

ci,t+1 +Kt+2 = ξt+1. (79)

Therefore, there exists i ∈ {1, . . . ,m} such that ci,t ≥
F (Kt) + (1− δ)Kt + ξt

m
, so

u′i(ci,t) ≤ u′i(
F (Kt) + (1− δ)Kt + ξt

m
).

Moreover, FOC of Kt+1 implies that rt+1

pt+1
≥ F ′(Kt+1) = F ′(0). FOC of ki,t+1 implies

that
1

rt+1

pt+1
+ 1− δ

≥ max
j

µj,t+1

µj,t
. Therefore, we get that

1

F ′(0) + 1− δ
≥ max

j

βju
′
j(cj,t+1)

u′j(cj,t)
≥ βiu

′
i(ci,t+1)

u′i(ci,t)
≥ βiu

′
i(ξt+1)

u′i(
F (Kt) + (1− δ)Kt + ξt

m
)

,

contradicting our assumption.

Proof for Proposition 4. Market clearing conditions imply that

m∑
i=1

ci,t +Kt+1 = F (Kt) + (1− δ)Kt + ξt (80)

m∑
i=1

ci,t+1 +Kt+2 = F (Kt+1) + (1− δ)Kt+1 + ξt+1. (81)

Therefore, there exists i ∈ {1, . . . ,m} such that mci,t +Kt+1 ≥ ξt.

Moreover, we have

1

F ′(Kt+1) + 1− δ
≥ βiu

′
i(ci,t+1)

u′i(ci,t)
≥ βiu

′
i(F (Kt+1) + (1− δ)Kt+1 + ξt+1)

u′i(ci,t)
.
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This can be rewritten as

u′i(ci,t) ≥
(
F ′(Kt+1) + 1− δ

)
βiu
′
i(F (Kt+1) + (1− δ)Kt+1 + ξt+1)

Hence, we have ci,t ≤ Gi(Kt+1, ξt+1), where Gi(Kt+1, ξt+1) is defined by

u′i(Gi(Kt+1, ξt+1)) = (F ′(Kt+1) + 1− δ
)
βiu
′
i(F (Kt+1) + (1− δ)Kt+1 + ξt+1).

As a result, we obtain

ξt ≤ Kt+1 +mGi(Kt+1, ξt+1)

Proof of Proposition 8. We prepare the presentation of our no-bubble results
with the following result:

Lemma 20. (1) For each i, we define Si,0 = 1, Si,t :=
βtiu
′
i(ci,t)

u′i(ci,0)
is the agent i’s

discount factor from initial period to period t. Then lim
t→∞

Si,t
(
qt
pt
ai,t + f iki,t+1

)
= 0.

(2) If the borrowing constraints of agent i are not binding from t0 to t then Qt
Qt0

=
Si,t
Si,t0

.

Proof. (1) Use the similar argument in Theorem 2.1 in Kamihigashi (2002) or see
Le Van, Pham, and Vailakis (2014).
(2) See Le Van, Pham, and Vailakis (2014).

We now prove Proposition 8.
(1) We firstly suppose that lim sup

t→∞
ξt <∞. We always have

rt+1

pt+1

+ 1− δ ≤ Qt

Qt+1

= ρt+1 + 1− δ.

If F ′(∞) ≥ δ then for any t, ρt+1 ≥ rt+1

pt+1
≥ F ′(∞) ≥ δ. This implies

∑∞
t=0 ρt+1 = +∞.

From Proposition 6, there is no bubble on the physical asset market.
If F ′(∞) < δ, by Lemma 1, (Kt) is bounded uniformly by some constant K, which
implies that there F ′(Kt) ≥ F ′(K). For any t, ρt+1 ≥ rt+1

pt+1
≥ F ′(K). This implies∑∞

t=0 ρt+1 = +∞. From Proposition 6, there is no bubble on the physical asset mar-
ket.

We now suppose that lim sup
t→∞

ξt =∞.

If δ = 1 then there is no physical bubble.
If δ < 1. Assume that physical bubble exists, lim

t→∞
(1 − δ)tQt = b̄ > 0 which

implies that lim
t→∞

Qt = b̄
(1−δ)t . Since

+∞∑
t=1

Qtξt < ∞, we obtain that
+∞∑
t=1

ξt
(1−δ)t < ∞.

However, it is easy to see that
+∞∑
t=1

ξt
(1−δ)t =∞ because lim sup

t→∞
ξt =∞, contradiction.

Then there is no bubble on the physical asset market.
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(2) First, since lim inf
t→∞

ξt > 0 and
+∞∑
t=1

Qtξt <∞, we have
+∞∑
t=1

Qt <∞.

According to Lemma 1, we have that (Kt) is uniformly bounded. Hence, we
obtain that lim

T→+∞
QTki,T+1 = 0 for any i, and

+∞∑
t=1

F (Kt)Qt ≤
+∞∑
t=1

F (K)Qt <∞.

We claim that we always have

QTki,T+1 = (1− δ +
rt+1

pt+1

)QT+1ki,T+1. (82)

Indeed, the claim is trivially true if ki,T+1 = 0. If ki,T+1 > 0 then KT+1 > 0 and
QT = (1− δ + rt+1

pt+1
)QT+1 (see Lemma 7).

