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Abstract

In this paper we study various MIDAS models in which the future daily variance is directly related to past

observations of intraday predictors. Our goal is to determine if there exists an optimal sampling frequency in

terms of volatility prediction. Via Monte Carlo simulations we show that in a world without microstructure

noise, the best model is the one using the highest available frequency for the predictors. However, in the

presence of microstructure noise, the use of ultra high-frequency predictors may be problematic, leading to

poor volatility forecasts. In the application, we consider two highly liquid assets (i.e., Microsoft and S&P

500). We show that, when using raw intraday squared log-returns for the explanatory variable, there is a

“high-frequency wall” or frequency limit above which MIDAS-RV forecasts deteriorate. We also show that

an improvement can be obtained when using intraday squared log-returns sampled at a higher frequency,

provided they are pre-filtered to account for the presence of jumps, intraday periodicity and/or microstructure

noise. Finally, we compare the MIDAS model to other competing variance models including GARCH, GAS,

HAR-RV and HAR-RV-J models. We find that the MIDAS model provides equivalent or even better variance

forecasts than these models, when it is applied on filtered data.

JEL classification: C22; C53; G12

Keywords: Variance Forecasting; MIDAS; High-Frequency Data

∗The authors thank Eric Ghysels and the participants at the Ph.D. course on MIDAS models jointly organized by CESAM, the
National Bank of Belgium (NBB) and the Center for Operations Research and Econometrics (CORE) in June 2013. We also thank
Gilbert Colletaz and Christophe Boucher for helpful comments on the paper, as well as the participants at the 61st Congress of
the French Economic Association in Paris, 2012, at the 6th International Workshop on Methods in International Finance Network
in Sydney, 2012, at the 6th International Conference on Computational and Financial Econometrics in Oviedo, 2012, at the 21st

Symposium of the Society for Nonlinear Dynamics and Econometrics in Milan, 2013, at the 3rd Spring International Conference of
the French Finance Association in Lyon, 2013. The usual disclaimers apply.

†European University Institute, Maastricht University and University of Orléans (LEO, UMRS CNRS 7332). Email:
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1 Introduction

The mixed data sampling (henceforth MIDAS) regression model, introduced in Ghysels et al. (2004), allows

to forecast a measure of the daily variance (e.g., realized variance) by considering past intraday log-returns.

In their seminal paper, Ghysels et al. (2006) consider various MIDAS regressions with different daily (squared

returns, absolute returns, realized variance, realized power and return range) and intradaily regressors (squared

returns, absolute returns), to examine whether one specification dominates the others. The goal of our study

is different and consists in determining, for a given intradaily predictor, whether a sampling frequency (or a

range of frequencies) dominates the others.1 The objective is then to identify the best sampling frequency, using

out-of-sample forecast evaluation criteria.

This issue is not straightforward. On the one hand, not using the readily available high-frequency observations

to perform variance forecasts implies a loss of information through the temporal aggregation. On the other hand,

if the sampling frequency of the predictors is increased too much, the market microstructure noise (bid-ask

bounce, screen fighting, jumps, and irregular or missing data) may lead to less accurate variance forecasts.

This question has to be distinguished from the well-documented discussion about the optimal sampling

frequency of the returns used to compute realized estimators of daily variance (see Hansen and Lunde, 2004;

Aı̈t-Sahalia and Mancini, 2008; Garcia and Meddahi, 2006; Ghysels et al., 2006, among others). Our goal

consists in focusing on the optimal sampling frequency for the purpose of variance prediction, and not for

variance measurement.

Consider a MIDAS variance model whose aim is to predict a measure of variance over some future horizon.

This variance measure is typically a realized measure (realized variance, realized kernel etc.), based on intradaily

returns sampled at a frequency m2. In order to forecast variance, we adopt exactly the same approach as Ghysels

et al. (2006) and consider intradaily predictors (absolute returns, squared returns etc.) sampled at a frequency

m1, where m1 may be different from m2. The discussion concerns only the sampling frequency of the predictors,

m1.

In a related paper, Ghysels and Sinko (2011) study a regression prediction problem with variance measures

that are contaminated by market microstructure noise and examine optimal sampling for the purpose of variance

prediction. They observe that, in general, discussions about the impact of microstructure have mostly focused

on measurement. Ghysels and Sinko (2011) focus instead on prediction in a regression framework, and therefore

they can consider estimators that are suboptimal in the mean squared error (MSE) sense, since their covariation

with the predictor is the object of interest. The authors consider univariate MIDAS regressions for the evaluation

1In this study, we limit our analysis to the MIDAS specifications in which the future variance is directly related to past observations
of intraday predictors, as in Ghysels et al. (2006). An alternative consists in using high-frequency data to compute daily realized
measures (realized variance, two-scale estimator, realized kernel, etc.) which are introduced, in a second step, into a MIDAS
regression model, as in Ghysels et al. (2006) and Ghysels and Sinko (2011). This choice will be discussed in Section 5.
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of the prediction performance and derive the optimal frequency in terms of prediction MSE. Their dependent

variable is defined as the two scales estimator of the weekly variance (Aı̈t-Sahalia et al., 2005), and computed

from the 5-minute, 1-minute or 2-second returns. One of the main differences with our study is that the

authors consider various MIDAS specifications for which the predictors also correspond to realized estimators

