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ABSTRACT

In this paper, we criticize the current adaptive or statistical learning literature.
Instead of emphasizing asymptotical results, we focus on the short run fore-
casting performance of the different algorithms before convergence to rational
expectation solution occurs. First, we suggest that the literature should drop
ordinary least squares techniques in favor of the more efficient Bayesian esti-
mation. Second, we cast doubt on the rationality of the behavior implied by
the theory. We argue that agents do not use all available information in these
models. Past prices carry some information about expectations of others and
some algorithms are able to exploit this information. In a very simple case,
this algorithm is simply naive expectations. In more complex one, we augment
the usual learning with an estimation of past expectation errors using Kalman
Filter. Interestingly, we find that some of these algorithms are divergent and
may beat convergent ones in the short run. For a large set of parameters, their
dominance is too short to be significant. However, when the sensitivity of the
actual price to the expected one is close to one, divergent algorithms should be
considered.

JEL Classification: D83,D84

Keyword: Adaptive learning, cobweb model, naive expectations, Kalman
Filter



Introduction

Rational expectations is the dominant way of thinking about how agents fore-
cast the future in macroeconomic models. Since the Muth’s seminal paper, the
central idea of rational expectations is that the economic agents of the model
and the theorist who builds the model have the same level of knowledge about
the model and make similar forecasts if their information set is also similar.
Since its adoption by most of macroeconomics, This hypothesis has attracted a
lot of controversies. The biggest issue is it implies thet agents have an enormous
level of knowledge. They know the structure of the model, the behavioral pa-
rameters, the laws followed by random variables. It seems very unrealistic. the
learning literature have been developed to adress these issues. They relax the
assumption of parameters knowledge. Instead of behaving like theorist, agents
are "econometricians" and guess parameters values using ordinary least squares,
maximum likelihood, or bayesian estimation of the reduced form of the Rational
Expectation solution.

However, the learning literature have failed to develop a credible alternative to
rational expectations. Conversely, Its main finding has become a frequent jus-
tification of rational expectations. Indeed, Bray and Savin (1986) have shown
that recursive ordinary least squares algorithm usually converges to true RE
parameters in a cobweb economic model if the actual price is not too sensitive
to the expected price. This result is robust to other model’s specifications and
other econometric techniques.

Although the results of the learning theory are quite powerful, there are reasons
to be unconfortable with some trends of the literarure.

First, The literature focus mostly on asymptotical result. But the asymptoti-
cal forecasting performance is not really relevant for an economic agent which
wants to make decisions in the short run. The adoption of a forecasting method
should be the outcome of "rational" individual choices and a common algorithm
for all agents suppose some form of Nash Equilibria. Suppose that we are in
an economy dominated by some algorithms, if this algorithm is dominated by
another one, it should not be considered. We think that the literature have
not explored the performance of the different algorithms enough. For example,
it relies mostly on recursive least squares techniques. But this type of algo-
rithm performs poorly when only few datas are available which is the case at
the beginning of the process. In some cases, it is outperformed by simple naive
forecasting for a long period of time. By contrast, bayesian estimation algo-
rithm performance is much better. We recommand that future works switch to
bayesian methods.

More importantly, the exploration of the short run performance of learning leads
us to question its rationality. Indeed, in the literature, agents learn the ratio-
nal expectation or fundamental solution.We label this theory the "fundamental
learning" But, the true data generating process is affected by expectations er-
rors and thus by the learning process itself. Learning only the fundamental
solution is a misspecification. This is aknowledge by the literature but the an-
swers was not really satisfactory. The main argument is that reflects some form
of bounded rationality justified by the difficulty to detect the misspecification
(Bary and Savin 1986, Evans and Honkapoja 2001). Our issue is that algo-
rithms or similar complexity or even simpler may take this misspecification into
account and outperforms those considered by the literature. When expectations



are formed using learning algorithm, they are slowly updated with recent values
of forecasts errors. Current and past expectations are correlated. But, past
prices incorporates some information about past expectations. If an agent is
able to extract this information, he may guess current forecasts and in principle
may beat fundamental learning.

