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Abstract: 

Linkage (or genetic) maps are graphs, which are intended to represent the linear ordering of  

genes on the chromosomes. They are constructed on the basis of  statistical data concerning 

the transmission of  genes. The invention of  this technique in 1913 was driven by Morgan’s 

group’s adoption of  a set of  hypotheses concerning the physical mechanism of  heredity. These 

hypotheses were themselves grounded in Morgan’s defense of  the chromosome theory of  

heredity, according to which chromosomes are the physical basis of  genes. In this paper, I 

analyze the 1919 debate between William Castle and Morgan’s group, about the construction 

of  genetic maps. The official issue of  the debate concerns the arrangement of  genes on 

chromosomes. However, the disputants tend to carry out the discussions about how one 

should model the data in order to draw predictions concerning the transmission of  genes; the 

debate does not bear on the data themselves, nor does it focus on the hypotheses explaining 

these data. The main criteria that are appealed to by the protagonists are simplicity and 

predictive efficacy. However, I show that both parties’ assessments of  the simplicity and 

predictive efficacy of  different ways of  modeling the data themselves depend on background 

theoretical positions. I aim at clarifying how preference for a given model and theoretical 

commitments articulate.	
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1. INTRODUCTION 

 Linkage (or genetic) mapping is a representational technique, which was first 

designed in 1913 by Thomas Morgan’s student Alfred Sturtevant. Linkage maps are graphs, 

constructed on the basis of  statistical data obtained through Mendelian breeding 

experiments. These data concern the transmission of  hereditary factors (genes) in 

particular species. The choice of  such modeling of  the data was driven by Morgan’s 

adoption of  a set of  hypotheses concerning the physical mechanism of  heredity. These 

hypotheses were themselves grounded in Morgan’s defense of  the chromosome theory of  

heredity, according to which chromosomes are the physical basis of  genes. From the 

moment when this technique was designed, the construction and analysis of  the genetic 

maps of  Drosophila melanogaster became the object of  a research program on which the 

geneticists’ efforts concentrated for at least two decades. At the same time, debates arose in 

the geneticists’ community about how to construct and interpret these maps. 

 In this paper, I focus on one of  these debates, which took place in 1919-1920, 

between the geneticist William Castle, on the one hand, and Thomas Morgan’s group 

(composed of  Morgan and his three students Alfred Sturtevant, Calvin Bridges, and 

Hermann Muller), on the other hand. The debate centers on the form of  the maps. 

Discussions focus on the way one should model the data in order to draw predictions 

concerning the transmission of  genes. They do not concern the validity of  the data 

themselves. Nor do they center on the hypotheses explaining these data. Castle’s main 

arguments against Morgan’s group’s way of  drawing maps appeal to criteria such as 

simplicity and predictive efficacy. 

 However, I will show that there is much more at stake here than simplicity and 

predictive efficacy. I will show that both parties’ assessment of  the simplicity and predictive 

efficacy of  the maps is determined by strong theoretical commitments. Many hypotheses at 

different levels, concerning the physical explanation of  the genetic data, underly the 

construction and interpretation of  the maps. I will examine the map models proposed by 

Morgan’s school, on the one hand, and by Castle, on the other hand, as well as their 

respective arguments in favor of  their own models (Castle 1919a,b,c, Sturtevant et al. 1919, 

and Muller, 1920). Each of  these scientists appears to have a different understanding of  the 

different hypotheses at play, and of  the explanatory link between these hypotheses and the 
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data. 

 My main claim is that preference for a particular way of  modeling the data is driven 

by theoretical commitments. I aim at clarifying how the two (preference for a given map 

model, and theoretical commitments) articulate, in a context in which the correct theory 

about the underlying level is not known. Drawing from this particular case, I suggest that a 

detailed analysis of  the epistemic attitudes of  scientists towards hypotheses at different 

levels might shed light on the practices of  data modeling, in particular in domains where 

no general theory is available (so-called “data-driven” domains). 

 In section 2, I present the theoretical context in which the debate arose. I introduce 

the various hypotheses at play, and I give a first statement of  what is at issue in the debate. 

In section 3, I describe the two rival map models, respectively advocated by Morgan’s 

group and by Castle. Finally, in section 4, I analyze the debate and clarify the relations 

between the disputants’ disagreement on what seems to be a practical issue (how to model 

the data) and their theoretical differences.	

2. THEORETICAL CONTEXT AND CRUX OF THE DEBATE 

 The technique of  linkage mapping embodies the junction of  two domains, namely 

the Mendelian theory of  heredity and cytology. Mendelian theory studies the transmission 

of  hereditary factors — genes  — from generation to generation. Its method consists in 1

performing breeding (hybridization) experiments on different strains of  the same species, 

and in observing the distribution of  characters among individuals of  different generations, 

in order to draw information concerning the transmission of  genes, which are supposed to 

be responsible for these characters. One of  Mendelian theory’s typical tools is statistical 

analysis. Cytology, on the other hand, is the study of  cellular processes. It relies on the 

observation of  cells, and more specifically chromosomes, by means of  microscopes. 

 It is worth emphasizing the distinction between what is usually called “classical 

genetics”, on the one hand, and Mendelian theory, as I have just characterized it, on the 

other hand. Classical genetics contains cytological hypotheses, whereas Mendelian theory 

 The term “gene” was introduced by Willem Joannsen in 1909. But, until 1917, Morgan’s group would rather 1

speak of  “Mendelian factors”.
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contains hypotheses only at the genetic level, namely at the level of  analysis concerned with 

the transmission rules of  genes, whatever the physical basis of  genes may be. The birth of  

Mendelian theory so defined (which was called “genetics” by William Bateson in 1905)  2

dates back to the rediscovery of  Mendel’s laws in 1900.  The birth of  classical genetics  (as 3 4

including cytological hypotheses) dates back to the early 1910’s, when Morgan adopted the 

chromosome theory of  heredity, according to which the chromosomes are the physical 

basis of  the genetic material. This is precisely the period in which linkage mapping was 

invented, as a result of  the articulation of  the genetic (Mendelian) and the cytological 

levels. 

 In the debate I am interested in, hypotheses at these different levels (genetic and 

cytological) are in play. Each of  these hypotheses is the object of  a more or less strong 

epistemic commitment by the different protagonists. In what follows, I briefly present this 

double disciplinary context. For each of  the two domains, I specify what is accepted or 

rejected, and to what extent, by the two parties involved in the debate. For the sake of  

clarity, my outline of  the theoretical landscape around 1910 is quite schematic. 

2.1. Genetic level 

The fundamental hypotheses of  Mendelism 

 The fundamental genetic hypothesis, which all Mendelian geneticists accept, is that 

the observable characters of  individuals are caused  by hereditary factors, called “genes”.  5 6

Genes themselves are conceived of  as unobservable entities, which are transmitted from 

generation to generation following statistical laws (Mendel’s laws). In multicellular 

 See Dunn, 1965, 69.2

 Note that Mendelian theory so defined does not correspond to Mendel’s theory, but rather to the theory 3

developed by the geneticists in the 1900’s.

 In current usage, “classical genetics” and “Mendelian genetics” are synonymous expressions. However, I will 4

restrict the use of  the adjective “Mendelian” to refer to the study of  the genetic phenomena, independently 
from their cytological basis.

 To be more precise, it is a gene difference that causes a phenotypic difference (see Waters 1994). When stating the 5

theory of  the gene in 1926, Morgan writes: “the characters of  the individual are referable to paired element 
(genes)” (Morgan, 1926, 25, emphasis added).

 See footnote 1.6
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organisms with sexual reproduction, each individual possesses a pool of  genes resulting 

from an equal participation of  his/her parents. Therefore, each individual has an even 

number of  genes (for each non-sex-linked character, he/she has two genes, also called 

“alleles”), one half  of  them coming from the male parent and the other half  from the 

female parent. 