(plain vanilla, two scales estimator, Zhou, 1996, etc.), constructed using different sampling frequencies (from

two seconds to ten minutes). Thus, high-frequency data are aggregated into daily realized measures, which are

then used as predictors of future variance. In contrast, our goal is to analyze the direct impact of the intradaily

predictors on the variance forecasts, and ultimately to evaluate the usefulness of the mixing of frequencies in

this context. To this aim, we consider MIDAS models in which we directly project future realized variance onto

high-frequency regressors, as in Ghysels et al. (2006).2

To address these issues, we propose a Monte Carlo simulation study. Considering a noise-free diffusion

process, we generate returns series at different sampling frequencies m1 and daily realized variance measures,

using the same set of continuous-time structural parameters. Then, we apply simple MIDAS specifications in

which daily realized variance is predicted by past intradaily squared log-returns sampled at a frequency m1,

ranging from one minute to three hours. The variance forecasts are compared based on the robust loss function

proposed by Patton (2011) and the model confidence set (MCS) test introduced by Hansen et al. (2011). This

test aims at identifying among the set of competing models (i.e., sampling frequencies), the subset of models

that are equivalent in terms of forecasting ability and their outperformance of all the other models for a given

confidence level. Several results stand out. First, we observe that a higher sampling frequency for the regressors

implies giving more weight to the most recent observations of the regressors. Second, we show that increasing

the frequency of the regressors always improves the forecasting abilities of the MIDAS model. The average loss

increases when the regressors are sampled less frequently, regardless of the choice of the loss function. These

differences are statistically significant and the MCS test always concludes that the MIDAS model with the

highest available sampling frequency significantly stands out in terms of forecasting performances. Nevertheless,

opting for ultra-high frequency regressors is not optimal in the presence of microstructure noise. In this specific

case, we need to use pre-averaged data to improve the MIDAS performances.

The sensitivity of MIDAS variance models to the choice of the sampling frequency m1 is also investigated on

real data, i.e., log-returns of the S&P 500 index and Microsoft over the period of October 29, 2004 to December

31, 2008. The empirical results obtained for these two assets allow us to draw some interesting conclusions.

First, when using raw intraday returns, variance forecasts are not statistically different for sampling frequencies

of the predictors (m1) ranging from five minutes to one hour. Besides, it turns out that ultra-high-frequency

2Surprisingly, Ghysels et al. (2006) found that the forecasts directly using high-frequency data do not outperform those based
on daily regressors (although the daily regressors are themselves obtained through the aggregation of high-frequency data). One
related question is to understand whether this result depends on the sampling frequency of the high-frequency data.
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regressors (i.e., m1 < 5min) do not necessarily provide useful information to improve the variance forecasts

because the loss function increases. The shape of the loss function indicates the presence of a “high-frequency

wall”, i.e., a limit frequency beyond which the quality of the forecasts deteriorates. This result is due to the

presence of microstructure noise, jumps and intraday periodicity in the regressors. When the MIDAS regression

model is applied to filtered data (Lee and Mykland, 2008; Boudt et al., 2011; Lahaye et al., 2011), the conclusion

in favor of the use of the highest available frequency remains valid. This point is crucial and indicates that the

mixing frequency may require the use of filtered series. Indeed, the weighting scheme in MIDAS models does not

allow, by itself, to underweight the observations affected by jumps or other market microstructure noise. These

results are robust to the choice of variance measure (realized variance, realized kernel), forecasting horizon and

sample period (calm/crisis).

Finally, we compare the performance of the MIDAS model (applied to filtered or unfiltered regressors) to

other competing variance models, namely the GARCH(1,1), the Student Generalized Autoregressive Score (GAS)

model (Creal et al., 2013), the Heterogeneous Autoregressive Realized Volatility-based (HAR-RV) model (Corsi,

2009) and the HAR-RV adjusted for jumps (Andersen et al., 2007). We show that MIDAS models are providing

comparable or even better variance forecasts when filtered high-frequency data are used.

The chapter is structured as follows. Section 2 introduces the notations, the MIDAS model and the sampling

frequency puzzle. Section 3 proposes a Monte Carlo simulation. In Section 4, we perform an empirical analysis

and study the influence of the jumps and the intraday periodicity on the MIDAS performances. We also compare

MIDAS to other competing variance models. Section 5 concludes.

2 Modeling Strategies

2.1 Notation

To set the notation, let pt denote the price for a financial asset sampled at daily frequency, and the corresponding

daily return be defined by rt,t−1 ≡ log(pt) − log(pt−1). The equally spaced series of continuously compounded

returns is assumed to be observed m times per day (or to have an horizon of 1/m), and be computed as

r
(m)
t,t−1/m ≡ log(pt)− log(pt−1/m), where t = 1/m, 2/m, ... Throughout the analysis, we consider that the trading

day spans the time period from 9:30 am to 16:00 pm, covering for instance m = 390 1-minute equally spaced

intervals and m = 78 5-minute equally spaced intervals. rt,t−1/78 corresponds to the last 5-minute return of the

day t− 1, rt−1/78,t−2/78 corresponds to the return of the penultimate 5-minute period of day t− 1, and so on.
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2.2 MIDAS variance Models and Sampling Frequency

MIDAS models for variance predictions have been introduced in a number of recent studies, including Ghysels

et al. (2005, 2006), Ghysels and Sinko (2011), Ghysels and Valkanov (2012), Chen and Ghysels (2011), among

others.