In a nonstochastic, simple framework, an obvious way to extract such infor-
mation is to use past price as the best forecast for the new one. It is naive
expectations. We show that they beat bayesian estimation in many cases.

In a more complex framework with exogenous observables and noise, informa-
tion extraction is much more challenging. We show that an improved algorithm
using a Kalman filter may outperform fundamental learning especially in the
case of strategic complementarity. An interesting aspect is that Some variants
of this algorithm are divergent but outperforms the convergent one in the short
run.

The first section presents framework, a cobweb model derived from Evans and
Honkapoja (2001). The second compares the performance of recursive least
squares and recursive bayesian estimation. the third examine the reasonability
of the fundamental learning in various environments.

1 Cobweb Model

1.1 The learning framework

The classical example of the expectation literature is the cobweb model, intro-
duced by Ezekiel (1938). In order to get tractable results and to compare them
easily with the previous literature, we also adopt this framework. Our notations
follows closely the first chapter of the Evans and Honkapoja (2001) textbook.

1.1.1 The cobweb model

We study a partial equilibrium problem where production should be decided in
advance. Unlike walrasian markets, supply reacts with expected prices and not
with actual prices. Demand equation is usual giving system of equations of the

type

Qf =My + MWt — MpPt + V1t (la)
QF = ppy (1b)

p¢ is the actual price, p§ is the expected one.
wy 18 a vector of exogenous variables affecting demand. We assume that w;
follows an AR(1) process defined by

Wy = pWr_1 + €¢ (2)

¢¢ follows a white noise of standard deviation o, vy is a random component of
demand. It is not observed by producers. The former is observable by suppliers
before they decide their production whereas the latter is not. Without loss of
generality, the supply function depends only from expected prices.

Market clearing leads to the following reduced form for the equilibrium price.

D = p+ dw + apf + ne (3)



with a = —%, 0= Tn—:, W= :’nl—,’ and gy = %.7lt follows a white noise process
of standard deviation o,

The equation establishes a clear link between equilibrium price and price ex-
pectations. The determination of the former requires to make an assumption
about how agents forecast. Muth (1956) have proposed the now standard ra-
tional expectation assumption pf = E;p; where E is the "true" expected value
of the price.

pltF is the rational expectation solution of the model. It is straightforward to

compute it.

RE H d
N 4
yzn 1—a+1—awt (4)

The rational expectation solution of the model takes the form p¥ = ¢*z; where

. TL . 1
¢* is the vector ( s ) and z; is the vector (w, )
1—a g

1.1.2 The learning algorithm

We can see in equation (3) that rational expectations requires to know the vec-
tor of parameters. Otherwise, computing the expected value of the equilibrium
price is impossible. Obviously, it is a very strong assumption. Agents are not
naturally endowed with the knwoledge of these parameters. It seems a decisive
flow in the REH. The learning theory adress this problem. The dominant ap-
proach have been to relax the assumption of parameter knowledge but instead
to assume that agents learn the parmaeter values of the Rational Expectation
solution using econometric techniques. Agents do not behave like theorists but
like econometricians.

More precisely, at period t, using datas from the beginning of the learning pro-
cess to period t — 1, Agents estimate a model of the form

pr = a+ bwy (5)
The estimator is denoted py and is written
pi = a + brwy (6)

Agents learn the reduced form of the rational expectation solution.

The model is reestimated at each period ¢ using the new data provided by the
price and observables of the last period. Thus, the learning process take the
form of a recursive algorithm.

There are several proposal for the econometric techniques and the recursive
algorithm. They have similar asymptotic properties but may widely differ at
the early stage of the recursive process. The dominant approach in the literature
have been the ordinary least squares estimation and the recursive least squares
algorithm. Let’s denote R the variance covariance matrix of parameter estimates
and ¢, the estimation of the parameter vector at period t. The algorithm is given
by the two recursive equations

1 ,
Ry = Rt_l + ?(Zf,zt — Rt) (73)

1 ,
Gir1 = G + Rt+1?zt (pt - Z#bt) (7b)



We do not follow that path. Instead, we prefer bayesian estimation. Although
both converges to the RE solution, bayesian estimation peforms better with few
datas. In other word, the expectatioonal errors generated by the bayesian esti-
mation is inferior to those created by ordinary least squares for a significant aprt
of the algorithm. We want precisely to compare the forecasting performance of
the different algorithm, especially at the initial stages of the process, so using
the more performant algorithm seems logical.

