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Abstract

We introduce the classes of uniform and non-interactive games. We study appro-
priate projection operators over the space of finite games in order to propose a novel
canonical direct-sum decomposition of an arbitrary game into three components, which
we refer to as the uniform with zero-constant, the non-interactive total-sum zero and the
constant components. We prove orthogonality between the components with respect to
a natural extension of the standard inner product and we further provide explicit ex-
pressions for the closest uniform and non-interactive games to a given game. Then, we
characterize the set of its approximate equilibria in terms of the uniformly mixed and
dominant strategies equilibria profiles of its closest uniform and non-interactive games
respectively.

Keywords: decomposition of games, projection operator, uniformly mixed strategy.

JEL Classification: C70, C79 AMS Classification: 91A70.

1 Introduction

The class of finite games can be seen as a finite-dimensional vector space. Several
approaches to decompose a game into simpler games which admit more tractable equilibrium
analysis have been proposed so far in the literature. The study of components with distinct
equilibrium properties allows to gain insights on the static and dynamic features of an
arbitrary game. We next provide a brief description of two novel classes of games that
appear as components in the decomposition result we contribute in this work.

The class of uniform games. The mixed strategy such that each action is selected
with equal probability is called uniform strategy and the profile it induces, a uniformly mized
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strategy profile. Uniform games are strategic-form finite games in which the uniformly mixed
strategy profile appears as a Nash equilibrium. In other words, each player’s sum of payoffs
over the action profiles chosen by the rest of the players is constant. Well-known games such
as matching pennies and rock-paper-scissors are uniform games. Since playing a uniform
strategy is arguably the simplest way of mixing pure strategies, uniformly mixed strategy
equilibria can be viewed as somewhat lying in between pure and mixed Nash equilibria.
Uniform strategies are also easier to implement and may therefore be seen as a model
of bounded rationality (see Rubinstein [1998]). Group games, introduced by Capraro and
Scarsini [2013] belong to the class of uniform games. Likewise, harmonic games appeared
in Candogan et al. [2011], are uniform.

Potential games and the non-interactive subclass. Potential games became a

tractable research topic since the seminal paper of Monderer and Shapley [1996] due to their
desirable equilibrium properties, i.e., existence of a pure Nash equilibrium. The structure
of these games and the convergence of simple player dynamics to a Nash equilibrium (see
Neyman [1997]) qualified them to play an important role in game-theoretic analysis. Conse-
quently, such games found numerous applications in various control and resource allocation
problems. They can be regarded as games in which the interests of players are aligned with
a global potential function.
We introduce a particular subclass of potential games, the non-interactive games. In such
games, each player’s payoff depends only on his action. This class forms a subspace of po-
tential games which admit a dominant strategy equilibrium with unique payoff that results
when each player plays the action that maximizes his payoff. Therefore, players in such
games do not interact with each other and every decision is taken ignoring the opponents’
moves.

The idea of decomposing a game appears first in Von Neumann and Morgenstern [1945],
where games with large number of players are decomposed into games with fewer players.
In the context of non-cooperative game theory, a decomposition of games in normal form
appeared in Sandholm [2010|, where for each subset of players, a component game is de-
fined and the author achieves a decomposition of normal form games suggesting alternative
ways to verify whether a game is potential or not. Given a two-player game, Kalai and Kalai
[2010] propose a decomposition into zero-sum and common-interest components. Hence, the
authors highlight cooperation-related issues that emerge in games where players strategically
interact with each other. More precisely, in the cooperative component the payoff is defined
at each action profile as the average of both players’ payoffs while in the competitive one
as the difference of players’ payoffs divided by two. In general, the common-interest com-
ponent is a potential game which can be used to approximate an arbitrary game. However,
this approximation needs not yield the closest potential game to a given game. The better
approximation, achieved in Candogan et al. [2011], lies in the fact that their decomposition
result clearly separates the strategic and non-strategic components and further identifies
components such as potential and harmonic games. To that end, the authors, associating to
each finite game an indirected graph, propose a novel flow representation of the payoff struc-
ture in finite games, which enables to identify the fundamental characteristics in preferences
that lead to potential games. Their main result relies on the Helmholtz-Hodge decomposition
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theorem!, a well-known mathematical tool of vector calculus that allows one to represent