The general specification of the MIDAS variance model is given by:

σ2
t+H,t = µH,m1

+ φH,m1
ΩH,m1

(L1/m1)X
(m1)
t,t−1/m1

+ εt, (1)

where σ2
t+H,t is a measure of variance evaluated over some future horizon H, and X

(m1)
t,t−1/m1

denotes an intradaily

regressor sampled at frequency m1. The distributed lag polynomial is defined as:

ΩH,m1
(L1/m1) =

kmax∑

k=0

Lk/m1ωH,m1
(k, θH,m1

) , (2)

where ωH,m1
(k, θH,m1

) corresponds to the lag coefficient associated with X
(m1)
t,t−1/m1

, θH,m1
is a finite set of

parameters, L is the lag operator such that L1/m1X
(m1)
t,t−1/m1

= X
(m1)
t−1/m1,t−2/m1

, and kmax denotes the maximum

number of lagged coefficients. In this specification, the low-frequency variance (for instance, daily variance

if H = 1, weekly variance if H = 5, etc.) is predicted by the right-side intradaily forecasting factors which

are sampled at a high-frequency m1 (for instance, five minutes if m1 = 78). Several intradaily regressors can

be considered with this aim (e.g., intradaily squared returns, intradaily absolute returns, intradaily bipower

variation). Following Ghysels et al. (2006) we consider the intradaily squared returns r
(m1)2
t,t−1/m1

, while the two

other alternatives will be used to appraise the robustness of our results.

Since σ2
t+H,t is unobservable, we rely on a proxy. For simplicity, we adopt the realized variance (Andersen

and Bollerslev, 1998a), defined for the period t to t+H as following:3

RV
(m2)
t+H,t = IH,m2

(L1/m2)r
(m2)2
t+H,t+H−1/m2

, (3)

where the distributed lag polynomial in L1/m2 is defined such that IH,m2
(L1/m2) =

∑Hm2

j=0 Lj/m2 , and m2

accounts for the sampling frequency of the squared returns used to compute the realized variance. Notice that

the frequencies m1 and m2 may be different. In fact, the choice of m2 is related to the variance measurement

issue (see Hansen and Lunde, 2004; Aı̈t-Sahalia and Mancini, 2008; Garcia and Meddahi, 2006; Ghysels et al.,

2006, among others), i.e., the consistency of the estimator defined by the realized measure.4 On the contrary, the

3A large number of alternative estimators (e.g., realized bipower variation, realized kernel, etc.), that deal with issues such as
jumps and other market microstructure noise, have been proposed, especially by Barndorff-Nielsen and Shephard (2004a), Barndorff-
Nielsen et al. (2008), Zhang (2006), Hansen and Horel (2009), inter alios. Some of them will be considered in the section devoted
to the robustness analysis of our findings.

4Since this study is not meant to determine the optimal sampling frequency m2, in the rest of the paper, the daily RV will always
be computed by summing up 5-minute squared returns (i.e., m2 = 78), as recommended by Andersen and Bollerslev (1998a).
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choice of the sampling frequency of the predictors, m1, is related to the variance prediction issue. Indeed, this

choice determines the regressors in the MIDAS variance model, and as a consequence, its forecasting abilities.

Under these assumptions, the MIDAS-RV regression becomes:

RV
(m2)
t+H,t = µH,m1

+ φH,m1
ΩH,m1

(L1/m1)r
(m1)2
t,t−1/m1

+ εt. (4)

One advantage of this specification is that it preserves the information contained in high-frequency data (Ghysels

and Valkanov, 2012) without computing daily aggregates such as realized variance for the regressors. In this

context, we aim to determine the influence of the sampling frequency m1 on the forecasting performances of the

MIDAS model. In a related study, Ghysels et al. (2006) compare several MIDAS specifications based on different

intradaily or daily variance regressors (e.g., squared returns, absolute returns, realized volatility, realized power,

and range). The logic is similar here, except that we consider the same intradaily regressor, i.e., X
(m1)
t,t−1/m1

,

for various sampling frequencies. For instance, we compare various MIDAS models where the same predictor is

sampled at one minute (m1 = 390), two minutes (m1 = 195), five minutes (m1 = 78), and so on. The question

is whether increasing the sampling frequency m1 systematically improves the quality of the variance forecasts,

and ultimately if we need ultra-high frequency data in order to forecast daily variances.

3 Monte Carlo Simulation Study

We first propose a Monte Carlo simulation study in order to determine the influence of the sampling frequency

of the regressors on the predictive abilities of MIDAS-RV models. We begin by describing the simulation setup

and then we follow this by discussing the results.

3.1 Monte Carlo Design

Let us assume that instantaneous log-returns, dpt, are generated by the continuous-time martingale

dpt = σtdWp,t, (5)

where Wp,t denotes a standard Wiener process, and σt is given by a separate continuous-time diffusion process.

For σt, we use the diffusion limit of the GARCH(1,1) process introduced by Nelson (1990), i.e.,

dσ2
t = θ(ω − σ2

t )dt+ (2λθ)1/2σ2
t dWσ,t, (6)

where ω > 0, θ > 0, 0 < λ < 1, and the Wiener processes, Wp,t and Wσ,t, are independent. Drost and Werker

(1996) and Drost and Nijman (1993) prove that the exact discretization for stochastic variance processes is in

line with the weak GARCH(1,1) representation meaning that a weak GARCH process can be identified at any
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discrete-time sampling frequency from the parameters of a continuous GARCH and vice versa.5 (ω, θ, λ) is set

to (0.636, 0.035, 0.296) as in Andersen and Bollerslev (1998a) (these parameters have been calibrated by the

authors to fit the daily GARCH estimates for the Deutschemark-U.S. Dollar (DM-$) spot exchange rates).