 Mendel’s first law (“segregation law”) states that, in the formation of  germ cells 

(sperms and eggs), the two alleles of  each gene “segregate” so that each germ cell contains 

only one copy (one allele) of  each gene responsible for a character. Any germ cell has an 

equal chance of  containing one or the other allele of  each gene. Mendel’s second law  (of  7

“independent assortment”) states that different pairs of  genes assort independently from 

each other during the formation of  germ cells. That means that the segregation of  one pair 

of  genes has no influence on the segregation of  another pair. 

 The experimental method associated with this theoretical framework consists of  

breeding experiments, where the transmission of  genes responsible for given characters is 

traced by observation of  the distribution of  these characters among individuals of  

different generations. From the consideration of  the phenotypes of  the individuals, one 

can deduce their genotype, by way of  Mendel’s two laws.  8

The phenomenon of  partial linkage 

 From 1905 on, geneticists observed a phenomenon, which seems to contradict 

Mendel’s second law. New data  showed that some genes tend to be inherited together, 9

without being always so. For instance, genes of  Lathyrus odoratus responsible for the color 

of  the petals, on the one hand, and for the shape of  the seeds, on the other, are partially 

linked (or “coupled”). They are not randomly redistributed, contrary to what Mendel’s 

second law would predict: partially linked genes are inherited together in more than 50% 

 As Lindley Darden (1991, 139) notes, this law was not explicitly stated and distinguished from Mendel’s first 7

law until exceptions were found (see below).

 Such deduction involves other hypotheses, such as the recessivity/dominance hypothesis, which I will not 8

present here.

 The first case of  partial linkage (or rather “coupling of  traits”) is reported by Bateson, Saunders, and 9

Punnett (1905).
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of  the cases. But their association is not systematic either (they are inherited together in 

less than 100% of  the cases). Systematic association (or complete linkage) could be 

explained by the hypothesis that one and the same gene is responsible for these two 

characters. 

 A few years later, Morgan’s work on Drosophila melanogaster (Morgan, 1910a) revealed 

the existence of  sex-linkage. Sex-linkage means that some genes (for example the ones 

responsible for eye color and size of  the wings) appear to be linked to what was assumed 

to be the genes responsible for sex determination.  Moreover, the various sex-linked 10

characters appeared to be partially linked with each other. For instance, individuals that are 

identical to their mother regarding their eye color are also observed to be identical to her 

regarding the size of  their wings in more than 50%, but less than 100% of  the cases. The 

discovery of  this relation between partial linkage and sex-linkage played a crucial role in 

Morgan’s adoption of  the chromosome theory of  heredity. 

Genetic explanation of  the phenomenon of  partial linkage: the hypotheses of  linkage groups and of  

crossing-over 

 Various explanations of  partial linkage were given.  I will only present Morgan’s 11

explanation, which finally prevailed. It consists of  a double hypothesis. First, one assumes 

the existence of  “linkage groups”, that is, groups of  genes that are linked together in some 

way, and therefore tend to be inherited together. Each individual would possess two copies 

of  each linkage group. 

 Second, it is assumed that groups can break during the formation of  germ cells, 

and that each group could exchange some genes with its homologous group. Such an 

exchange of  genes is called crossing-over.  When two genes of  the same linkage group (that 12

 In 1891 already, cytologists had identified a non-paired chromosome (a chromosome lacking its 10

homologue), which Wilson called “X”. But the hypothesis of  the chromosome determination of  sex was 
controversial until the 1910’s.

  Bateson would explain it in terms of  “coupling” (or “attraction”) and “repulsion”. Lindley Darden (1991, 11

122) notes that this terminology reflects Bateson’s preference for physical analogies. He often refers to waves, 
vortices and charges (see e.g. Bateson, 1913, chap. 2 and 3). About Bateson’s intellectual evolution, see 
(Coleman, 1970, Darden, 1977, Cock, 1983).

 This term was first proposed by Morgan and Cattell (1912).12
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is, genes which are inherited together in more than 50% of  the cases) are not inherited 

together (are redistributed separately), one says that a recombination has occurred for these 

genes. 

Status of  the hypotheses of  linkage groups and crossing-over 

 Some opponents of  Morgan’s theory, such as Bateson, would reject the hypothesis 

of  crossing-over. But I will not consider them here. Suffice it to say that the double 

hypothesis of  linkage groups and of  crossing-over was accepted by the two parties to the 

debate I am interested in (Morgan’s group and Castle). However, this double hypothesis is 

accepted only insofar as it is a purely genetic hypothesis. By “purely genetic”, I mean that 

this hypothesis, as such, does not include any statement concerning the physical processes 

by which linkage is maintained and can be broken. Nor does it say anything about the 

nature of  linkage groups, whose specification is just as neutral on the underlying physical 

mechanisms as the specification of  genes is. Crossing-over, as accepted by Morgan and 

Castle, only means “gene exchange”. The very term “crossing-over” certainly has a 

mechanical connotation, and this connotation is intended by Morgan. But Castle would 

reject it.  The main point of  disagreement between Castle and Morgan’s group concerns 13

the physical mechanism of  crossing-over. 

2.2 Cytological level 

 Cytology was already a well-developed science in the late 19th century. Cytologists 

had quite a precise knowledge of  the normal processes of  cell division (mitosis). But the 

processes of  the formation of  germ cells (meiosis) were not precisely understood. Yet, 

geneticists conceived Mendelian segregation in terms of  the formation of  germ cells, and 

cellular processes were assumed to be the physical bases of  hereditary (genetic) processes. 

Beyond that, though, hypotheses about the cytological bases of  heredity were far from 

clearly understood. Nor was there any established hypothesis about what part of  the cell is 

concerned with heredity. Therefore, the explanatory links between cytology and genetics 

 In fact, Castle uses the term mostly to refer to Morgan’s group’s work. But, as we will see, he 13

misunderstands it.
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were still very shaky until the late 1920’s. In the following, I will focus on one hypothesis 

about the cytological bases of  heredity, which finally prevailed and is still at the core of  

today’s genetics. Although it was challenged at the time of  the debate, it was favored by 

both Morgan’s group and Castle. 

The chromosome theory of  heredity 

 Chromosomes were identified by cytologists in the 1880’s. In the early 1900’s, the 

cytologists Montgomery and Sutton observed that pairs of  similar chromosomes seem to 

join during the first phase of  meiosis, and then disjoin just before the reductive division. 

Such observation obviously suggests an analogy between the laws of  heredity and the 

behavior of  chromosomes. This led some cytologists and geneticists, already in the early 

1900’s, to assume that chromosomes might be the physical basis of  genes, and that their 

association and separation during meiosis might well explain Mendel’s law of  segregation 

(see in particular Sutton, 1902, Boveri 1904). 

 This hypothesis is called the “chromosome theory of  heredity”. Many geneticists, 

as Bateson did, rejected this theory until the 1920’s. Although it might be difficult for us to 

understand how one could doubt it, there were many tenable considerations for such 

skepticism at the time. Indeed, no fine observation of  the structure of  chromosomes was 

available until the 1930’s. So the hypothesis that chromosomes are the physical basis of  

genes could not be articulated precisely, and was controversial. It was not unreasonable to 

assume, like Bateson, that chromosomic phenomena were consequences, rather than 

causes, of  deeper hereditary phenomena, in the same way as other observable characters of  

the living organisms. 