a vector field as the sum of a divergence-free and a curl-free vector fields. The authors
provide a direct orthogonal sum decomposition of an arbitrary game into the potential, har-
monic and non-strategic components, each with distinct equilibrium properties. The graph
representation of games and the flows defined on this graph lead to a natural equivalence
relation in the space of games such that games sharing identical payoff differences for any
deviating player belong in the same class. Several notions of strategical equivalence? have
been proposed in the game theory literature, to generalize the desirable static and dynamic
properties of games to their equivalence classes. In Hwanga and Rey-Belletb [2014], follow-
ing the definition of strategical equivalence introduced in Candogan et al. [2011], the authors
provide decomposition results of an arbitrary finite game by identifying components such as
potential games and games that are strategically equivalent to zero-sum games. The authors
further prove analogous results in games with continuous strategy sets and establish an al-
ternative proof of the charaterization for potential games given by Monderer and Shapley
[1996]. Finally, Jessie and Saari [2013] present a strategic and behavioral decomposition of
games with two actions. The authors highlight that certain solution concepts are either
determined by a game’s strategic part, or influenced by its behavioral component.

In this paper, we provide a direct-sum decomposition of an arbitrary game into three
components, which we refer to as the uniform with zero-constant, the constant and the
non-interactive total-sum zero components. The former component refers to games where
each player’s sum of payoffs over the action profiles chosen by the rest of the players yields
zero. The second class describes games where each player’s payoff is constant over all action
profiles. The latter component refers to non-interactive games, in which each player’s sum
of payoffs over all action profiles is equal to zero. These components are orthogonal with
respect to a natural extension of the standard inner product. Moreover, the sum of the two
former and the sum of the two latter components constitute the space of uniform and non-
interactive games respectively. As a consequence, using the induced distance in the space of
games, given a finite game, we characterize its approximate equilibrium set in terms of the
dominant strategy equilibria with unique payoff of its closest non-interactive game and the
uniformly mixed strategy equilibrium of its closest uniform game. Namely, the dominant
strategy equilibrium profile of the corresponding non-interactive game turns out to be an
g-equilibrium of the given game, for some € whose upper bound is specified. Likewise, the
uniformly mixed strategy equilibrium profile of the projection onto the uniform component
is an é-equilibrium of the original game for some €, which is bounded by a constant as well.

Structure of the paper. The remainder of the paper is organized as follows: In Section
2, we present the relevant definitions and notations. In Section 3, we introduce the classes of
uniform and non-interactive games and present the main results of this work. Section 4 deals
with examples highlighting the value of the suggested decomposition. Section 5 concludes
the paper and outlines future perspectives.

! An implementation of the Helmholtz decomposition in Statistical ranking is given by Jiang et al. [2011].
2The reader is referred to Moulin and Vial [1978], Hofbauer and Hopkins [2000], Mertens [2004], Morris
and Ui [2004], Germano [2006], Candogan et al. [2011]
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2 Basic definitions and notations
A finite game consists of:

e a finite set of players, denoted by N = {1,...,n}.
e a finite set of actions S?, for each i € N. The joint strategy space is S = [Licn St

e a payoff function of each player i € N, denoted by g* : S — R.

Accordingly, a finite game is given by the triplet (N ,(9Yien, (9%)ic N), which for notational
convenience will often be abbreviated to g, where g = (¢');en. We use the notation s* € S*
for an action of player i and an action profile is given by s = (s%);en. A collection of actions
for all players but the i-th one, is denoted by s=* € S~¢. We set h; = |S?| for the cardinality
of the action set of player 7, and |S| = [[;c hi for the overall cardinality of the action space.
Given N and S, every game is uniquely defined by its set of payoff functions. The payoff
function of each player can be viewed as an element of Rl ie., ¢ € RIS! for any i € N.
Hence, the space of games with set of players N and joint action space S can be identified
as G = RS, We denote the player-specific space of games by G and so G = [Lien G'. For
any subspace X C G, we have X = [[.cn X

The basic solution concept of a game is the one of Nash equilibrium. An action profile

s = (s!,...,s") is an e-equilibrium if for all i € N and all t* € S°,

gi(sia Sii) > gz(tla Sii) — €
A pure Nash equilibrium is said to be an e-equilibrium with € = 0.

Games in which each player’s payoff depends only on the actions selected by the rest of
the players are called non-strategic games.

Definition 2.1. A non-strategic game is a finite game in which for any ¢ € N, there exists
a function ¢ : S~% — R, such that ¢1(s~%) = ¢’(s’, s7%). The space of non-strategic games
will be denoted by N'S.

Actual payoffs are not required for the identification of Nash equilibria, as long as the
payoff differences are well-defined. Taking advantage of this fact and following Candogan
et al. [2011] and Hwanga and Rey-Belletb [2014], we define an equivalence relation in the
space of games, such that each class consists of games that share identical payoft differences
for any deviating player and thus, also identical equilibrium sets.