Given this data generating process (DGP), we draw large series of continuous-time log-returns and compute

log-returns series sampled at different frequencies by applying the temporal aggregation proprieties of flow

variables, i.e., r
(m)
t,t−1/m =

∫ t

t−1/m
dp(τ)dτ . We consider various frequencies m1 ranging from one minute to three

hours, i.e., m1 = {2, 3, 6, 13, 25, 39, 78, 130, 195, 390}. Next, we compute discrete realized variance series

by summing up simulated 5-minute (m2 = 78) squared return series (see Eq. (3)). In so doing, we obtain all

the necessary elements to run MIDAS-RV regressions as defined in Eq. (4).

One notable advantage of this procedure is that it allows to generate intradaily log-returns series at different

sampling frequencies, m1, and daily RVs, using the same data generating process and the same set of continuous

time structural parameters. In addition, this process is calibrated to reproduce the main features of typical real

financial series. The Monte Carlo simulation exercise is based on 10,000 replications and the daily/intradaily

series are simulated for a period of 1,000 days. The parameters of all the competing MIDAS-RV models are

estimated by Nonlinear Least Squares (NLS).6 In order to allow for a fair comparison between models, the

maximum lag order kmax is fixed, such that the past information used to predict volatility covers a period of 30

days, whatever the sampling frequency of the regressor. For example, if m1 = 78, the corresponding lag order

kmax is equal to 2, 340 (30× 78), if m1 = 3, kmax is equal to 90 (30× 3), and so on. A daily forecasting horizon

(H = 1) is used in all simulations.

3.2 Weight Function and Sampling Frequency

One of the key features of MIDAS models is that it provides a parsimonious specification. This property is

particularly important in our context, as the inclusion of high-frequency data might imply a significant increase

in the number of lagged forecasting variables and hence the number of unrestricted parameters to be estimated

(Ghysels and Valkanov, 2012). For instance, running unrestricted regressions based on the intraday information

over the last 30 days implies estimating 30 × 390 parameters for a 1-minute regressor, 30 × 78 parameters for

a 5-minute regressor, and so on. Nevertheless, the MIDAS model projects directly future variance onto an

important number of high-frequency lagged regressors while considering a small number of parameters. The

trick consists in using a suitable parametrization for the weights ωH,m1
(k, θH,m1

) to circumvent the problem

of parameter proliferation. Therefore, as noted by Ghysels et al. (2006), the parametrization ωH,m1
(k, θH,m1

)

becomes one of the most important ingredients in a MIDAS regression.

5Meddahi and Renault (1998) show that the strong GARCH setting does not have a closed form with respect to temporal and
contemporaneous aggregations.

6For more details about the estimation procedure, see Ghysels et al. (2004).
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Two specifications of the weight function are generally considered, namely the exponential Almon lag and

the Beta lag (Ghysels et al., 2007). These specifications have several interesting features: i) the distributed

lag polynomial is tightly parameterized and prevents the proliferation of parameters as well as additional pre-

testing or lag-selection procedures;7 ii) the coefficients are positive, which guarantees non-negative weights

and consequently non-negative variance forecasts; iii) the data-driven weights are normalized to add up to

one in order to identify the scale parameter φH,m1
. There is no clear theoretical a priori for assuming that

one specification is better than the other. However, Chen and Tsay (2011) and Frale and Monteforte (2011)

find that the Beta function is more suitable for an important number of time lags, as Almon could be very

computationally demanding in such a context. For this reason, we adopt the Beta lag polynomial

ωH,m1
(k, θH,m1

) =
f(k/kmax, θ1; θ2)∑kmax

j=0 f(j/kmax, θ1; θ2)
, (7)

where θH,m1
= (θ1, θ2)

′
is a vector of positive parameters, f(z, a, b) = za−1(1 − z)b−1/B(a, b), with B(.) the

Beta function defined as B(a, b) = Γ(a)Γ(b)/Γ(a + b), and Γ (.) representing the Gamma function. Depending

on the value of the parameter θ1, this weight function can take many shapes, including flat weights, gradually

declining weights, as well as hump-shaped patterns. The second parameter, θ2, determines the decreasing speed

of the weighting shape. The smaller the parameter θ2, the smoother the weighting scheme. In other words, θ2

determines the proportion of the total weight associated with the more recent past observations.

Table 1: Regression diagnostics and estimated weights of MIDAS models with intradaily regressors

Frequency µ φ θ1 θ2 Day 1 Days 2-5 Days 6-15 > 15 Days %Q(12) %Q2(12) MSE

1min 0.0280 372.3182 1.0702 66.6755 0.8830 0.1170 0 0 53.40 100 0.0231

2min 0.0340 184.2469 1.0500 46.0871 0.7753 0.2244 0.0003 0 52.10 100 0.0252

5min 0.0465 72.1241 1.0132 27.5914 0.6019 0.3914 0.0067 0 45.10 100 0.0295

10min 0.0593 35.2540 1.0003 19.0019 0.4746 0.4940 0.0309 0.0005 100 100 0.0340

15min 0.0688 23.1140 0.9904 15.3557 0.4100 0.5301 0.0580 0.0019 100 100 0.0372

30min 0.0904 11.1019 0.9714 10.5584 0.3126 0.5471 0.1271 0.0132 100 100 0.0443

1h05 0.1239 4.7946 0.9536 7.1060 0.2300 0.5099 0.2076 0.0524 100 100 0.0539

2h10 0.1654 2.1969 0.9298 5.0132 0.1756 0.4477 0.2562 0.1205 100 100 0.0655

3h15 0.1943 1.3731 0.9162 4.0938 0.1491 0.4060 0.2703 0.1745 100 100 0.0732

Note: This table reports average values (over 10,000 replications) of the parameter estimates for the daily MIDAS-RV model (H = 1) with

regressors sampled at one minute, two minutes, five minutes, 10 minutes, 15 minutes, 30 minutes, 1h05, 2h10, 3h15 (Eq. 4). Column “Day

1” reports the sum of the weights associated with the first lagged day of the predictors, column “Days 2-5” present how much weight is given

to the information of the second to the fifth lagged day of the predictors, and so on. The next two columns, namely %Q(12) and %Q2(12),

correspond to the frequencies of rejection of the null hypothesis of no serial correlation at the 5% significance level for the Ljung-Box test

applied on respectively residuals and squared residuals. The last column reports the average Mean Squared Error (MSE).