The recursive algorithm for bayesian estimation follows Bullard and Suda (2009).

R;rll = Rt_1 + 1/_2ztz,/E (8a)
bri1 = ¢t + Rep1v 2z (Pt - Z;dﬁt) (8b)

v is the standard deviation of the random component 1. An issue is that, in
principle, bayesian estimation cannot be implemented without knwoing v and
there are no reasons that agents know this parameter. However, the results
are not strongly affected if agents take a wrong value for v. Thus, we prefer
interpret it like a gain paramater. The gain is optimal if it corresponds to the
true value of the standard deviation, but falls reasonably for other values.
Once you have computed the parameter estimates at date ¢, you have the per-
ceived law of motion (PLM thereafter) which is the equation (5). Combining
this perceived law of motion with the equilibrium price equation (2), you get
the actual law of motion

Py = p+ aap + 6 + abyw + 0y (9)

1.1.3 Convergence

Bray and Savin (1986) have shown that the recursive least squares algorithm
converges to Rational Expectations in a simplified version of the model. this re-
sult has been extended by Marcet and Sargent(1989) and Evans and Honkapoja
(2001) in more complex environments. Bullard and Suda (2009) provides a
similar proof for bayesian estimation algorithm. Modern proofs (Evans and
Honkapoja 1989,1992) are based on the stochastic differential equations theory.
Indeed, recursive algorithm may be approximated by differential equations. The
convergence of the differential equations imply the convergence of the algorithm
under some conditions.

The differential equations considered is

o _

L oT) -0 (10)

The application 7" maps the parameter estimates with the "true" value of pa-

rameters
ar \ _ [ pt+oaar
T<b7>_<5+ab7 ) (11)
Recursive algorithm defines for example by the systems (6) or (7) converge to
the true Rational Expectation solution if the differential equation (9) is asymp-
totically stable. In our model it is the case if a < 1.

The intuition of this result is relatively straightforward. Suppose that expec-
tations have no impact on equilibirum outcomes. Agents learn the true model



and the econometric theory tells us that they will converge to true parameter
values. Back to our case, expectations affects equilibrium outcomes, so residuals
are no longer normally distributed around true values. This is not an issue if
the forecast errors remains with the same sign. If & > 1 the expected price is
between the rational expectation price and the equilibrium price, so the forecast
error push expectations far from the rational expectation price.

2 Bayesian Estimation vs Recursive Least Squares

Most of the literature have considered the algorithm (6) or some variants of
this algorithm. This choice was logical. Ordinary least squares is the simplest
econometric technique and remains one of the more popular among macroecono-
metricians when the learning literature began. The posterior literature have not
modified this dominance. The literature focus mainly on asymptotical result,
and the unavoidable conclusion was that all the algorithms converges to Ratio-
nal Expectations for a similar set of parameters, so there was no need to switch
to other algorithms.

Although all the algortithm converges under the same criteria, their behavior
before convergence differs. in particular, Recursive OLS implies huge initial
errors if we initialize the process with a minimal dataset. Indeed, compare the
system (6) and (7). There are two differences. First the gain parameter is 1 for
OLS and v~2 for bayesian estimation. The first is decreasing whereas the other
is constant. ! But the main difference is the updating of the variance covari-
ance matrix. In the OLS learning, priors on standard deviation of exogenous
variables play no role whereas they do in bayesian estimation. Indeed, suppose
that ¢ = 1. In the OLS algorithm

,
Ry =212,
R, disappear. In bayesian estimation
—1 -1 - ’
Ri'=Ry'+v%nzy

A Ry term remains. Parameters are treated like random variables and Rg is
a prior on their standard deviation. The matrix is less sensitive to the first
data point because it incorporates prior information. With one data point, the
estimation is much more reliable with bayesian method. To iluustrate that, we
compare in figure 1 the forecasts performance of OLS and Bayesian estimation in
an economy where the majority of agents use OLS ( more precisely a negligible
measure of agents use bayesian methods). The calibration is similar to the first
chapter of Evans and Honkapoja (2001). The two algorithm are initialized with
the same prior values. After two data points, the error of the bayesian algorithm
is three times inferior to those of the OLS algorithm. The latter is equivalent to
sixty percent of the average rational expectation price. The bayesian algorithm
outperforms OLS for fifty periods. Next, the OLS algorithm holds a slight
advantage but both are near the true solution.