Definition 2.2. The games g, and g, are strategically equivalent (g, ~ g,), if for alli € N
and all s~ € S,

Gi(s' ™) —gi(t',sT) = gils' s77) — ga(t, 57,

for any s',t' € S°.

Documents de travail du Centre d'Economie de la Sorbonne - 2014.84R (Version révisée)



Proposition 2.3. If g; ~ gy then the game defined as g = g, — gy is a non-strategic game.

Proof. By Definition 2.2, for all i € N, all s=* € S~¢ and all s°,t' € S?, we have:
gi(siv Sii) - gé(si7 Sii) = gi (tz7 Sii) - g%(tl> Sii)u

that proves the result.
O

A common way to fix a representative for strategically equivalent games is by means of
normalization.

Definition 2.4. A finite game g is normalized, if for all i € N and all s~ € 77,
Z g'(s',s7") = 0.
steSt

The space of normalized games will be denoted by NO.

In normalized games, each player’s expected payoff, when playing all of his actions with
equal probability (uniform strategy), is equal to zero.

The standard inner product in R!S! is given by:
(f1s fa)o = Y fi(s) fa(s)- (2.1)
ses

We will use a natural extension of the standard inner product on G, which was also adopted
by Candogan et al. [2011] and Hwanga and Rey-Belletb [2014]:

<g17g2>g = Zhi<gi’gé>ov (2‘2)

1EN

where the inner product in the right-hand side is the inner product on RIS, defined in (2.1).
The inner product in (2.2) induces a norm that will help us to quantify the distance between
games. The norm on G is defined as follows:

lgllg = (& &)g- (2.3)

For any X,Y C G, the notation X @Y stands for the direct orthogonal sum of X and Y.

3 Decomposition of the games space

In this section, we proceed as follows: In Paragraph 3.1, we present a first orthogonal
decomposition of the space of finite games with respect to the inner product in (2.2). In
Paragraph 3.2, we define the classes of uniform and non-interactive games and we end up
establishing two more orthogonal decompositions of finite games. Finally, in Paragraph 3.3
we provide our main results.
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3.1 First Decomposition

Given a finite game g, we introduce for each player 4, the linear operator IT° : RISl — RIS!
defined by:

1.1 7 -1\ __ 7 (2 —1 Y2 7 —1
Hg(S,S )—g(s,s )_hj ng(S,S )7 (31)
steSt
and we further define I : R™SI — R™S! such that IIg = (Hl L H"g”).
Moreover, we introduce for each player i the linear operator A : RISl — RISI defined as:

Algi(st s7) = hl Z g'(s',s7). (3.2)

siggi

Similarly, we define A : RS — R™SI guch that Ag = (A1 L ...,A”g"). The notation [
stands for the identity operator and we clearly have I =11 4+ A.

Proposition 3.1. The space of games is the direct orthogonal sum, with respect to the inner
product introduced in (2.2), of the normalized and non-strategic games, i.e.,

Gg=NO NS, (3.3)
where NO = Im(I1) = Ker(A) and NS = Ker(IT) = Im(A).

Proof. We work on the operators II*, A* and we equivalently obtain the result on IT and A
using their definitions. It is easy to check that II? o II* = IT* and A® o A* = A?. Therefore,
the operators II° and A* are projections. It follows that G¢ = Im(IT*) @ Ker(IT*) and since A’
is the complementary projection operator of II!, we get G* = Im(IT%) @ Im(A?).

Let g be a normalized game. By (3.1), for any i € N, II'g* = ¢* and thus, I is the projection
operator onto the normalized payoffs of player i. Conversely, let g be a game such that for
any i € N, g € Im(IIY). Using (3.1), we get > icqi g°(s', s7") = 0 and by definition of II it
follows Im(IT) = NO.

For the rest of the proof, let g be a game such that for any i € N, g* € Im(A?). By (3.2),
for all i € N and all s € S, we have:

S 1 S
R R AN i1 —1
G ) = e 3 g
steSt
and by Definition 2.1, it is immediate that g € N'S. Now, let g € N'S. Likewise, Definition
2.1 indicates that for any s € S, g'(s*,s7%) = (1/h;) Y gicgi 9'(s%,57%) and thus, A’g’ = g".
Hence, Im(A) = N'S. To show orthogonality between the components, let g, € NO and
gNs € NS. Then,

(80:8ns)g = Z hi{gb: Gis )y = Z h; Zgé(s)gjvs(s)

1EN IEN  seS

=2 h D D anls s gs(sh s,

iIEN  s—igS—isieSt
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where the middle equality follows from (2.1). In view of Definition 2.1, for all s=% € S~—¢
Ghrs(st,s78) = £'(s7") for some £ : S~ — R. Hence,

D gb(sh s Nghvs(sh 5T = £i(s7) D ghls',sT) =0,
steSt sieSi

where the latter equality follows from Definition 2.3. O

3.2 Uniform and non-interactive classes of games

In this section, we introduce the classes of uniform and non-interactive games and we
then characterize their equilibrium sets.