 Morgan himself, who became a fervent advocate of  the chromosome theory of  

heredity from 1911, was still an opponent of  it in 1910 (see Morgan 1910b). However, at 

the time of  the debate with Castle, he was totally convinced that genes were located on 

chromosomes. So was Castle. Yet, because nothing was known about the fine structure of  

chromosomes, the modalities of  the hypothetical “location” of  genes “on” chromosomes 

were still the object of  conjectures. 
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The chiasmatypie hypothesis 

 One cytological discovery played a determining role in Morgan’s adoption of  the 

chromosome theory of  heredity.  In 1909, the cytologist Janssens had observed an 14

intertwining of  homologous chromosomes during meiosis (fig.  1). He conjectured that 

homologous chromosomes might exchange segments while intertwining. Note, however, 

that no such exchange was observed before the 1930’s. Janssens called this putative physical 

exchange of  segments of  chromosomes “chiasmatypie”. Janssens’ observation and 

formulation of  the chiasmatypie hypothesis (together with advances in the knowledge of  

sex-linkage) led Morgan to hypothesize that chromosomes might well be the physical basis 

of  the linkage groups. Hence, the chiasmatypie hypothesis is, so to speak, the cytological 

side of  the genetic hypothesis of  crossing-over. However, one could admit the latter while 

rejecting the former.  Indeed, as I have highlighted, the hypothesis of  crossing-over as 15

such does not contain any statement about the physical processes underlying crossing-over. 

As far as I know, Castle did not express any judgement about the chiasmatypie hypothesis, 

but it is likely that he would have rejected it, at least in its quite simple mechanical 

representation, since it does not fit his representation of  the structure of  chromosomes. 

Hypotheses about the structure of  the chromosomes. Status of  the cytological hypotheses 

 The chromosome theory of  heredity, though controversial, is accepted by the two 

parties to the debate I shall present. However, Morgan’s group and Castle disagree in their 

representation of  the structure of  chromosomes. Morgan’s group describes chromosomes 

as threads on which genes are linearly ordered, like beads on a string (see fig. 2, which 

provides a mechanical model of  crossing-over based on the chiasmatypie hypothesis). 

Castle, on the other hand, believes that chromosomes are complex chemical molecules, on 

which genes are arranged in a tridimensional complex fashion. He doubts whether genes 

are portions of  chromosomes, and he rather conceives of  genes as “attached” to the 

 About Morgan’s intellectual evolution, see (Carlson 1967, Allen, 1978).14

 For instance, Richard Goldschmidt (1917) accepts both the chromosome theory of  heredity and the 15

hypothesis of  crossing-over, while rejecting chiasmatypie (i.e. he refuses to correlate genes exchange with 
chromosomal segments exchange). He conceives of  genes as attached to specific locations of  chromosomes 
by biochemical forces, rather than as being themselves parts of  chromosomes (see Allen, 1974, Dietrich, 
2000). For a detailed analysis of  Goldschmidt’s model of  crossing-over, see also Wimsatt, 1987.
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chromosomes by “molecular”, rather than “mechanical” forces (Castle, 1919c, 501). He 

conceives of  recombination as the result of  a chemical reaction, rather than as the result of  

a mechanical process. 

 Beyond this difference, all agree, though, that the observational basis is insufficient 

to decide among alternative hypotheses about the structure of  chromosomes. Because of  

the poor observational information one could draw from fixed preparations of  

chromosomes viewed from microscopes at that time, such hypotheses were doomed to be 

conjectural. The degree of  uncertainty of  any hypothesis about the structure of  

chromosomes was much higher than the degree of  uncertainty of  the chromosome theory 

itself, which was a reasonable and quite widely (though unconfirmed, and controversial) 

hypothesis. Hence, without agreeing on their representation of  the structure of  the 

chromosomes, the disputants do agree in their assessment of  the poorly warranted 

epistemic status of  any hypotheses concerning such structure that would be drawn from 

microscope observations. Therefore, for both Morgan’s group and Castle, such hypotheses 

could not, at the time, serve as premises in any decisive argument. Hypotheses about the 

structure of  the chromosomes should rather be the conclusions of  arguments based on 

other premises. 

2.3. Relation between the genetic and the cytological levels. Crux of  the debate. 

Relation between the genetic and cytological levels 

 When presenting the genetic hypotheses of  linkage groups and crossing-over in 

section 2.1, I have insisted on their “purely” genetic status, by distinguishing them from 

hypotheses about the physical processes underlying linkage and crossing-over. Obviously, 

for people who believe in the chromosome theory of  heredity, like Morgan and Castle, 

such explanatory hypotheses about the physical processes underlying genetic phenomena 

(linkage and crossing-over) are deeply related to their hypotheses concerning the way genes 

are arranged on chromosomes, and hence on their representation of  the structure of  

chromosomes. 

 Yet, one should carefully distinguish between hypotheses concerning the physical 

mechanism of  crossing-over that do not include cytological commitments from hypotheses 
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about the specific cytological basis of  crossing-over. Hypotheses concerning the physical 

mechanism of  crossing-over certainly exceed what I have called the “purely” genetic, or 

Mendelian level, since they go beyond statistical analysis of  the results of  breeding 

experiments, by proposing a mechanical explanation of  these results. But such hypotheses 

about the physical mechanism of  crossing-over do not imply, as such, any statement at the 

cytological level. Since hypotheses about the details of  the cytological level are, as I 

emphasized, acknowledged as conjectural, the physical models explaining crossing-over are, 

in principle, conceptually independent from any hypothesis concerning chromosomes. For 

instance, one could perfectly accept Morgan’s mechanical model of  crossing-over (fig. 2) 

while denying that the structure represented in the schema is a chromosome. 

 Conversely, the mere acceptance of  the chromosome theory does not ipso facto 

commit one to a particular hypothesis concerning the physical basis of  crossing-over. To 

be sure, Morgan’s formulation of  the theory of  crossing-over is historically inseparable 

from his adoption of  the chromosome theory. But one could adopt the chromosome 

theory while rejecting such a mechanical model, as Castle did. On paper, Morgan’s group 

and Castle seem to agree on the most important theoretical points. They all accept the 

genetic hypothesis of  crossing-over as an explanation of  partial linkage, and the 

chromosome theory of  heredity.  Their debate does not center on any of  these 16

hypotheses. However, their disagreement is grounded in their different conceptions of  the 

explanatory link between the cytological and the genetic levels. Let me now schematically 

present the crux of  this debate. 

Crux of  the debate 

 The official issue of  the debate, which concerns the cytological basis of  the genetic 

phenomena, is: 

(Q1) What is the structure of  chromosomes? How are genes arranged “on” chromosomes? 

Another question, one that concerns the underlying mechanism of  the genetic phenomena 

(be they chromosomic or not) is the following: 

 This is not the case with Bateson, for instance, who rejects the chromosome theory of  heredity but shares 16

other aspects of  Morgan’s views, which Castle would reject (such as the linearity hypothesis, which I present 
below).
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(Q2) What is the mechanism of  crossing-over? And hence: How should one model it in 

order to explain the genetic phenomena? 

Finally, a third question is raised, on which the disputants in fact carry out the debate. It 

concerns the best way to present the data resulting from breeding experiments, in order to 

have a handy tool to predict the genetic phenomena (i.e. the inheritance patterns of  

different genes in given species), independently from the explanation of  these phenomena: 

(Q3) How should one present the statistical data concerning genes’ recombination 

frequencies? 

 The disputants of  the debate agree in considering that one’s answer to Q1 could 

not, at the time, be based on cytological observations. To be sure, if  more precise 

observations of  the chromosomes were available, then such observations would offer a 

solid ground for answering Q1. An answer to Q1 so obtained would in turn shed light on 

the underlying mechanism of  the genetic phenomena (Q2). But, by the time of  the debate,  

the disputants do not feel entitled to accept any particular hypothesis concerning Q2 on 

the basis of  their preferred hypothesis concerning Q1 — insofar as it is based on 

insufficient observational support, which cannot play any decisive evidential or warranting 

role. As a consequence, the disputants claim that their own answer to Q2 is justified by the 

mere analysis of  the genetic data. 