A related problem of ordinary least squares is that you need as much data point
as exogenous variables to initialize the process. For example, if you have ten

1A rich literature have studied the OLS algorithm with a constant gain parameter. Unlike
Bayesian estimation, they generally do not converge



exogenous variables, you need at least ten data points to form an estimation
of parameters. But the ten value of prices depend from expectations which
are not defined! A solution is to use the prior value for parameters for ten
periods and start the process after. When you have less exogenous variables, it
can also be useful to reduce the error at the beginning of the algorithm. The
problem is that these datas are contaminated by inaccurate expectations and
slowdown convergence reducing the overall performance of the algorithm. Let’s
compare it with naive forecasting in figure 2. Naive expectations dominates
statistical learning for 40 periods! By contrast look at figuer five which compares
naive expectations and bayesian estimation in a similar economy but where teh
majority of agents use bayesian estimation. Naive expectations dominates for
only four or five periods. The incentive to deviate from the fundamental learning
is much less important.

3 Learning fundamentals or learning expectations?

3.1 Intuition

We can rewrite the reduced form market clearing condition on our market.

D= PFE + a(pf—PFE) + (12)

Fundamental part — Expectationnal errors  Noise

The equilibrium price have three components. A fundamental part correspond-
ing to the rational expectation price, expectationnal errors and the random
noise. The problem is the feedback effect of expectationnal errors on the equi-
librium prices. This feedback effect is important to understand. In our cobweb
model, an overestimation of the equilibrium price leads suppliers to increase
their production above its optimal level lowering the equilibrium price if the
demand function is standard. A similar mechanism occurs in most macroeco-
nomic models. Take the Ramsey optimal growth model. Suppose that agents
overestimate the path of future wages. They overestimate their wealth leading
to higher consumption and lower capital accumulation and lower future wages.
In a new keynesian model, strategic complementarity may appear. Forecasts of
low future output gap leads to low present consumption and investment and so
high current output gap.

The learning strategy emphasized by the learning literature is to learn the fun-
damental part of the price. But, they estimate a misspecified model. they omit
expectationnal errors. The learning literature aknwoledges this misspecification
but gives a different interpretation. The dominant interpretation is that agents
treats parameters as if they were constant whereas they are actually time vary-
ing. It has lead a fraction of the literature to develop a "rational learning"
theory treating parameters as time varying following some random law. It is
the path of Bullard (1992) and Mcgough (2003) for example. We think that
this strategy is wrong. First, It is true that if everyone use this type of learning
strategy, parameters are time varying. Recall that in the Actual Law of motion,
on+ aay
5 + abt
They have two components a fundamental one and a expectationnal one, the
latter corresponding to the belief about the fundamental parameters and the

the parameter vector is T'(¢;) = < > But they are not really random.



impact of these beliefs on the equilibrium price. Second, parameters are time
varying only if everyone use fundamental learning. If they follow other forecast-
ing schemes, for example if they believe irrationnaly in sunspots, parameters
are no longer time varying because only the fundamental part remains. Even if
it is more convenient for the theorician to assume that everyone uses statistical
learning, an indiviudal agent which wants to make accurate forecasts should
adopt more agnostic assumptions

We prefer adopting a very different strategy concerning this misspecification.
The optimal strategy should not be to treat parameters as time varying but
to learn both the fundamental part and the expectationnal part. The problem
is that the expectationnal errors are in principle not observable. But, suppose
that other agents use a recursive learning algorithm. The estimation of the new
price will depend from past expectaionnal errors. Thus, there is a correlation
between past and current expectation errors.Consider the square expected dif-
ferences (without the contemporaneous noise term 7;) between a fundamental
forecasts using ecoometric learning and the actual price. Using the definition
of expected price, equation (12), and the formula for bayesian learning, we can
show the relation between current and past forecasts errors.