3.2.1 Uniform games
We first define the uniformly mixed strategy profile and the class of uniform games.

Definition 3.2. The uniform strategy of player ¢ € N is the mixed strategy that selects
each of his actions s € S® with equal probability (1/h;). The induced strategy profile is
called uniformly mized strategy profile.

Definition 3.3. A finite game is uniform if and only if the uniformly mixed strategy profile
is a Nash equilibrium. The class of uniform games is denoted by U.

Clearly, uniform games form a subspace of games. An aftereffect of Definition 3.2, is that
in uniform games the sum of each player’s payoffs, fixing any of his actions, over the action
profiles made up of the rest of the players, is constant. Namely, for any ¢ € N, there exists
¢’ € R, such that for all s* € S,

Y gish s =c (3.4)
s—ieS—1

Definition 2.1 and (3.4) imply that the class of non-strategic games belongs in uniform games.
Next proposition states that uniform games are stable by projection onto the subspace of
normalized games.

Lemma 3.4. Let us consider a game g and a uniform game gy, such that g ~ g,. Then,
g is a uniform game.

Proof. By assumption, for all i € N and all (s,t) € S x S, such that s° # ¢* and s~ = ¢t~
we have:

g'(t) = g'(s) = gis(t) — giy(s).

Since g;, is uniform (see (3.4)), adding over s~* € S~ in both sides of the last equation, we
get:
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Therefore, for all i € N and all s*,t' € S,
S g = S g,
s—ieS—1 s—teS—

that concludes the proof. O

3.2.2 Non-interactive games

In this paragraph, we introduce the non-interactive games and we show that they con-
stitute a subspace of potential games. Then, we prove that non-interactive games admit a
dominant strategy equilibrium with unique payoff.

Definition 3.5. A finite game g is potential if there exists a function ¢ : S — R such that,
for all i € N, all s, t* € §* and all s7% € S~

@(Sia S_i) - gp(t27 S_i) = gi(sia S_i) - gl(tz7 3_7;)'

The function ¢ is referred to as a potential function of the game. The space of potential
games will be denoted by P.

In this class of games, all players are interested in maximizing the potential function; hence,

Theorem 3.6. Potential games admit a pure Nash equilibrium.

Definition 3.7. A non-interactive game is a finite game in which for all ¢ € N, there exists
a function A\’ : S* — R, such that \'(s*) = ¢°(s?, s7*). The class of such games is denoted by
NT.

Lemma 3.8. The class of non-interactive games forms a subspace of potential games with

a potential function to be given by ¢ : S — R, defined as o(s) = > Ni(s?).
1EN

Proof. By definition, it is clear that non-interactive games constitute a subspace of games.

Now, let g\ be a non-interactive game. By Definition 3.7, for all i € N and all s,t € S,
such that s* # t', we get:

g'(s's7) = g'(th,sT) = X(s") = N(#).

Let ¢ : S — R, such that ¢(s’,s7%) = >, Ai(s"). It is easy to see that ¢ is a potential
function for g,-z and thus, by Definition 3.5, g, 7 is a potential game. O
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An action profile s = (s!,...,s") € S is a dominant strategy equilibrium, if for all i € N

and all t = (t/,t7%) € S,

g (st > ' (7Y,

Proposition 3.9. Every non-interactive game admits a dominant strategy equilibrium with
unique payoff.