 Let me clarify why it is important to distinguish between Q1 and Q2. One’s 

answers to these two questions (once one accepts the chromosome theory of  heredity) 

certainly do have to be strongly related. If  any solid answer to Q1 were available (on an 

observational basis), then it would definitely have epistemic force, and should drive one’s 

answer to Q2. But, because of  the acknowledged uncertainty of  any hypothesis concerning 

Q1, the answer to Q2 has to be, as the disputants claim, driven by the mere analysis of  the 

data. As a consequence, the two parties tend to carry out their dispute about Q3, as if  it 

was merely a question of  simplicity and predictive efficacy. From their alleged theory-

neutral answer to Q3, they then claim to infer what seems to be the most probable answer 

to Q2 (by something like inference to the best explanation), and hence to Q1. 

 In the following, I will show that the disputants’ answer to Q3 is determined by 

their favored hypothesis concerning Q2. Because they do not feel entitled to rely on their 

beliefs concerning Q1 (based on cytological observations), I suggest that they fail to face 
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up their deep theoretical differences on Q2 (and Q1), and center the discussions on Q3. 

An open question, which will be raised but not answered, is: To what extent their answer to 

Q2 is influenced by, and influences their beliefs concerning Q1?  17

3. MORGAN’S MECHANICAL MODEL OF CROSSING-OVER AND THE TWO RIVAL 

TECHNIQUES OF LINKAGE MAPPING 

 In section 2.1, I have presented the hypothesis of  crossing-over. Insofar as it does 

not imply any commitment to a hypothesis concerning the physical mechanism underlying 

genes’ exchange, it is accepted by both Morgan and Castle. However, the theory of  

crossing-over, as it is articulated by Morgan in 1911, says something more than the 

hypotheses presented above (Morgan 1911a). Beyond assuming that linkage groups can 

exchange genes, it provides a mechanical model for such an exchange. This model underlies 

the invention of  the technique of  linkage mapping, on which the debate with Castle bears. 

After having introduced Morgan’s theory in section 3.1, I present the mapping technique, 

as it was designed by Sturtevant in 1913 (section 3.2). In section 3.3, I introduce Castle’s 

rival method for constructing maps. 

3.1 Morgan’s theory 

 Morgan’s theory of  crossing-over is embodied by the mechanical model 

schematized in figure 2. This theory can be reconstructed in the form of  two premises and 

a conclusion. 

First premise: linearity. 

 The first premise is the hypothesis according to which genes are ordered in a linear 

fashion along their linkage groups, like beads on a string. Note that this string might be the 

chromosome, as Morgan supposes, but that it might also not. Nothing is said, even in 

 Indeed, one’s choice of  a particular answer to Q1 and Q2 might be due to one’s preference for, say, 17

mechanical models. In this case such preference might itself  drive one’s interpretation of  the cytological 
observational data. On the other hand, one could argue that the mechanical model of  crossing-over is itself  
strongly suggested by cytological images such as the one displayed in figure 1 — and that such images do 
warrant, to some extent, one’s acceptance of  the mechanical model.
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Morgan’s statement of  the “theory of  the gene” (Morgan, 1926, 25), about the physical 

nature of  linkage groups. Nevertheless, Morgan’s theory says something more than the 

hypothesis of  linkage groups, according to which some genes are linked together in some 

way (see 2.1). Morgan’s theory says that linkage groups are line-shaped (or thread-like). 

 The hypothesis of  linearity was suggested by a phenomenon evinced by breeding 

experiments on Drosophila: geneticists could observe that the frequencies of  recombination 

were additive. What does that mean? Let us consider three genes A, B, and C, belonging to 

the same linkage group. Let us call R(AC) the frequency of  recombination of  A and C, 

namely the frequency of  their being inherited separately (which has to be less than 50%, 

since they are linked). Saying that frequencies of  recombination are additive means that 

R(AC)=R(AB)+R(BC). This equation obviously suggests that genes are arranged in a linear 

fashion. This hypothesis of  linearity is the one Castle rejects. 

Crossing-over. 

 The second premise of  Morgan’s theory is the hypothesis of  crossing-over 

(see  2.1). It states that there is an ordered exchange between portions of  homologous 

linkage groups during the formation of  germ cells. The consequence of  this exchange is 

the recombination of  the genes lying on these portions. 

Conclusion: proportionality of  the recombination frequency and of  distance 

 These two hypotheses together lead to the conclusion that the percentage of  

crossing-over between two genes (their recombination frequency) is proportional to the 

“distance” between these genes on the linkage group. Indeed, as appears clearly in the 

model of  crossing-over schematically presented in figure  2, the more distant from each 

other two genes are, the more a break between them is likely to occur , and hence the 18

more they are likely to be redistributed separately. 

3.2 Sturtevant’s linkage mapping technique 

 Assuming that different points of  the line are equally likely to break (but see footnote 17).18
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 The technique devised in 1913 by Sturtevant consists in transforming Morgan’s 

theory into a mapping scheme for the linkage groups. Since the recombination frequency 

between two genes of  a given group is assumed to be a function of  the distance between 

them, Sturtevant proposed that this frequency could be used as an index of  the distance. 

Sturtevant’s (1913) map. Exceptions to additivity and the hypothesis of  double crossing-over. 

 On the basis of  the frequencies calculated from the results of  breeding 

experiments, Sturtevant (1913) constructed the map for one linkage group of  Drosophila 

(the group of  the so-called “sex-linked” characters, corresponding to chromosome X). 

However, for high recombination frequencies (represented by long distances), some 

experiments (Morgan 1911b, Morgan and Cattell 1912) showed exceptions to additivity: for 

two genes A and C with high recombination frequency R(AC), one finds R(AC)<R(AB)

+R(BC). Instead of  rejecting the hypothesis of  linearity (which, remember, was suggested 

by the observation of  additivity), Sturtevant hypothesized that there could be more than 

one crossing-over occurring on the same linkage group. As is shown in figure 3, double 

crossing-overs would cancel the recombination of  the corresponding genes. The genes 

located at the extremities of  the linkage groups, and separated by two breaks, are, in the 

end, inherited together. 

 Drawing from this hypothesis, Sturtevant chose to construct his map by relying on 

the short distances. Long distances on the map therefore correspond to the sum of  short 

distances, rather than to the observed recombination frequencies between the most 

distanced genes. This is a crucial point, which appears clearly when one considers the table  

of  the recombination frequencies (fig. 4) and its corresponding map (fig. 5). The table 

displays the proportions of  crossing-over for each pair of  genes (i.e. their recombination 

frequency), and the corresponding percentage, which is supposed to give the distance 

between them. These genotypic data are themselves inferred from the phenotypical data 

concerning the distribution of  the observable characters among individuals. Consider BM: 

the table says that, out of  693 cases, B and M were inherited separately 260 times, that is, 

37.6% of  the cases. However, on the map, the distance between B and M is 57.6 (and not 

37.6). This result derives from the fact that this “distance” was calculated by adding up 

short distances, rather than by relying on the recombination frequencies that could be 
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inferred from the phenotypic data. 

The function of  maps. Ambiguity of  the term “crossing-over”. 

 Before turning to Castle’s model, let me make a few remarks about Sturtevant’s 

technique. One can interpret the goal of  his enterprise in at least two ways. First, maps 

could be thought of  as (highly schematic) representations of  the chromosomes. 

Sturtevant’s technique was indeed inspired by Morgan’s suggestion that recombination 

frequencies might be an index of  the distance between genes on the chromosomes. In fact, 

Sturtevant presents his map as a “diagram of  the chromosome” (1913, 6). However, even 

if  the chromosome theory was false , mapping would still have a value at the genetic level. 19

In other words, even if  it had turned out that “distance”, defined as a function of  the 

proportion of  crossing-overs, was used metaphorically, and did not represent any physical 

distance , maps would still be useful as predictive tools at the genetic level: 20

It would seem, if  this hypothesis be correct, that the proportion of  

“crossovers” could be used as an index of  the distance between any two 

factors. Then, by determining the distances (in the above sense) between 

A and B and between B and C, one should be able to predict AC. 