Table 1 presents the outline of the regression diagnostics for the 10,000 replications considered in the Monte

7The selection of kmax can be done by considering a large value and letting the weights vanish.
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Carlo experiment. The first four columns represent the average values of the parameter estimates for various

MIDAS-RV models, each associated with a particular frequency m1. Results first suggest that the estimates for

the constant term of the model, µH,m1
, and the first parameter of the weight function, θ1, decrease with m1. On

the contrary, the estimates for the scale parameter, φH,m1
, and the second parameter of the weight function, θ2,

increase with the sampling frequency. These changes imply a deformation of the weight function that gives more

weight to the most recent observations. This is confirmed by the next four columns of Table 1. Column “Day

1” reports
∑K

k=0 ωH,m1
(k,

¯̂
θH,m1

) for a value of K corresponding to one day and
¯̂
θH,m1

=
(
¯̂
θ1,

¯̂
θ2

)′

is the vector

containing the average estimates of the parameters θ1 and θ2 over the 10,000 replications. Similarly, Column

“Days 2-5” presents how much weight is given to the information on the second to the fifth lagged day, and so

on. Results confirm that more weight is given to the most recent observations of the variance predictor when

the sampling frequency m1 increases. The proportion of the weights allocated to the observations of the first

lagged day represents 67.36% when the regressors are sampled at one minute, and this proportion decreases

progressively to 9.59% when the regressors are sampled at 3h15.

To illustrate the deformation of the Beta polynomial shape, Figure 1 displays φ̂m1
ωm1

(k, θ̂m1
), i.e., the

product of the weight (determined by the Beta function) and the scale parameter estimate (see Eq. 1), as a

function of the sampling frequency m1. For ease of comparison, the weights are displayed for a only 20 day

window. First, in all of the cases, the weight function is gradually declining and there is no hump-shaped pattern.

Second, the slope of the weight function becomes smaller when the predictors are sampled at a lower frequency.

If the weights vanish after approximately three days in the case of a regressor sampled at one minute, the weights

of the observations associated with the 20th lagged day are still positive for a regressor sampled at three hours.

The sampling frequency of the predictors also has an impact on the quality of the fit of daily realized variances

(i.e., H = 1). Columns %Q and %Q2 in Table 1 report rejection frequencies of the null hypotheses of no serial

correlation in the residuals and squared residuals (respectively) at the 5% significance level using a Ljung-Box

test with 12 lags. Serial correlation and heteroskedasticity are detected in most cases. This is in line with

Ghysels et al. (2006), who also find significant autocorrelation and heteroskedasticity in the residuals of daily

MIDAS-RV regressions.8 However, results suggest that the problem of serial correlation in the residuals is less

pronounced when using ultra-high frequency returns. For instance, when the regressors are sampled at five

minutes, the residuals do not feature autocorrelation in 54.9% of the simulated samples, and this percentage

decreases to 46.6% when the regressors are sampled at one minute. Finally, increasing the sampling frequency

m1 always tends to improve the in-sample goodness of fit, as indicated in the last column of Table 1 where the

average MSE is reported.

8However, Ghysels et al. (2006) find no significant autocorrelation for longer forecasting horizons (from one week to four weeks).
We obtain similar results in our simulations (not reported).
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Figure 1: Scaled weight function
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Note: This figure displays the scaled weights pattern based on average parameter estimates obtained in a Monte Carlo simulation study, for the nine MIDAS models with regressors sampled at a
frequency ranging from one minute to 3h15. The scaled weights are obtained by multiplying the Beta weight function ω̂m1

(k, θ̂m1
) by the scale parameter, φ̂m1

(see Eq. 1). For ease of comparison,
the weights are represented over the first 20 lagged days whatever the sampling frequency of the variance regressor.
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Notice that all the MIDAS-RV models are directly comparable in terms of MSE since they all have the

same number of estimated parameters whatever the frequency m1. When the sampling frequency increases

from 78 (five minutes) to 390 (one minute), the gain in terms of average MSE reaches 27.70%. These gains

are statistically significant. Since we have many competing models (i.e., frequencies m1), we focus on multiple

comparison-based tests and use the Model Confidence Set (MCS) approach introduced by Hansen et al. (2011).

This test allows identifying, among an universe of competing forecasting models, the subset of models that are

equivalent in terms of forecasting ability, and which outperform all the other models at a confidence level α.

Interestingly, we find that the MCS test systematically selects the 1-minute MIDAS-RV specification, regardless

of the loss-function used (KLIC, AIC or BIC).9

3.3 Out-of-Sample Analysis

To check whether the previous results remain valid out-of-sample, we subsequently focus on the influence of

the sampling frequency of the variance predictors, m1, on the predictive abilities of the MIDAS-RV model.

At each replication, we compute a sequence of T = 500 daily realized variance forecasts, {R̂V
(m2)

t+1,t}Tt=1, for

each MIDAS-RV specification. The forecasts sequences are obtained with a rolling window approach and the

parameter estimates are updated every 50 days.