Proof. Let g € NZ. In view of Lemma 3.8, g is a potential game and thus, from Theorem
3.6, it admits a pure Nash equilibrium, denoted by s = (s',...s’,...,5"). By contradiction,
let us assume that s is not a dominant strategy equilibrium. Then, there exist ¢ € N and
t = (t',t7") € S, such that g'(t,t7%) > g'(s’,¢+~"). However, since g is a non-interactive
game, for each i € N, there exists A’ : S — R, such that

)\1(82) — gi(Si,Sii) — gi(Si,tii) < gi(ti,tii) — gi(ti,sii) S gi(Si,Sii) _ )\i(si)’

where the right inequality follows, since s is a pure Nash equilibrium and the proof is
completed. O

3.2.3 Second Decomposition

Given a finite game g, we introduce for each player i, the linear operator ¥ : RIS| — RIS,
defined as follows:

Sigi(s,s7) = gi(sh,s ) — —— 3 gi(st,s7) (3.5)

];’é’L s—teS—1

We also define ¥ : RMS| — R™S| such that g = (21 L ...,E”g")
We further introduce for each player i, the linear operator ©° : RISl — RIS defined by:
O'¢'(s',s7") = Z g'(s', s (3.6)
I hj

j;’él s—teS—1

In like manner, we have © : RS — R7IS| such that Og = (@1 Lo, G)"g”) and it clearly
holds true: I = X + ©.

Notation. The subspace of uniform games with zero-constant, i.e., in (3.4) ¢! = 0 for all
1 € N, will be denoted by Uy.

Proposition 3.10. The space of games is the direct orthogonal sum, with respect to the
inner product in (2.2), of the uniform games with zero-constant and non-interactive games,
1.e.,

G =Uy ONTI,
where Uy = Im(X) = Ker(©) and NZ = Ker(X) = Im(0O).
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Proof. We work on the player-specific operators ¥¢, ©¢ and we equivalently conclude the
result on ¥ and ©, using their definitions. It is easy to check that X% o X! = ¥ and
O! 0 ©F = ©!. Therefore, ©" and X' are projection operators. It clearly follows that G¢ =
Im(X%) @ Ker(X?) and since ©° is the complementary projection operator of ¥¢, we get that
G' = Im(3%) @ Im(O?).

Given g € Uy, in view of (3.5), it is immediate that for any i € N we have ¥;¢' = ¢* and
thus, X is the projection operator onto the uniform with zero-constant payoffs of player i.
Conversely, let g be a game, such that for all 4, g € Im(X?). Since by (3.5), for all s* € S,
> s—icg—i g'(s',57%) = 0, using the definition of %, it follows Im(¥) = Up.

Now, let g be a game such that for any i € N, ¢* € Im(©"). Then, by (3.6), for all i € N
and all s € S,

Definition 3.7 implies that g € NZ. Conversely let us assume that g € N'Z. Likewise, from
Definition 3.7 we have g*(s*,s™%) = (1/ 1. hj) > g-icg—i 9'(s',s7"), which is equivalent to
O'g’ = ¢ that concludes this part of the proof.

To show orthogonality between the components, let g, € Uy and gx7 € NZ. Then,

(80 8xz)g = O hilgh dhvz) = 3 hi > 6b(S)ghz ()

1EN i€EN  seS

=2 hi Y X gl s (s 5T,

iEN  sigSis—igS—t

where the middle equality follows from (2.1). In view of Definition 3.7, for all s* € S* we
have gi7(s",s7%) = A(s"). Hence,

> gt sTgher(shsT) = X(s) Y gh(sh s =0,
s—ieS—1 s—ieS—i

where the right equality follows by definition of Uj. O

3.2.4 Third decomposition

We first define two classes of games that appear as components in the decomposition
result of this paragraph.

Definition 3.11. A finite game g is a total-sum zero game, if for all i € N,

D gi(s)=0.

seS

The space of total-sum zero games is denoted by G,.

10
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Definition 3.12. A finite game g is a constant game, if for all i € N, there exists ¢!, such
that for all s € S,

g'(s) = ¢'.
The space of constant games is denoted by C.

Constant games is a subspace of non-interactive and of non-strategic games (and thus, of
uniform games too). It is easy to see that C = NI NNS.

Given a finite game g, we define for each player 4, the linear operator II% : RIS| — RIS,
defined by:

o . 1 4
Tig'(3) = 9'(8) = T 2 9'(6) (3.7)
) ' ses
€N
We also have II, : R™SI — R"IS| defined as IT*g = (Hi L Hfg”).
For any i € N, we further define I'" : RIS — RISI as follows:
. 1 .
L) = o 06) 39
ien €S
In like manner, we have I' : RSl — R™S| defined as I'g = (Fl L ...,F"g") and it clearly
holds I =11, +T.

Proposition 3.13. The space of games is the direct orthogonal sum with respect to the inner
product in (2.2), of the total-sum zero games and constant games, i.e.,

G=3G.9¢C,
where G, = Im(Il,) = Ker(I') and C = Ker(IL,) = Im(T").