[(pf — pIF) + (p1F — po)]?

(210 — 26™) — a (pf — PFF))?
tzi(6r — ¢) (1 — )]
[
[

— =

$e— ¢ )1 —a) + (1 —a)z_ (¢ — &)

N
o~
N
o~
|
—_
~
—

We see clearly that past forecasts error terms are included in present one. If the
gain and innovations in observables are not too important, the correlation is im-
portant and should be exploited by a rational agent. Past prices are affected by
past expectations errors. Thus, they carry some information on them. If agents
succed to extract this information, they may outperform "rational" learners.
Thus, it is not obvious that the fundamental learning is the best strategy at the
individual level when other agents use this type of learning. If it is not, there
are some incentives to deviate from that strategy and it is not reasonable to
expect that agents use it. In other words, we try to determine if the fundamen-
tal learning is some sort Nash Equilibria. Obviously, in our context, there is
no Nash equilibria in a usual sense because the information is not complet by
definition. However, the forecasting performance of different methods may be
compared. In next sections, we adopt the following strategy. We simulate an
economy where agents form a bayesian estimation of the fundamental solution.
It is the model of the section defined by equations (3), (6) and (8). We get a
certain path for equilibrium prices. Next, we compute price forecasts with other
methods. These forecasts does not affect equilibrium price. they are forecasts of
an individual agent without impact on aggregate variables. We compare their
accuracy with those of the bayesian fundamental forecasts. In that context, p§



always refer to the expected price using bayesian estimation of the RE solution.
The price expectation using alternative strategy is denoted pg.

3.2 A simple nonstochastic framework

We illustrate our argument in a very simple nonstochatsic framework where we
can easily derive analyctical results. Consider the model of the previous section
with a simplified demand function

Qf =mr — myp; (13)

Exogenous variables and random noise disappear. The Rational expectation
solution becomes just a constant t£—. The reduced form of the equilibrium
price can be written in a more direct way

Pt = p+ apy (14a)

o e
pt—l—a+a<pt 1—a> (14b)

The learning consists in guessing the value of the constant. With ordinary least
squares, the estimation is simply the average value of the observed price. The
bayesian estimation algorithm is a little bit more complex but collapse to one
equation. 2

P =11+ (Pe—1 —Pi_1) (15)

v
Ryl + 4t
In this section,we consider naive expectations as the alternative forecasting
strategy py = pt—1.

In the previous section, we express the fundamental current forecasts errors
in function of the past one. Here, the relation is considerably simplified. Indeed,
observables z; are simply equal to 1. A consequence is that the expected price
is simply equal to the parameter estimate pf = ¢,

Y i 2
Eilpe — p)? = Ey|(pr—1 — pf_ (1— +a ) 16
t[pe — py] t[(pe—1 — Pi_1) Rt R o J (16)
The current forecast error is a linear function of the previous one We compare
the square forecasting errors of the bayesian estimation strategy and the alm
naive forecasting strategy. The forecasts errors of naive expectations can be
expressed in avery simple way here

Ei[ps —P?P = [p _pt—1]2 = [a(pf _pg—l)]z (17)

The error of the bayesian estimation of the RE solution is proportionnal to the
differences between p§ and the rational expectation solution. By contrast, the
naive forecasting error depends from the difference between current and past
expected prices. Using the updating rule of the bayesian algorithm.