In order to compare these forecasts, we must use a loss function, defined as a general function of the variance

forecasts and the true variance. In our simulation framework, the variance can be measured by the daily

integrated variance, IVt,t−1 =
∫ t

t−1
σ2
(τ)dτ . However, in practice, the integrated variance is not observable and

we have to use a proxy. To reproduce the real conditions of application of the MIDAS-RV models, we also use a

variance proxy to define the loss function, i.e., the realized variance RV
(m2)
t+H,t.

10 However, it is well known that

the use of a proxy may distort the ranking of models based on loss functions. Andersen and Bollerslev (1998a)

and Andersen et al. (2005) show that the comparison of losses, even based on a conditionally unbiased proxy,

may lead to a different outcome than the one obtained if the true latent variable had been used. More recently,

Hansen and Lunde (2006a), Patton and Sheppard (2009), Patton (2011), Laurent et al. (2012) have also insisted

on the possible distortions observed in the ranking of volatility forecasts induced by the use of a noisy proxy.11

For these reasons, we adopt the family of robust and homogeneous loss functions proposed by Patton (2011),

i.e.,

9We set the significance level to α = 25% and use 10,000 bootsrap resamples (with block length of five observations) to obtain
the distribution under the null of equal empirical fit. These results are available under request.

10Notice that the results obtained with the integrated variance (not reported) are qualitatively the same than those obtained with
the realized variance.

11The robustness of the forecasts ranking has also an impact on the statistical inference used to asses the predictive accuracy. If
the loss function ensures consistency of the ranking, the variability of the variance proxy is only likely to reduce the power of the
test, but not its asymptotic size, which means that for a robust loss function it is always possible to recover asymptotically the true
ranking. For more details, see Laurent et al. (2012).
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L(σ̂2, σ2; b) =





1
(b+1)(b+2) (σ̂

2(b+2) − σ2(b+2) − 1
b+1 σ̂

2(b+1)(σ̂2 − σ2), for b /∈ {−1,−2}
σ2 − σ̂2 + σ̂2 log σ̂2

σ2 , for b = −1

σ̂2

σ2 − log σ̂2

σ2 − 1, for b = −2

(8)

with b a scalar parameter, σ2 a measure of the true variance (i.e., the realized variance in our case) and σ̂2 the

predicted variance measure. This loss function encompasses in particular the MSE and the QLIKE loss functions

when b = 0 and b = −2, respectively.

Evaluating the influence of the sampling frequency of the predictors on the predictive abilities of the MIDAS-

RV model reduces to determining the sign of the derivative of the average loss function given by:

Lm1
= T−1

∂
∑T

t=1 L(R̂V
(m2)

t+1,t, RV
(m2)
t+1,t ; b)

∂m1
. (9)

Since the sign of this derivative cannot be determined analytically we proceed by numerical analysis. Figure

2 displays the average (over the 10,000 replications) of the loss function T−1
∑T

t=1 L(R̂V
(m2)

t+1,t, RV
(m2)
t+1,t ; b), as a

function of the frequency m1.

In order to assess the robustness of our results, we consider three values for the parameter b, namely 0 (MSE),

−1 and −2 (QLIKE). The main conclusion is that the average loss decreases with the sampling frequency of

the predictors, regardless of the loss function specification. For instance, the MSE increases progressively from

0.0085 (for a 1-minute regressor) to 0.0256 (for a regressor sampled twice a day). The use of the highest available

frequency for the predictors is hence favored not only in-sample but also out-of-sample.

Besides, these gains are found to be statistically significant using the MCS test of Hansen et al. (2011) (as

discussed in the previous section). Table 2 reports the MCS results for one replication of the Monte Carlo

experiment. For each sampling frequency m1, we display the average loss function along with the corresponding

MCS p-value. The entries in bold correspond to the cluster of the best MIDAS-RV models as identified by the

MCS test. For each of the three loss functions, the MCS test confirms that the use of the 1-minute regressor

leads to a significant improvement in the forecasting performances. This result is not specific for the particular

replication reported in Table 2. The average value of the MCS p-values obtained over all the replications is not

informative. Alternatively, it is possible to count the number of replications for which the MIDAS specification

with the highest sampling frequency outperforms the other models. We find that in 65% of replications, the MCS

approach selects the 1-minute MIDAS model to be the best. This proportion reaches 98% when we consider the

clusters of outperforming models including also 2-minute and 5-minute MIDAS regressors.
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Figure 2: MIDAS average loss function
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Note: This figure displays the average loss function (y-axis) associated with the MIDAS-RV forecasts based on various sampling frequencies
(m1) of the predictors (x-axis). Three different specifications of the robust loss function are considered, i.e., Eq. (8) for b = {0,−1,−2}.

Table 2: Model Confidence Set test

MSE (b = 0) b = −1 QLIKE (b = −2)

Frequency Av. loss MCS p-value Av. loss MCS p-value Av. loss MCS p-value

1min 0.0065 1 0.0108 1 0.0206 1

2 min 0.0071 0.0012 0.0118 < 0.0001 0.0225 < 0.0001

5min 0.0083 0.0001 0.0136 < 0.0001 0.0257 < 0.0001

10min 0.0093 < 0.0001 0.0154 < 0.0001 0.0293 < 0.0001

15min 0.0100 < 0.0001 0.0163 < 0.0001 0.0306 < 0.0001

30min 0.0110 < 0.0001 0.0183 < 0.0001 0.0348 < 0.0001

1h05 0.0144 < 0.0001 0.0236 < 0.0001 0.0441 < 0.0001

2h10 0.0181 < 0.0001 0.0295 < 0.0001 0.0539 < 0.0001

3h15 0.0199 < 0.0001 0.0328 < 0.0001 0.0601 < 0.0001

Note: This table presents the Model Confidence Set (MCS) results obtained for three different loss functions, i.e., Eq. (8) for b = {0,−1,−2}.
For each MIDAS specification the average value of the loss function is reported (first column) along with the corresponding p-value (second
column) resulting from the MCS test. The confidence level for the MCS test is set to α = 25% and 10,000 bootstrap resamples (with block
length of five daily observations) are used to obtain the distribution under the null of equal predictive accuracy. The entries in bold refer
to the best MIDAS-RV forecasts according to the MCS test.