Proof. We work on the player-specific operators IIZ, I'* and we equivalently conclude the
result on II, and I', using their definitions. It is easy to check that Hi onk =TI, and Tl =
I'". Therefore, IT{ and I'" are projection operators. It follows that G¢ = Im(I1%) @ Im(I'?)
due to I'? is the complementary projection operator of II%.

Given g € G, in view of (3.7), for any i € N, II'g" = g'. Conversely, let g € Im(IT*), which
using (3.7) implies >, ¢ g*(s) = 0.

Now, let g € Im(I"). By (3.8) and Definition 3.12, it follows g € C. To prove the inverse
inclusion, let g be a game such that for all i € N, ¢ € C'. Definition 3.12 implies that
for all i € N and all s € S, we have g'(s) = (1/[L;cn hi) Yseg 9'(s) and we therefore get,
Flgl — gl.

To prove orthogonality between the components, let g5 € G, and g- € C. Using the inner
product in (2.2), we have:

(86.:8c)g = Z hi Zglg (s)g¢(s) = Z hic’ Zgé*(S) =0,

iEN ses iEN seS

where the middle and right equalities follow from Definition 3.12 and Definition 3.11 respec-
tively. O

11
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Remark 3.14. The decomposition result of Proposition 3.13 holds true by projection in
the subspaces of uniform and non-interactive games. Namely,

U=u,SC, NI =NZ,SC.

3.3 The offspring decomposition
In this section, we provide our main result. To that end, we first prove next lemma:
Lemma 3.15. The following assertions hold true:
. NINNO =NTZ,
Proof. To show assertion (i), we clearly have: Uy C U,. Conversely, let g € U,. Then, for
any ¢ € N, we have:
0= Zgi(s) = hic',

seS

where left equality is due to g is total-sum zero and the right one follows since g is uniform.
Hence, ¢ = 0, for any i € N and thus, g € Up.
To prove assertion (ii), let g € N'Z,. Then, for any i € N we equivalently have:

0=>"g'(s)= > [T mns) = 3 N(sH [T s
sesS steSt j#i steSt J#i

where the first equality is due to g is total-sum zero and the middle one follows since g
is non-interactive. Therefore, we equivalently get for all i € N, > i c: A'(s') = 0 that is
gc NINNO.

O

Corollary 3.16. The space of games is the direct orthogonal sum with respect to the inner
product in (2.2), of the uniform with zero-constant, the non-interactive normalized and the
constant games, i.e.,

G =y ©C B (NTNNO)

Proof. The result follows from Proposition 3.10, Proposition 3.13, Remark 3.14 and Lemma
3.15. 0

Lemma 3.17. The projection operators ©,11, commute. Namely,
oIl = 11,0

Moreover, OI' =10 =T
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Proof. Let g € G and i € N. Using (3.6) and (3.7), for all s € S, we have:

Es—ies—i gl(s) . ESES gz(s)
Hj;éi h; Hz‘GN hi

Since constant games are a subspace of non-interactive games, it is immediate that ©'T"% =
I"®* =I". We conclude the result on the operators ©,II, and I" using their definitions. [

O'Il,g'(s) = = ILLO%g (s).

Lemma 3.18. The linear operator defined by OIL, : RSl — R™S| is the projection onto
Im(©)NIm(IL,) and the linear operator defined by OT : R™SI — R™S| 4s the projection onto
Im(T").

Proof. We present the proof only for the former operator since for the latter one, the result
follows from Lemma 3.17, due to im(I") C im(©). Indeed, in view of Lemma 3.17,

(eIL.)* = (OIL,) (e11,) = (I.8) (e1L,.) = IO, = (IO)IL, = I = OIL,

and thus, ©II, is a projection.

Let g € R™S!, such that ©II,g = g. Then, Og = O%Il,g = OIL,g = g that is g € Im(O).
Moreover, I1,0g = OIl,g = g and thus, g € Im(II,). Hence, g € Im(©) N Im(IL,).
Conversely, let g € Im(©) NIm(II,). Then, ©g = g and Il,g = g. It follows Oll,.g = g that
concludes the proof. O

Notation. In the sequel, P(S*) stands for the simplex of probabilities over the set of
actions of player i and z'(s") denotes the probability whereby player i chooses his action s'.