E _ a2: ; L —pt 2 18
t[pe — D] [aRgler(pt 1 Pi-1)] (18)

2the model is no more stochastic so using bayesian algorithm is a bit weird but similar
results can be obtained with recursive least squares for example



So, forecasts errors of both method can be expressed with respect to past fore-
casts errors of the fundamental learning. The two following graph illustrate the
intuition for the case of strategic complementarity and strategic substituability.
We represent demand and supply curve. The demand function is traidtionnal
in the first figure whereas it is increasing in the second one. Forecasts errors
may be represented graphically and correspond to braces. In both cases, the
previous price is much nearer to actual price than p§ and it depends from the
difference between current expected price and past one. The speed of the learn-
ing determining by the gain parameter is critical for our result. It is also the
reason why we compare to bayesian algorithm because the gain is higher at
early periods. The gain cannot be represented on the graphs. However, the
two previous equations integrates it and may be easily compared. We get two
propositions. This second effect dominates the first. We show that naive strat-
egy always dominates the rational one in the case of strategic complementarity
and dominates asymptotically if instead subsituability is predominant.

Qd,s

Pi—-1Y Dt [

QS

Qd




Proposition 1 If o > 0, Vt E[p: — p?]? < Ei[pt — p§)?
square of forecasts errors of a naive agent are always inferior to the forecast
errors of a rational agent

Proposition 2 If a < 0, There exist a certain period T € N such that forecasts
errors of a naive agent are inferior to those of bayesian agents after T
T such that for t>T Eyp; —p?)? < Ep: — p§)?

Indeed, we prove (see appendix) that the naive strategy beats the rational one
if
Nt kel
> 2y
It is always verified for strategic complementarity o > 0 and verified for big
values of t in case of strategic substituability.
If the estimation of the RE solution is not accurate at the beginning and is cor-
rected only slowly, the error of the Rational strategy will be important whereas
the error of the naive strategy will be low. Only, fast learning algorithm may
outperform the naive strategy in that context. In case of strategic substitua-
bility a < 0, prices expectations have a negative impact on equilibrium prices,
magnifying expectationnal errors, but because expectationnal errors are impor-
tant, the learning algorithm is faster. Thus, the parameter o have an ambiguous
effect on our result, affecting negatively the accuracy of contemporaneous fore-
casts but positively the learning gain. Our simualtions and theoretical results
clearly shows that the latter dominates the former.

Figure (3) and (4) displays some simulation results which supports our ana-
Iytical findings. The first is performed under strategic complementarity assump-
tion. The dominance of the blue line (naive forecasts) is obvious. The second
figure displays results for strategic substituability. Only a very limited set of
periods is represented, both forecasts errors are negligible after. The dominance
of the blue line intervenes after the second period.

(19)

3.3 Extensions to the stochastic case

This result is interesting but it does not hold in a more sophisticated framework.
Consider expectationnal errors of naive forecasting in the complete model

Ey_1pt —pi—1 = o (pf — pi_1) + (b + 6)(wy — wi1) + me—1 (20)
—

Innovations in observables  Past noise

We can see two new error terms. The first correspond to innovations in ex-
ogenous variables. Past prices are affected only by past values of w and do
not include any information about current innovations. The second term is the
random noise of the previous period. Because these residual is iid, it does not
affect current prices. Thus, past prices incorporates an irrelevant information.
Not only these two inefficiencies affects the contemporaneous forecasting perfor-
mance but they alter the asymptotic properties. The two error terms remains
once the expectationnal error of the bayesian estimation is zero. Thus, if naive
forecasting may continue to beat bayesian estimation, its dominance is a very
short one.

10



Simulations suggest that it depends mainly from four parameters: the level
strategic complementarity /substituability «, the persistence of innovations in
observablesp, the standard deviation of the random noise and from the spread
between priors and true values, especially for the constant term. A low persis-
tence in observable innovations and a high standard deviation for them means
that the contemporaneous information missed by naive expectations is huge. Us-
ing this information even with inaccurate parameter estimates is better. With
high persistence and strategic substituability, the convergence of the learning
process is too fast leading to an unambiguous dominance of bayesian estimation.
The case of strategic complementarity is more contrasted. Figure 6 displays
forecasts errors of naive expectations and of bayesian estimation in an economy
where the latter is dominant. We consider the case of strategic complementarity
with o = 0.5. We calibrate t£= = 4, t£= = 2 . The prior are ag = 1 for the
constant term and by = 1. The persistence parameter is p = 0.9 and o, = 0.2.
Standard deviation of the noise process is o, = 0.5. Naive expectations are
more accurate for five periods but bayesian estimation is dominant for the rest
of the simulation. It seems unlikely that this short period constitutes a suffi-
cent incentive to deviate from fundamental learning. However, if we consider
a lower volatility of noise like in figure 5, with o, = 0.1, and a lower volatility
for the innovations of observables, we can restore a good performace of naive
forecasting. This result is quite logical as we tend to the case where both are
equal to zero which is the case considered in the previous section. At this stage,
there are several strategies. The first is to look at macroeconomic models and
at what case they are likely to correspond. This is the section 5. The second is
to correct naive forecasting to alleviate the bias introduced by past noise and
innovations in observables. Our solution is to augment the bayesian estimation
of the fundamental solution with an estimation of expectationnal errors.