For any agent i, we rewrite her/his budget constraint at date t as follows

Qtci,t +Qtki,t+1 +Qt
qt
pt
ai,t = Qt(

rt
pt

+ 1− δ)ki,t +Qt(
qt
pt

+ ξt)ai,t−1 + θi
πt
pt
Qt.

By summing the budget constraints from t equals 0 to t, and use (26), (82), we get

T∑
t=0

Qtci,t +QTki,T+1 +QT
qT
pT
ai,T = (

r0

p0

+ 1− δ)ki,0 + (
q0

p0

+ ξ0)ai,−1 + θi
T∑
t=0

πt
pt
Qt

≤ (
r0

p0

+ 1− δ)ki,0 + (
q0

p0

+ ξ0)ai,−1 + θi
T∑
t=0

F (Kt)Qt

< +∞.

According to the borrowing constraint of agent i at date t, we have:

0 ≤ QT
qT
pT
ai,T + f i(1− δ +

rt+1

pt+1

)QT+1ki,T+1 = QT
qT
pT
ai,T + f iQTki,T+1

But
f iQTki,T+1 ≤ QTki,T+1

We then obtain
0 ≤ QT

qT
pT
ai,T +QTki,T+1

Therefore,
∑∞

t=0Qtci,t < +∞, and then lim
T→+∞

QTki,T+1 + QT
qT
pT
ai,T exists. Since

lim
T→+∞

QTki,T+1 = 0, we have lim
T→+∞

QT
qT
pT
ai,T exists. If there exists a bubble then

lim
T→+∞

ai,T exists. This property holds for any i. As a consequence, there exists i

such that lim
T→+∞

ai,T > 0. For this agent, there exists T such that the borrowing

constraints will not bind for t ≥ T . We have from Lemma 20 that Qt
QT

=
Si,t
SiT

, for any

t ≥ T . We then have, by using Lemma 20

lim
t→+∞

Qt
qt
pt
ai,t =

QT

Si,T
lim
t→+∞

Si,t
qt
pt
ai,t = 0

which is a contradiction. We conclude that there is no bubble on the financial asset
market.
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Proof for Section 6.1. It is easy to see that all market clearing conditions are
satisfied.

Since rt = at, the optimality of the production plan is satisfied.
We will verify the optimality of (ci, ki, ai).
Let us consider FOCs

βtiu
′
i(ci,t) = µi,t (83)

1

rt+1 + 1− δ
=
βiu
′
i(ci,t+1)

u′i(ci,t)
+ σi,t (84)

qt
qt+1 + ξt+1

=
βiu
′
i(ci,t+1)

u′i(ci,t)
+ νi,t (85)

Note that σi,t, νi,t ≥ 0 and σi,tki,t+1 = 0 and νi,tai,t = 0.
We rewrite as follows: for each i,

1

rt+1 + 1− δ
=

βci,t
ci,t+1

+ σi,t (86)

qt
qt+1 + ξt+1

=
βci,t
ci,t+1

+ νi,t (87)

We can compute that

βu′(cF,2t+1)

u′(cF,2t)
= β(1− δ + r2t)

π2t

π2t+1

(88)

(r2t+1 + 1− δ) βcF,2t
cF,2t+1

= β2(1− δ + r2t)(1− δ + r2t+1)
π2t

π2t+1

(89)

βu′(cH,2t)

u′(cH,2t−1)
= β(1− δ + r2t−1)

π2t−1

π2t

(90)

(r2t + 1− δ)βcH,2t−1

cH,2t
= β2(1− δ + r2t−1)(1− δ + r2t)

π2t−1

π2t

. (91)

Since rt = at such that β(1− δ + at) ≤ 1, all FOCs are satisfied.
We now check transversality conditions

lim
t→∞

βtiu
′
i(ci,t)ki,t+1 = lim

t→∞
βtiu

′
i(ci,t)qtai,t = 0. (92)

It is clear that

β2t−1
H u′H(cH,2t−1)kH,2t = 0 = lim

t→∞
β2t
F u
′
F (cF,2t)q2taF,2t. (93)

We also have

β2tu′(cH,2t) = u′(cH,0)
βu′(cH,2t)

u′(cH,2t−1)

βu′(cH,2t−1)

u′(cH,2t−2)
· · · βu

′(cH,2)

u′(cH,1)

βu′(cH,1)

u′(cH,0)

= u′(cH,0)β(1− δ + r2t−1)
π2t−1

π2t

1

1− δ + r2t−1

· · · β(1− δ + r1)
π1

π2

1

1− δ + r1

= u′(cH,0)βt
π2t−1

π2t

· · · π1

π2

= u′(cH,0)βt. (94)
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β2t+1u′(cF,2t+1) = u′(cF,1)
βu′(cF,2t+1)

u′(cF,2t)

βu′(cF,2t)

u′(cH,2t−1)
· · · βu

′(cF,3)

u′(cF,2)

βu′(cF,2)

u′(cF,1)

= βu′(cF,1)β(1− δ + r2t)
π2t

π2t+1

1

1− δ + r2t

· · · β(1− δ + r2)
π2

π3

1

1− δ + r2

= βu′(cF,1)βt
π2t

π2t+1

· · · π2

π3

= βt+1u′(cF,1). (95)

Combining these equalities and (60), we obtain transversality conditions.
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