Corollary 3.19. Let g be a finite game. With respect to the norm in (2.3), we have:
o the closest non-interactive game is gy = (@H* + F) g,
o the closest uniform game is given by g = (E + F) g,
o the closest constant game is given by go =I'g,

Furthermore, each dominant strategy equilibrium of gnrz, is an e-equilibrium of g, for some
€ < max;en (2/\/hi) ngng and the uniformly mized strategy profile is an €-equilibrium of
g, for some € < maxi7si{/\i(si)}, where \'(s') is the payoff of player i for his action s', in
g./\/'I* :

Proof. Using the decomposition result of Corollary 3.16, due to (3.8), it is immediate that the
closest constant game to an arbitrary game g, is given by g =I'g. In view of Lemma 3.15
and Lemma 3.18, the operator ©II, is the projection onto NZNAN O and since constant games
is a subspace of non-interactive games, it clearly follows that its closest non-interactive game
is given by gx-7 = (OIL, +T')g. Since constant games are also a subspace of uniform games,
Corollary 3.17 implies that the closest uniform game to g, is given by g;;, = (I — ©1Il,)g. By
Lemma 3.18, it clearly follows that X+OIL, 4T = X4+0OI1,+0T = ¥40(I1,+T') = ¥+0 = I.
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Hence, I — OII, = ¥ + I', which concludes this part of the proof.
From Corollary 3.16 and definition of the norm in (2.3), for all i € N and all s € S,

19(5) — givz(8)] = ok (5)] < (/o) gl < max(1/v/m) e llg (39)

Let s = (s!,...,s%,...,s") € S be a dominant strategy equilibrium in gy7. For all t € S,
such that ' # s* and t~* = s, we have:
g'(t) = g'(s) < g'(t) — g'(s) — (gvz(t) — ghz(s))
Inz(s) = g'(s)) + (9'(t) — ghz(t))
= 914, (t) — 914, (),

where the inequality follows since s is a pure equilibrium in g,-7. Thus, using (3.9) we get:

g'(t) — g'(8) < gy, (t) — gy, ()
< max (2/Vhi) gl g -

that concludes this part of the proof.
Now, let x = (z!,...,2",...,2") € [[,cy P(S?) be the uniformly mixed strategy profile. By
Definition 3.2, x is an equilibrium in g;;. For all y € HieNP(Si) such that y* # z* and

y~ ' =z7" for some i € N, we have:

g'(y) —g'(x) = Y _y(s)g'(s) = Y x(s)g'(s)

seS sesS

=Y (v(s) = x(s))g'(s)
s€S

<D (v(s) = x(8)g'(s) = D (v(s) —x(s)) gy (s),
seS seS

where the inequality follows since x is an equilibrium in g;,. Hence, using Corollary 3.16,

g'( ) < Z s)) gnz. ()-

seS

Notice that y = (z!, ...,z y%, o1 . 2™). If y’(s’) stands for the probability whereby
y Y
player ¢ chooses his action s*, then we have:

) ) o 1 1 :
7 1 < ) _ 2
g'(y)—g'(x) < y(S)th T Inz,(S)
ses | i iEN
yi s' i
< r[(h)'gNI*(S) )
seS J

J#i
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where the last inequality follows since the game gy,7, is total-sum zero. Then, it follows:

g'(y) —g'(x _Hh S YisHghr (s s

iz | siesismies
<O YH()N(S)
steSt
< max{N(s1)},

7,8

where the second inequality follows by Definition 3.7 and the proof is completed. O

Corollary 3.20. The dimensions of the uniform, non-interactive and constant games sub-
spaces are given as follows:

o dim(U) = > (H hi—hi> +n
ieEN \ieN
e dim(NZ)= > hy,
1EN

e dim(C) =n.
Proof. The result on the dimension of constant games is trivial. Definition 3.7 implies that
dim (NZ) = 3 ,cy dim (NZ') = ;o y hi- Thus, Remark 3.14 ensures that dim(NZ,) =
dim(N7Z) — dim (C) = 3,cy ki — n. Since dim(G) = n[[;cy hi, using the decomposition
result of Corollary 3.16, it follows the dimension of the uniform games subspace, i.e.,

dim (U) = nl;lvh — (;Vh - n)

that concludes the proof. O

4 Examples

In this section, we provide two examples: The first is a celebrated game in which our
decomposition result coincides with the one proposed in Candogan et al. [2011], the de-
composition presented in Kalai and Kalai [2010], and this one of Jessie and Saari [2013].
The second example concerns a decomposition of a game that is a perturbation in terms of
payoffs, of a uniform with zero-constant game.

Example 4.1. Rock-Paper-Scissors game.
Let us consider the two-player game g given by:

0,0 —w,w w,—w
g=[ w,—w 0,0 —w,w
—w,w w,—w 0,0
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where w € R. The uniformly mixed strategy profile is an equilibrium of g and thus, g is a
uniform game. It is also a harmonic game (see Candogan et al. [2011]).