Exogenous variables First, we study the problem when there is only exoge-
nous observables but no random component. The solution is straightforward.
You can always rewrite the equilibrium price condition like

pe =PI + a (pf — piiF)

RE _ _ I
Pt l-a 1—-«

Wt

The price is the sum of a fundamental component and a expectationnal error.
Naive forecasting incorporates information about the second but fails to exploit
all available information about the fundamental component. Next, the agent
may implement the following algorithm. In a first step, he makes a bayesian
recursive estimation of the vector of parameters of the rational expectations
solution. He compares its forecast of the past fundamental price with the actual
price of the previous period. The residual should be the expectationnal errors.
For the next period, its foecast for the price will be composed of two parts.
The first is expectationnal errors of the previous period. The second is the
estimation of the fundamental price. The expected price will be the following
one

pf = pe-1+ (2 — 2_1)¢n (21)

Conjecture 1 If a > 0, the square errors of the augmented algorithm is infe-
rior to the square error of the fundamental learning.

11



Vt Ey(pf — pi)? < Ey(pf — pi)?

Conjecture 2 If o < 0, the square errors of the augmented algorithm and
square errors of the fundamental learning are similar.

a 2
VLB (D] — pi)? ~ Ey(pf — pi)? = by ~ 1
The figure 7 illustrates the first conjecture. The calibration is similar to previous
one with a relatively low prior error about the constant term (around 20 percent)
and by definition a zero standard deviation for random noise. Optimal forecasts
clearly dominates fundamental ones.
It is interesting to note that this case is quite relevant for macroeconomics.
Indeed, modern macroeconomic models, especially DSGE models like Smets
and Wouters (2007) assume that every shock is perfectly observable by economic
agents, so there is no noisy term.

Noise We consider the second problem of random component. The true model
is

pt:%+a<p§—ﬁ>+m (22)
The problem is more complex than the previous one. Indeed, the residual of
the bayesian estimation of the fundamental price has two components, expec-
tationnal errors and random noise. Both are unobserved. If you equalize ex-
pectationnal errors with the whole residual, you get the previous and irrelevant
error term in your forecast of the new price. An alternative is to use Kalman
filter to distinguish the two terms. The model can be written in a space state
representation

pt:—ll_la‘i‘ft-f—??t (23a)

fe=fia (23b)

The challenge compare to the traditionnal Kalman Filter problem is that the
measurement equation is unknown. So, we should perform simultaneously the
bayesian estimation of the fundamental solution and the bayesian inference of
the expecationnal error part. We propose the following algorithm

e Step 1: Using your forecast f;_i;—1, you get an estimation of the "true"
residual and you update your forecast for ¢;.

Ry =R +v %0z (24a)
0r =011+ R 224 (pt—l = fr—1jt-1— Z;—19t—1) (24b)

e Step 2 : Using your new estimation of ¢; you reestimate your total resid-
ual. Using kalman filter, you make a guess for f;_;;. You get f;; using a
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random walk hypothesis fi; = f;_1)s

ftjt—1 = fe—1jt—1 (25a)
Qije—1 = Qe1jt—1 (25b)
Yt = pr—1 — 0 — frje—1 (25¢)
Sp= Qs + 12 (25d)
Kp= Q15" (25e)
Ttje = frjp—1 + Koy (25f)
Qt\t =~ Kt)Qt|t—1 (25g)

e Step 3 Your forecast for the price in ¢ is the sum of the estimation of the
random component and the estimation of the expectationnal errors

py = 2,0 + fepe (26)