(Sturtevant, 1913, 3) 

The meaning of  this statement is not straightforward. Consider, again, the map in figure 5. 

Since it is constructed by relying on low recombination frequencies, distances on it do not 

stand for actual recombination frequencies (which appear in the table in figure 4). They 

rather stand for the putative percentages of  crossing-overs at the physical level of  the linkage 

group. These “physical” (or “real”) crossing-overs may or may not have consequences on 

the resulting genotype of  the individuals (and, hence, on their phenotype). Indeed, two 

crossing-overs result in some failures of  gene recombination. Hence, in virtue of  the 

 Or if, as Sturtevant hypothesizes (and it turned out that he was right), chromosomes were not equally likely 19

to break on every point, which would imply that distance is a measure of  strength combined with length.

 In a work in progress, I distinguish between what I call “schematic drawings” and “diagrams”. “Schematic 20

drawings” are spatial representations of  spatial relations (e.g. the spatial structure of  a cell). A diagram is a 
spatial representation of  non-spatial relations (e.g. hierarchical, temporal, causal relations, etc.). For instance, 
the synthesis of  proteins is usually represented by a diagram. In this terminology, linkage maps can 
alternatively be considered as schematic drawings of  chromosomes (which conserve the topological relations, 
if  not the metric ones), or as diagrammatic representations of  the relative recombination values.
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possibility of  double crossing-overs, the percentage of  “physical” (or “real”) crossing-overs 

differs from the percentage of  “observed”  crossing-overs (recombinations). Therefore, 21

the “distances” that one can predict by using Sturtevant’s scheme do not correspond to the 

recombination frequencies (as Sturtevant’s quote above suggests), but rather to the putative 

percentage of  real crossing-overs at the physical level. 

 As is clear from the preceding analysis, the term “crossing-over” is ambiguous. For 

the sake of  clarity, one could (and should) adopt the following convention: speaking of  

recombination when two genes of  the same group are redistributed separately (“observed”  

crossing-over), and keep the term “crossing-over”, which has a strong mechanical 

connotation, to refer to the putative underlying exchanges of  genes at the physical level 

(which, when they happen an even number of  times, count as no recombination). 

However, the protagonists of  the debate do not adopt any such terminological convention, 

and this ambiguity embodies one of  the central issues of  the debate. 

3.3 Castle’s model 

 During the years following the invention of  the mapping technique by Sturtevant, 

Morgan and his students, in collaboration with the cytologist Edmund Wilson, 

progressively construct the genetic maps for the four chromosomes of  Drosophila. Through 

striking predictions at the genetic level, they adduce more and more evidence in favor of  

the chromosome hypothesis. Consensus on the Morgan group’s theory was not, however, 

reached until the early 1920‘s. Until then, it was the target of  many criticisms, in particular 

by Bateson (1916) and Goldschmidt (1917). Castle’s (1919a,b,c) criticism goes beyond 

attacking theoretical hypotheses advanced by Morgan’s group. It consists in proposing a 

rival mapping scheme, resulting in a completely different way of  modeling the data. 

 Castle (1919a) does not question the validity of  the data about genes’ 

recombination frequencies that Morgan’s group draws from the phenotypic data obtained 

through breeding experiments. In fact, he constructs his map by relying on the data used by 

Morgan and Bridges (1916). 

 “Observed”, here, means “inferred from the phenotypical data”, which are themselves the result of  a 21

statistical processing of  the data concerning the observable characters of  the individuals.
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 The main difference between Castle’s and Sturtevant’s schemes lies in their strategy 

in handling the problem of  non-additivity for high recombination frequencies. Unlike 

Sturtevant, who invokes double crossing-overs in order to keep the hypothesis of  the linear 

arrangement of  genes, Castle merely drops this hypothesis. Non-additivity, he argues, is a 

problem only if  one assumes linearity. Dropping linearity enables one to conceive of  

distance as being always proportional to recombination frequency, be it high or low. Castle’s 

scheme thus relies on the definition of  distance as a linear  function of  recombination 22

frequency. Since high frequencies are not additive, the resulting map has to be 

multidimensional (see fig. 6). Indeed, if  R(AC)<R(AB)+R(BC), then A, B, and C cannot lie 

on a unique line. Figure 7 shows Morgan and Bridges’ (1916) unidimensional map for the 

same data, which was constructed according to Sturtevant’s scheme. 

 Castle’s map is undeniably a linkage map: it consists in converting recombination 

frequencies into distances on the map, as suggested by Sturtevant. Castle even makes the 

conversion between frequencies and map distances in a purer way. His scheme merely relies 

on the definition of  distance as a linear function of  recombination frequencies. If  one 

focuses on the genetic level, without considering the conclusions one could conjecturally 

draw from it about the arrangement of  genes on chromosomes, Castle’s map model might 

seem to be merely an alternative way of  presenting the same data, without any theoretical 

issue being at stake. However, his mapping scheme, even at the genetic level (leaving aside 

the cytological level), involves a drastically different conception of  crossing-over and of  the 

very meaning of  the maps. 

4. ANALYSIS OF THE DEBATE 

 In order to advocate his model, Castle proposes a series of  arguments against 

linearity, which Morgan and his students (Sturtevant et al., 1919, Muller, 1920) answer 

systematically. William Wimsatt’s (1987) diagnosis is that this debate exemplifies the 

opposition between a “mechanistic or realist research program” (Morgan’s) and “an 

operationalist or instrumentalist one” (Castle’s). For Wimsatt, Castle “avoid[s] 

 One has to be cautious with the term “linear”: Castle defines distance as a linear function of  recombination 22

frequencies, which leads him to reject the hypothesis of  the linear (unidimensional) arrangement of  genes 
along their linkage groups, and hence to construct a multidimensional map.
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commitments to theoretical models” and “stay[s] as close to the data as possible” (Wimsatt, 

1987, 39). This is true to quite a large extent, as I will show. But my analysis aims to shed a 

slightly different light on the debate, and to qualify Wimsatt’s judgement that Castle is a 

pure instrumentalist. Quite interestingly, Castle and Morgan’s group officially agree both in 

the hierarchy they establish among the types of  arguments they invoke, and in the criteria 

they appeal to in order to justify their preference for a model. I will show that Castle’s 

choice of  a multidimensional model does not merely stem from a theory-neutral attempt to 

present the data in a simple and efficient way. Rather, from both sides, strong theoretical 

commitments underlie arguments appealing to simplicity and to predictive efficacy. 

  

4.1 Different types of  arguments 

Cytological arguments: the putative structure of  chromosomes 

 Castle’s first set of  arguments against linearity are at the cytological level. They 

question the plausibility of  the hypothesis that genes are linearly ordered on 

chromosomes  (Q1). Castle strongly doubts that “elaborate organic molecule[s]”, as he 

assumes chromosomes to be, would have “a simple string-like form” (Castle, 1919a, 26), as 

suggested in Morgan’s unidimensional maps.  Sturtevant et al. (1919) simply reject the 23

hypothesis that chromosomes are organic molecules. 

 Yet, as I already highlighted, such considerations lack observational support. They 

can, at most, lead one to lean towards a particular map model. Castle’s conjectures about 

the complex structure of  chromosomes merely aim to show that the cytological level itself  

does not offer any evidence in favor of  a linear (unidimensional) map model. Despite the 

title of  his paper indicating that Q1 is the central question (“Is the arrangement of  genes in 

the chromosome linear?”), Castle then focuses on the question of  the form of  the 

maps (Q3). 