Example 4.2. A perturbed uniform with zero-constant game.
Let us consider the two-player game g given by:

100,100 100,105 —-190,1
g= | 105,100 95,95 —195, 200
1,-190 200,-195 -—190,-195

The uniform with zero-constant component-game corresponds to:
290/3,290/3  290/3,310/3 —580/3, —1

g, = | 310/3,290/3  280/3,280/3  —590/3,594/3
—8/3,—580/3 589/3,—590/3 —581/3,—591/3

and the non-interactive one by:

10/3,10/3 10/3,5/3 10/3,2
gvr=| 5/3,10/3 5/3,5/3 5/3,2
11/3,10/3 11/3,5/3 11/3,2

Moreover, the non-interactive normalized component-game is:

4/9,1  4/9,—-6/9  4/9,—3/9
gvrowo = | —11/9,1 —11/9,-6/9 —11/9,-3/9 | =gz,
7/9,1  7/9,—-6/9  7/9,—3/9

and the uniform one is given by:

896/9,99  896/9,951/9 —1714/9,12/9
g,=| 956/9,99  866/9,861/9  —1744/9,1803/9
2/9,—191 1793/9,—1749/9 —1717/9,—1752/9

Finally, the constant component corresponds to:

26/9,7/3 26/9,7/3 26/9,7/3
ge=| 26/9,7/3 26/9,7/3 26/9,7/3
26/9,7/3 26/9,7/3 26/9,7/3
The uniformly mixed strategy profile x = (z!,2?), where 2! = 2% = (%, %, %), is an equi-
librium of g;,. Notice that in g7, , max; »{A'(s')} = 1. Corollary 3.19 yields that x is an
e-equilibrium in g, for some € < 1.
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5 Conclusion and perspectives

In this work, we introduce the classes of uniform and non-interactive games. Using an
appropriate projection operator, we classify games in terms of uniform with zero-constant
games. More precisely, games that share equal payoff differences, in deviations realized
by the rest of the players, are represented by the same uniform with zero-constant game.
With respect to a natural extension of the standard inner product, the structure of the
proposed decomposition enables the appearance of non-interactive games as the orthogonal
complement in the space of games, of uniform with zero-constant games. The main feature
of this debut class of games, is that each player has a best choice, regardless of the other
players’ choices and thus, players do not need to interact with each other in order to take their
decisions. In this context, the uniform with zero-constant component forms the interactive
part of an arbitrary game.

Following Candogan et al. [2011], we define a strategical equivalence in the space of
finite games. Games that share identical payoff differences for any deviating player, are
represented by the same normalized game. Using a similar projection operator, it follows an
orthogonal decomposition with respect to the standard inner product, where the complement
of normalized games consists of games in which unilateral deviations are identically zero.
This decomposition distinguishes the strategic and non-strategic parts of a given game.
Non-strategic games belong in the uniform class and thus, they can be decomposed in non-
strategic with zero-constant and constant games. As a consequence, the strategic-interactive
part of a given game lies in the intersection of uniform and normalized components in the
corresponding decompositions.

We introduce the total-sum zero games and using an appropriate projection operator, a
decomposition result follows, in which games are uniquely decomposed in two components:
the total-sum zero and constant games. Hence, we establish a classification of games in terms
of total-sum zero games. Precisely, any player, in between games that are represented by
the same total-sum zero game, has identical payoff differences in any unilateral deviation of
him and further in any coalitional deviation comprised by the rest of the players. Constant
games belong in the intersection of non-interactive and uniform games, leading us to define
an offspring canonical decomposition of games in three components, where the former is the
uniform with zero-constant games, the second is the non-interactive normalized games and
the latter one consists of constant games. In this context, we provide explicit expressions
of the closest uniform and non-interactive games to an arbitrary finite game. Furthermore,
it is given a characterization of the approximate equilibria of a given game in terms of the
uniformly mixed strategy profile that appears an equilibrium in its closest uniform game.
An additional characterization of its approximate equilibrium set can be given through the
equilibria in dominant strategies of its closest non-interactive game. If the non-interactive
component admits more than one equilibrium, then all of them are e-equilibria in the original
game with the same € since equilibria in dominant strategies admit a unique payoff in non-
interactive games.

Let us mention that in view of Candogan et al. [2011], Kalai and Kalai [2010], and Jessie
and Saari [2013], one may show that their decomposition results coincide with the one we
establish in this work over the subspace of two-player uniform games with equal number of
actions. Finally, it might be interesting to study projections under different norms.
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