It is harder to form a conjecture about the respective performance of this al-
gorithm and fundamental learning. Simulations suggests that fundamental and
optimal learning provides very similar forecasts in case of strategic substitua-
bility. There is no strong incentive to deviate from fundamental learning. In
case of strategic complementarity, results are more ambiguous. For low prior
errors on paramters and low level of «, fundamental forecasts are more accurate.
Otherwise, the algorithm augmented with Kalman filter dominates. Figure 8
and 9 compares forecasts errors for high and low prior errors and shows clearly
this last result.

3.4 A random walk problem?

An interesting case occurs when the level of strategic complementarity is close to
one. For example, we calibrate o = 0.9. This value may seem extreme but could
be relevant in asset pricing literature. Model are not similar because asset price
model links p; and pf,;. But, similar issues appears in both. In asset prices
literature, the o parameter corresponds to the interest rate and may be close to
one.
We consider not only the algorithm above but variants using random walk. The
model estimated becomes

L (272)

11—«

ft=fi-1+wt (27b)

Where w; is simply white noise. The main difference is the equation Q.;_; =
Q4 _1)4—1 becomes Q1 = Q141 + var(w;) Both algorithms dominates fun-
damental learning at early stage. Random walk algorithm are not convergent.
But, figure 10 shows a clear domination of divergent algorithms in the short run
over our converging algorithm of the previous section.

Conclusion (provisionnal)

In this paper, our contribution is twofold. First, we try to compare learning
algorithms on the ground of their contemporaneous forecasting performance
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and not of their asymptotical properties. We conclude that bayesian methods
are largely superior to ordinary least squares. Second, we argue that agents
should learn the fundamental solution but also expectationnal errors if past and
present forecasts errors are correlated which is the case if agents learn. In that
respect, the literature is incomplete. We show how we can learn expectationnal
errors in various environments, the caveats mainly the identification between
expectationnal errors and noise, and the possible solutions including the use of
Kalman filter.

The next step is the application to general equilibrium macroeconomic models.
the asset pricing literature could be especially relevant.
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Appendix

Proof of Proposition 1 and 2

We write the expectationnal error in case of naive forecasting

Pt — Pi—1 = opf —pi_q)

Pt —Pt—1 = (pt—l —P?—l)

~
(& s e—
Ry 4+t

Now, we can write the expectationnal error in case of bayesian estimation of the
RE solution

Pt — D =Pt — Di_q — (Pt—1 —P_1)

_r
Ry 4t
-7
Ry At
gl gl
- +
Ry'4+~t Ry + 'yt]

Pt — Py =Dt — Pi—1 + (Pe—1 — pi_1)[L

pe— P = (Pe-1 — p{_1)[1
We study conditions under which

(e —P?)2 > (pe _pt—1)2

Y Y 2 Y 2
1— +a S oY —
| Ry' 4t Rgl—i-'yt] [R51+7t]

Y 2 Y
l——" 124 2f1l—-—"L—]>0
[ R0‘1+~yt] | RO_1+'yt]

— _1_

a>1"0 77 Ry =7t

2y

For t > 0, the right hand side of the equation is always neagtive. So, the
inequality is always verified if & > 0. Moreover, the right hand side of the
equation is decreasing with respect to t. As « is constant even if it is negative
there is a certain value T of ¢ such that the inequality is verified.
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Figures

Figure 1: Bayes vs OLS
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Figure 2: OLS and naive expectations
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Figure 3: Simple case with strategic complementarity

Naive Expectations and
Fundamental Learning
T T T T T T T

oo Naive Exprciatons
~ yesian Estimation

Forecasts errors

17



Figure 4: Simple case with strategic substituability
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Figure 6: complete case with low volatility: naive vs fundamental forecasts
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Figure 8: complete case: optimal vs fundamental forecasts
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Figure 9: complete case with low prior errors: optimal vs fundamental forecasts
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Figure 10: Random Walk performance
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