 Moreover, Castle is careful not to claim that his map really represents the actual 

 Castle acknowledges that microscope images of  chromosomes suggest such a thread-like form. But he 23

emphasizes that it is not clear “how much of  the visible chromosomes is composed of  genes and how much 
is something else.” Nor is there “evidence whatever that the chromosomes are genes, but only that the genes 
are in some way connected with them” (Castle, 1919c, 501). Hence, according to him, one is not entitled to 
draw conclusions about the structure of  the chromosomes on the basis of  the microscope images that were 
available at the time.
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structure of  chromosomes. What can be drawn from his other arguments (presented 

below) is only that he thinks that Morgan’s unidimensional maps do not represent the actual 

structure of  chromosomes. In other words, to the question stated in the title of  his paper, 

Castle’s official claim is that there exist good reasons to answer negatively, but nothing 

more. As Wimsatt (1987) suggests, Castle presents his map as a tool enabling one to predict 

further recombination frequencies (and thus to study the transmission rules of  given genes 

in given species) on the basis of  the available recombination data. He does not claim that 

his map provides an explanation of  these data, by representing the mechanism underlying 

them. 

 Yet, the situation is not so simple. After having given two more arguments against 

linearity (presented below), Castle comes back to cytological considerations at the end of  

his paper. He suggests that the great predictive efficacy of  his model is a warrant for the 

belief  that the model represents in some way the real processes underlying the genetic 

phenomena. However, he claims, these processes might not be mechanical, hence spatial 

relations on the map might well represent non-spatial relations, such as molecular forces.   24

Distance on the map might not represent physical distance. 

 Before turning to the other arguments, let me consider Castle’s argumentative 

strategy. Having advocated his own map model (i.e. having answered Q3), Castle infers an 

answer to Q2. His argument consists in saying that the predictive efficacy of  a model 

provides one with good reasons to hold that it represents in some way the real underlying 

processes. But having such a (tentative) answer to Q2 is not enough, according to Castle, to 

infer an answer to Q1, because spatial relations on the map might well stand for non-spatial 

relations. Pace Wimsatt, I suggest that, rather than avoiding commitment to any kind of  

theoretical model, both Castle’s claim that the map represents real relations and his 

reluctance to consider that these relations are spatial reveal his preference for a certain kind 

of  explanation. He believes that the cytological level should provide a chemical, rather than 

 “What, it might be asked, does this reconstruction signify? Does it show the actual shape of  the 24

chromosome, or at any rate of  that part of  it in which the observed genetic variations lie? Or is it only a 
symbolical representation of  molecular forces? These questions we can not at present answer. A first step 
toward answering them will be the construction of  a model which will give us a reliable information as to 
undetermined genetic relationships. A model which will answer questions truthfully must be a truthful 
presentation of  actual relationships even though we do not know whether they are spatial or 
dynamic” (Castle, 1919a, 30).
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a mechanical explanation of  the genetic phenomena. 

Arguments appealing to the simplicity of  the model 

 According to Castle, the linearity hypothesis is costly to maintain, since it requires 

the assumption of  double crossing-overs. The hypothesis of  double-crossing over, he 

argues, it is an ad hoc hypothesis, whose introduction would be acceptable only if  linearity 

were indispensable.  But, according to him, there is no good evidence for linearity and 25

some evidence against it. Dropping both hypotheses altogether leads to what he considers 

to be a simpler map model. It is simpler in the sense that it relies only on the definition of  

distance as a linear function of  recombination frequency, without any additional hypothesis 

being needed. 

 On the other hand, Sturtevant et al. (1919) argue that assuming the occurrence of  

double (and more generally multiple) crossing-overs is not ad hoc. Rather, once one admits 

the possibility of  one break along the linkage group, the possibility of  multiple breaks is a 

null hypothesis (one would need justification, instead, to restrict breaks to occurring only 

once). Hence, Morgan’s group argues, double crossing-over, far from being a costly 

addition, leads to the construction of  much simpler and more readable maps. They hold 

that the unidimensional form of  their maps has the advantage of  simplicity over what they 

call the “rat trap” form of  Castle’s maps. 

 Note that both Castle and Morgan’s group appeal to what Kuhn (1977) would have 

called the same “value”, namely simplicity. However, they obviously make different 

simplicity judgements. I suggest that their respective assessment of  the simplicity of  map 

models is a consequence, rather than a cause, of  the choice of  their respective models. 

Hence, this choice has to be guided by deeper reasons, which I will try to clarify in 

section 4.2. 

Arguments concerning the predictive efficacy of  the model 

 The third set of  arguments concerns the predictive efficacy and accuracy of  maps 

 “The experimental data show that double crossing-over must occur, if  the arrangement of  the genes is 25

linear. [...] But if  the arrangement is not linear, double-crossing-over need not be assumed as an explanation 
of  the observed regroupings” (Castle, 1919a, 30).
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at the genetic level. The issue of  predictive efficacy and accuracy is explicitly presented as 

the most decisive by the two parties. Maps have primarily to fit the data, and to serve as 

predictive tools. Each party claims the superiority of  its own map model as a 

computational tool facilitating accurate predictions, independently of  any underlying 

physical explanation. 

Castle’s argument. 

 According to Castle, the hypothesis of  double crossing-over is costly; and nothing 

justifies paying the price. Quite the contrary, maintaining the hypothesis of  linearity leads 

to what Castle judges as incoherent predictions. According to him, Morgan and Bridges’ 

map does not fit the data. Their map displays distances of  more than 50 cartographic units, 

one distance unit corresponding to 1% of  crossing-over. But, Castle argues, 50 units 

should be the maximum, corresponding to the cases of  independent assortment or absence 

of  linkage (namely cases involving genes belonging to different linkage groups, therefore 

obeying Mendel’s second law). He claims that values greater than 50 “have not been 

observed and are logically impossible” (Castle, 1919c, 501). 

A cross-over value greater than fifty cannot exist. For there must be either 

linkage or no-linkage. But no-linkage means 50% cross-overs, and 

linkage means less than 50% cross-overs. (Castle, 1919a, 28) 

This argument relies on a misuse of  the notions of  distance and of  crossing-over. 

Castle mixes up observed crossing-overs (recombinations), whose percentage undeniably 

cannot exceed 50, with real crossing-overs, that is, real breaks and exchanges at the physical 

level. But, in Morgan’s maps, distance does not correspond to the percentage of  

recombinations, but rather to the probability of  real crossing-overs. Since there can be 

more than one such crossing-over at the level of  the physical group, it makes perfect sense 

to speak of  distances of  more than 50 (50% of  chance is the maximum for one crossing-

over to occur). 

 On the other hand, since Castle rejects the hypothesis of  double crossing-over, he 

has no reason to make such a distinction between real and and observed crossing-over. 

This leads him to (mis)use the concept of  crossing-over to refer to cases of  independent 

assortment, when two genes of  different linkage groups are redistributed separately (which, 

22



Models of  Data and Theoretical Hypotheses: A Case-Study in Classical Genetics

in virtue of  Mendel’s laws, always has a 50% chance of  occurring). In other words, for 

Castle, “crossing-over” entails absence of  linkage (separate inheritance), whether or not the 

genes in question belong to the same linkage group. 

If  A and B assort wholly independently, without any linkage whatever, 

just as they would in ordinary Mendelian inheritance where no linkage 

exists, cross-overs and non-cross-overs will be equal, 50% each. (Castle, 

1919a, 28).  

But, in Morgan’s conceptual framework, speaking of  crossing-over (or absence thereof) 

between genes lying on different linkage groups makes no sense: a crossing-over 

corresponds to a break within a linkage group. I shall come back to Castle’s 

misunderstanding in section 4.2. Beforehand, I wish to say a word about some aspects of  

Muller’s answer. 

Muller’s answer. 