3.4 DGP Sampling Frequency

In the previous experiment we considered a continuous data generating process and concluded in favor of the

use of the highest frequency available for the predictors. Following Visser (2011) and Hecq et al. (2012), we now
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consider a DGP for 1-second log-returns where the conditional variance varies every consecutive five minutes

according to a discrete-time GARCH(1,1) with parameters (α0, α1, β) = (2.4693e − 07, 0.0057, 0.9941) but is

constant during every 5-minute intervals.

As in the previous simulation, out-of-sample forecasts as previously and analyze the forecasting accuracy of

MIDAS variance models. Figure 3 displays the average loss functions (over 10,000 replications) as a function of

the sampling frequency m1.

Figure 3: 5-minute DGP: MIDAS-RV average loss function
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Note: See Figure 2. Notice that the conditional variance of the simulated 1-second log-returns (before aggregation) varies every five minutes
according to a discrete-time GARCH(1,1) but is constant during every consecutive 5-minute intervals.

Results suggest that using a sampling frequency m1 greater than five minutes (i.e., one, two or three minutes)

does not improve much the quality of the fit. However, using data sampled at a much lower frequency than five

minutes leads to a huge loss of information and therefore important increases of the average losses, irrespective

of the choice of the loss function.

3.5 Microstructure Noise

The main conclusion of the previous Monte Carlo simulation is that ultra-high-frequency log-returns are not

always useful in the context of MIDAS-RV. Another disadvantage of using ultra-high-frequency data is that

at these frequencies, the true price process is likely to be contaminated by microstructure effects arising from

market frictions, such as the bid-ask bounce or the discreteness of prices. This phenomenon produces spurious
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variations in asset prices and induces autocorrelation in high-frequency log-returns (see, Hansen and Lunde,

2006b; Zhou, 1996; Aı̈t-Sahalia et al., 2005).

The consequence of this noise on the realized variance is known (i.e., it is upward biased) but its impact on

MIDAS-RV has not been investigated so far. We argue that this noise has an impact on the optimal frequency

of the variance predictors when relying on raw data and therefore leads to a loss of information.

To study the impact of microstructure noise on MIDAS-RV models, we first simulate 1-second log-returns

using the same approach that the one described in the previous simulation, except that the dynamics of the

discrete-time GARCH(1,1) model is at the 1-minute frequency and not 5-minute. To contaminate the log-returns

by noise, a normal random variable with mean 0 and variance 10−3 × IntegratedQuarticity is added to every

1-second log-return.

This Monte Carlo experiment is based on 10,000 replications with the regressors and the realized variance

simulated for 1,000 days (500 days are used for the purpose of the in-sample estimation and 500 days for the

out-of-sample analysis). Figure 4 displays the average MSE for 500 out-of-sample one-step-ahead forecasts (over

10,000 replications) as a function of the sampling frequency m1. Three models are considered. The (black)

dotted line corresponds to the case where the MIDAS-RV is estimated on non-contaminated log-returns. The

(red) dashed line corresponds to the case where the MIDAS-RV is estimated on contaminated log-returns.

Recall that realized variance (the endogenous variable) is calculated on 5-minute returns, a frequency at which

the simulated noise is negligible on realized variance.

Results clearly suggest that microstructure noise deteriorates the fit of MIDAS-RV models when using ultra-

high-frequency returns. The optimal frequency is between three and five minutes but the average MSE is about

40% greater than in the case without noise.

To account for the presence of microstructure noise in the context of non-parametric volatility estimators, it

is standard practice to pre-filter ultra-high-frequency log-returns using the pre-averaging technique introduced

by Podolskij et al. (2009) and Jacod et al. (2009). To the best of our knowledge, pre-averaging has never been

used in the context of MIDAS models. The (blue) solid line corresponds to the case where the MIDAS-RV is

estimated on contaminated but pre-averaged log-returns. Pre-averaging proves to be useful in the context of

MIDAS models especially when relying on data sampled at frequencies higher than 15 minutes. Interestingly,

for frequencies between 30 seconds and three minutes, the MSE of this model is stable and does not blow up, as

in the case of the MIDAS-RV model estimated on contaminated log-returns (red dashed line).
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Figure 4: MIDAS-RV average MSE on 1-minute log-returns
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Note: This figure displays the average MSE (y-axis) associated with the MIDAS-RV forecasts based on various sampling frequencies (m1)
of the predictors (x-axis). Three different MIDAS specifications are considered: (i) the regressors are not contaminated by noise, (ii) the
regressors are contaminated by noise, (iii) the regressors are contaminated by noise but based on pre-averaged returns. In this experiment
the variance is assumed to be constant within each 1-minute interval (green vertical line).