 After having emphasized Castle’s misunderstanding of  the notion of  crossing-

over , Muller (1920) argues that the Morgan group’s map model fits the data much better 26

than Castle’s model does.  An important argument in favor of  the Morgan group’s model 27

is that it predicts the deviation from additivity, by accounting for it as a function of  map 

distance, too. Indeed, in their scheme, the probability of  double crossing-over is expected 

to increase with map distance. By contrast, Muller argues, Castle’s model would predict the 

opposite: in Castle’s scheme, three arbitrary factors are more likely to fall on a straight line 

the further they are separated. Hence, Muller shows that the two models are not empirically 

equivalent, and that the unidimensional model is empirically more adequate than Castle’s 

tridimensional model, and yields better predictions. 

 Note that Muller claims that the predictive superiority of  Morgan’s model can be 

 “[I]t has never been claimed, in the theory of  linear linkage, that the per cents of  crossing-over are actually 26

proportional to the map distances: what has been stated is that the per cents of  crossing-over are calculable 
from the map distances” (Muller 1920, 98).

 Muller’s (1920) reply to Castle consists of  many strong arguments, which I will not present here. In 27

addition to showing that Castle’s model does not fit the available data, he also provides a thorough criticism 
of  Castle’s use of  the data. In particular, he shows that Castle should not treat the data in the same way for 
map construction and for testing the hypothesis of  linear arrangement.
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shown without any consideration of  the underlying physical processes. His argument is 

that the mathematical apparatus enabling one to accurately predict the recombination 

frequencies relies on a representation of  linkage groups, in which each gene is bound with 

only two others in a linear fashion. According to him, the very analysis of  the 

recombination data justifies a unidimensional representation of  the arrangement of  genes. 

 Now, from this argument concerning Q3, which could be called, in Wimsatt’s 

terminology, an “operationalist” or “instrumentalist” argument, he draws that the 

mathematical relations in the model do stand for real relations. However, in a somewhat 

ironical way, he pretends to concede to Castle that the “line” formed by the genes in the 

model must not correspond to a physical line: 

Whether or not we regard the factors as lying in an actual material 

thread, it must on the basis of  these findings be admitted that the forces 

holding them together — be they physical, “dynamic” or transcendental 

— are of  such nature that each factor is directly bound, in segregation, 

with only two others — in bipolar fashion — so that the whole group, 

dynamically considered, is a chain. This does not necessarily mean that 

the spatial relations of  the factors accord with these dynamic relations, 

for it is conceivable a priori that factor A might be far off  from B, in 

another part of  the cell, and that they might nevertheless attract each 

other, during the segregation division, by some sort of  chemical or 

physical influence. [...] no implication as to the physical arrangement of  

the genes is intended when the terms “linear series”, “distance”, etc., are 

used; these will refer only to the relations existing between the points in 

the linear map, which may be regarded merely as a mathematical mode 

of  representation of  the data themselves. (Muller 1920, 100-101) 

He nevertheless adds that, in absence of  any strong reason to doubt it, one would be 

“fanciful” in denying that the genes are really ordered on a “physical line”: 

when the various conditions which have to be fulfilled at segregation are 

taken into consideration, any other explanation for these peculiarly linear 

linkage findings than an arrangement of  the genes in the spatial, physical 

line proves to be hazardously fanciful. (Muller, 1920, p. 101) 

Muller’s argument is that the mathematical model enabling one to predict the data seems in 
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such a striking way to describe a spatial mechanism that one has no good reason to reject 

its spatial interpretation. Muller thus presents his realist commitment toward the 

mechanical model of  crossing-over, according to which genes are arranged spatially on a 

material line, as a consequence of  his searching for the best account of  the genetic data.  28

 Muller’s considerations can be described as a rigorous attempt to articulate the 

inductive patterns of  an inference to the best explanation. Although his position might be 

considered as better warranted than Castle’s one — and although it turned out that 

Morgan’s group was right —, it was still necessary, by the time of  the debate, to look for 

more evidence in order to be fully satisfied with Muller’s spatial-mechanical explanation. In 

the next section, I shall try to clarify why a skilled scientist like Castle could still reject this 

explanation, without being merely stubborn or unprofessional. I will show that neither 

simplicity judgements nor considerations of  predictive efficacy could settle the debate to 

either side’s satisfaction, because such judgements and considerations were too theory-

dependent to be persuasive. Indeed, the disputants’ commitments to a physical explanation 

of  heredity and their search for a predictive tool (at the genetic level) are more intricate 

than what they suggest. 

4.2 Maps as predictive tools, and theoretical commitments 

 Castle’s misunderstanding of  the concept of  crossing-over is quite surprising. One 

cause of  his misconception might be the ambiguous use of  the term “crossing-over” by 

Morgan’s group itself. As we have seen, the distinction between the two meanings of  

crossing-over (“real” crossing-over and genetic recombination) relies on the hypotheses of  

linearity and double crossing-over, which together embody a mechanical explanation of  

partial linkage. This distinction is never made explicit by Morgan and his students, who use 

the term “crossing-over” in both senses. One reason for this lack of  terminological 

precision might be that the distinction is pretty clear for anyone who has a mechanical 

representation of  crossing-over. The term “crossing-over” does strongly suggest this 

 Interestingly, in his 1913 paper (thus in a different argumentative context), Sturtevant presents the fact that 28

the best mathematical model of  recombination frequencies is a linear one as a piece of  evidence in favor of  
the chromosome theory of  heredity, assuming that chromosomes are thread-like: “[These results] form a new 
argument in favor of  the chromosome view of  inheritance, since they strongly indicate that the factors 
investigated are arranged in a linear series, at least mathematically” (p. 16, emphasis added).
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mechanical representation. But then, it is quite surprising that Morgan’s group keeps using 

this term to refer to gene recombination, once the hypothesis of  double crossing-over has 

been made, and recombination has been distinguished from physical crossing-over. 

 Still, highlighting Morgan’s group’s ambiguous use of  the term “crossing-over” is 

certainly not sufficient to explain Castle’s misunderstanding. His mistake should rather be 

considered a symptom of  his commitment to another theoretical model, which prevents 

him from making the adjustments he should have made in understanding the system of  

concepts underlying Morgan’s scheme. Indeed, the very meaning of  Morgan’s maps, as well 

as the rules one has to follow in order to draw predictions from them, are underlaid by the 

mechanical model. The recombination data displayed in the table (fig. 4) are not directly 

retrievable from the map, since mapping distance does not always correspond to 

recombination frequencies. On the other hand, Castle claims that “from [his] model one 

may by direct measurement ascertain what other undetermined linkage values are likely to 

be” (Castle, 1919b, 32, emphasis added).  In order to retrieve data concerning the 29

recombination frequencies and to draw predictions concerning such frequencies from 

Morgan’s maps, one needs to assume that distances on the map have a spatial meaning.  

 To be sure, one could hold Castle’s views and still understand the maps. But what I 

wish to highlight here is that hypotheses that cannot be drawn from the mere analysis of  

the data underlie the Morgan group’s use of  the concept of  spatial distance and the 

mapping scheme designed by Sturtevant. The adoption of  Morgan’s model is justified only 

if  one considers that maps represent something more than mere recombination 

frequencies of  genes, namely the mechanical explanation of  these recombinations. Far 

from being mere graphical presentations of  the statistical data contained in the 

corresponding table, these maps are theoretical representations, whose format embodies 

strong hypotheses. The mechanical model of  crossing-over underlies the extraordinary 

battery of  concepts and mathematical tools developed by Morgan’s group in order to 

 From that perspective, it is true that Morgan’s scheme is more theory-dependent than Castle’s (as suggested 29

by Wimsatt’s calling Castle an instrumentalist). Nevertheless, Castle’s misunderstanding forces qualification on 
Wimsatt’s claim that Castle “avoid[s] commitments to theoretical models”. Although one has to be cautious 
with such psychological considerations, it seems hard to understand how Castle could make such a mistake 
without having some deep prior commitment against Morgan’s mechanical model.
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account for what prima facie appeared as recalcitrant data.  As a consequence, if  one 30

focuses on the recombination data, and if  one considers maps as merely predictive tools — 

and not as explanatory models —, as both Muller and Castle claim to be doing in their 

respective arguments, then the debate between disputants holding different theories cannot 

be settled. Indeed, considerations of  predictive efficacy and of  simplicity are themselves 

theory-dependent. 

 Let me briefly consider Morgan’s maps as merely predictive tools. For someone 

who does not first accept the mechanical model represented in figure 2, Morgan’s maps are 

far from being handy predictive tools. If  one does not first admit the mechanical 

explanation of  linkage, and the whole battery of  concepts that comes with it (distance, 

double crossing-over, and the distinction between recombination and real crossing-over), 

the Morgan group’s mapping scheme seems unjustifiably complex. Maps do not only suggest 

a mechanical explanation of  the genetic phenomena; they are practically unusable — or at 

least unnecessarily complex — for someone who would not first admit such explanation. 

What appears to be simple here thus depends on theoretical commitments. 

 My purpose is not to defend Castle’s position in an anti-whiggish spirit. Morgan’s 

group already had, in 1919, many good reasons to consider that the best explanation of  the 

genetic data was to be found in a spatial-mechanical model. The fact that Morgan’s theory 

was not fully justified — because it still lacked evidential support  — does not mean that 31

their position was not better warranted than Castle’s, already in 1919 (independently from 

the fact that it turned out to be true). The rules for inference to the best explanation are 

difficult to state, and such epistemological issue is far beyond the scope of  this paper. Let 

me just incidentally note that cases in the history of  science such as the one I have 

presented here provide one with good examples of  the complexity of  epistemic warrants 

in science, which are worth studying in detail. 

 Wimsatt holds that the debate between Morgan’s group and Castle “provides a 

  An example is Muller’s (1916) mathematical work on the notion of  coincidence, aimed at accounting for 30

the phenomenon of  interference (see Wimsatt 1992).

 Such evidence was available a few years later, when striking correspondence of  genetic phenomena with 31

cytological observations was established in the 1930’s. See, in particular, the works of  Creighton and 
McClintock (1931) and of  Painter (1934). Note that Castle abandoned his reluctance to accept Morgan’s 
model already in the early 1920’s.
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clear example of  the superiority of  a mechanistic or realist research program over an 

operationalist or instrumentalist one” (1987, 39). It is true that Morgan’s mapping scheme 

is more theory-dependent than Castle’s one, whose position can be described as stemming 

from a tendency to stay “as close to the data as possible”. Nevertheless, I suggest that the 

difference between the two parties does not so much lie in a difference in their epistemic 

attitudes towards their own models. Rather, the two parties (superficially) agree in giving 

priority to the predictive efficacy of  maps at the genetic level. But Morgan’s group’s 

commitment toward the mechanical model of  crossing-over, on the one hand, and Castle’s 

representation of  chromosomes as complex organic molecules, on the other hand, did 

drive their preference for a particular way of  modeling the data. In the absence of  more 

evidence in favor of  one or the other underlying explanatory model, considerations of  

predictive efficacy and simplicity could not settle the debate. I finally suggest that this case 

might rather be taken as an example of  the epistemic superiority of  a position over a less 

articulated and warranted one, in the absence of  full justification of  any of  them. 

5. CONCLUSION 

 My analysis of  the debate between Castle and Morgan’s group has shown that 

their respective choices of  a particular way of  modeling the data were indissociable from 

their theoretical commitments to a particular model explaining these data (mechanical, 

chemical). The meaning of  their maps, and their use as predictive tools, derive from these 

theoretical positions. Maps are more than “models of  data” containing no theoretical 

hypothesis; their very format embodies a theoretical model of  the mechanism of  heredity. 

Given the terms of  the debate, which tended to center more on predictive accuracy and 

simplicity than on the deep theoretical differences in modes of  explanation, it was unlikely 

that either side was going to persuade the other, in the absence of  more evidence. Indeed, 

both sides could claim predictive adequacy if  one just focuses on the recombination data, 

and what appeared to be simple depended on background theoretical positions. Drawing 

from this case, I suggest that data modeling might always be, to some extent, theory-

dependent, and that judgements of  computational tractability might never be totally 

theory-neutral. 
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 Figure 1. Intertwining of  chromosomes during  

       meiosis (Janssens, 1909). 

    Figure 2. Mechanical model of  crossing-over   

               (Morgan et al., 1915). 

   Figure 3. Double crossing-over (Morgan et al., 1915). 
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Figure 4. Table of  recombination   

       frequencies (Sturtevant 1913). 

 

       Figure 5. Genetic map corresponding to the  

     table in figure 4 (Sturtevant 1913). 

The linear arrangement of six sex-linked factors in Drosophila 7

First published in: Journal of Experimental Zoology,  14: 43-59.

BCO

Factors
concerned

Proportion of
crossovers

Percent of 
crossovers

193
16287 1.2

BO 2
373 0.5

BP 1464
4551 32.2

BR 115
324 35.5

BM 260
693 37.6

COP 224
748 30.0

COR 1643
4749 34.6

COM 76
161 47.2

OP 247
836 29.4

OR 183
538 34.0

OM 218
404 54.0

CR 236
829 28.5

CM 112
333 33.6

B(C, O) 214
21736 1.0

(C, O) P 471
1584 29.7

(C, O) R 2062
6116 33.7

(C, O) M 406
898 45.2

PR 17
573 3.0

PM 109
405 26.9

Table 2

6 A. H. STURTEVANT (1913)

FOUNDATIONS OF CLASSICAL GENETICS

As will be explained later, one is more likely to obtain accurate
figures for distances if those distances are short, i.e., if the association
is strong. For this reason I shall, in so far as possible, use the percent of
crossovers between adjacent points in mapping out the distances
between the various factors. Thus, B (C, O), (C, O) P, PR, and PM
form the basis of Diagram 1. The figures on the diagram represent
calculated distances from B.

O
CB P R M

0.0 1.0 30.7 33.7 57.6

Diagram 1

Of course there is no knowing whether or not these distances as
drawn represent the actual relative spatial distances apart of the factors.
Thus the distance CP may in reality be shorter than the distance BC,
but what we do know is that a break is far more likely to come between
C and P than between B and C. Hence, either CP is a long space, or else
it is for some reason a weak one. The point I wish to make here is that
we have no means of knowing that the chromosomes are of uniform
strength, and if there are strong or weak places, then that will prevent
our diagram from representing actual relative distances –– but, I think,
will not detract from its value as a diagram.

Just how far our theory stands the test is shown by Table 3, giving
observed percent of crossovers, and distances as calculated from the
figures given in the diagram of the chromosome. Table 3 includes all
pairs of factors given in Table 2 but not used in the preparation of the
diagram.

It will be noticed at once that the long distances, BM, and (C, O)
M, give smaller percent of crossovers, than the calculation calls for.
This is a point which was to be expected, and will be discussed later.
For the present we may dismiss it with the statement that it is probably
due to the occurrence of two breaks in the same chromosome, or
“double crossing over.” But in the case of the shorter distances the
correspondence with expectation is perhaps as close as was to be
expected with the small numbers that are available. Thus, BP is 3.2 less
than BR, the difference expected being 3.0. (C, O) R is less than BR by
1.8 instead of by 1.0. It has actually been found possible to predict the
strength of association between two factors by this method, fair
approximations having been given for BR and for certain combinations
involving factors not treated in this paper, before the crosses were
made.
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Figure 6. Castle’s “rat trap” model under two  

      different perspectives (Castle 1919a), for the same   

       data as Morgan and Bridges’ (1916) map (fig. 7). 
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      Figure 7. Morgan and Bridges’ (1916)  

                map, reproduced by Castle (1919a). 
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