4 Application

The main conclusion of Section 3 is that the choice of the optimal sampling frequency m1 for the predictors

in MIDAS-RV models is not obvious. We have seen two cases where the use of the highest available frequency

does not necessarily improve the quality of the fit or the predictions. Therefore, a “high-frequency wall” might

exist or frequency limit above which MIDAS-RV forecasts deteriorate or do not improve. In the Monte-Carlo

simulation, only two features of the DGP have been considered to justify the presence of this “high-frequency

wall”, i.e.,

• that the process is not a pure continuous-time model but rather a model where the conditional variance is

constant by pieces of for instance one or five minutes;

• and/or the presence of microstructure noise.

It has also been largely documented in the literature that high-frequency log-returns are characterized by the

presence of strong intraday periodicity in volatility and jumps. Intraday periodicity (Wood et al., 1985; Harris,

1986; Andersen and Bollerslev, 1997, 1998b; Hecq et al., 2012) can be defined as the cyclical pattern of variance

within the trading day, i.e., the fact that variance is typically more important at the opening and closing of the
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trading day and lower in the middle of the day while jumps correspond to large discontinuities in prices. Unlike

intraday periodicity, jumps are not regular (most of the time they appear as the result of an unexpected news

arrival) and are known to affect largely variance estimates and forecasts. For more details about the properties

and the detection of jumps, see Bates (1996), Barndorff-Nielsen and Shephard (2004b, 2006), Lee and Mykland

(2008), Boudt et al. (2011), Lahaye et al. (2011), among many others.

In the application, we propose to investigate the impact of these two additional features of the data on MIDAS-

RV models in an application on two highly liquid assets, one exchange-traded fund (ETF) and one quoted share.

The use of an ETF is justified by the increasing importance of these assets in the fund management industry.12

4.1 Data

The dataset consists of tick-by-tick prices and quotations from NYSE Trade and Quote (TAQ) database for

Microsoft (MSFT) and one ETF (provided by SPDR ETFs) that tracks the S&P 500 index, spanning the period

from September 2, 2004 to December 31, 2008. The price and quote series are reported every trading day

from 9:30 am to 4:00 pm and rigorously cleaned using a set of baseline rules proposed by Barndorff-Nielsen

et al. (2009). In order to avoid the effect of variance that comes from the overnight or holiday closures, all

the variables are computed by using open-to-close data and focusing hence only on the effective trading day

variance. The equally spaced intraday returns are subsequently derived from the high-frequency price series.

The dataset contains hence 1,101 trading days with 390/78/39/26/13/6/2 observations per day of respectively

1-minute/5-minute/10-minute/15-minute/30-minute/1h05/3h15 log-returns.

To compute the variance forecasts, we consider a rolling sample estimation scheme. The parameter estimates

are updated every 50 days. For a fair comparison of the MIDAS models, the lag order kmax is fixed such that

the information used to estimate the parameters covers a period of 70 days, regardless of the sampling frequency

of the regressors. For instance, for a 5-minute regressor we use a kmax equal to 78× 70 lags, where 78 represents

the number of 5-minute intervals within a trading day.

Finally, the out-of-sample sample covers two years, i.e., 2007 and 2008. To test the robustness of the results

upon the state of financial markets, the sample is split into two periods. The first one corresponds to the

relatively calm variance period of 2007, and the second one to the financial crisis of 2008 (the end of this period

corresponding to the peak of the crisis).

12At the end of August 2011, 2,982 ETFs worldwide were managing USD 1,348 bn, which represents 5.6% of the assets in the
fund management industry. Additionally, the total ETF turnover on-exchange via the electronic order book was 8.5% of the equity
turnover (Fuhr, 2011).
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Figure 5: Daily returns and realized variance

Jan 2007 Jan 2008 Dec 2008
−0.1

−0.05

0

0.05

0.1
SP500: Return

Jan 2007 Jan 2008 Dec 2008
−0.1

−0.05

0

0.05

0.1

0.15
Microsoft: Return   

Jan 2007 Jan 2008 Dec 2008
0

1

2

3

4

5

6
x 10

−3 SP500: Volatility

Jan 2007 Jan 2008 Dec 2008
0

1

2

3

4

5

6

7
x 10

−3 Microsoft: Volatility

Note: The figure reports the daily realized variance and return series for S&P 500 and Microsoft, respectively. The vertical line splits the
sample into the relatively calm period of 2007 and the crisis period of 2008.

4.2 Optimal sampling frequency for MIDAS-RV on raw data

We first consider one-step-ahead forecasts of MIDAS-RV models estimated on raw data, sampled at different fre-

quencies m1 ranging between one minute and three hours. Three horizons (H) are considered for the endogenous

variable RV
(m2)
t+H,t, i.e., one day (H = 1), one week (H = 5) and two weeks (H = 10).

Table 3 reports the MCS test for both the calm and crisis periods. For each horizon H, the average QLIKE

is reported along with the p-value of the MCS test. The entries in bold correspond to the best models selected

by the MCS procedure. The striking result is that the loss function does not smoothly decrease with the

sampling frequency and seems to indicate the presence of a “high-frequency wall”. In particular, the use of

ultra-high-frequency regressors leads to a deterioration in the quality of variance forecasts.

Consider the example of S&P 500 during the calm period (Panel A). The loss function has a convex shape

and its minimum is reached for a predictor sampled at five minutes, whatever the forecasting horizon considered.

Using 1-minute log-returns leads to a deterioration in the quality of the variance forecasts. This deterioration is

statistically significant because MIDAS-RV estimated on 1-minute log-returns does not belong to the MCS set

of optimal models. For the crisis period, the MCS test selects the 5-minute frequency as optimal for H = 1 and

H = 5, and 10- and 15-minute frequencies for the two-week horizon. For Microsoft all the models but the one

estimated on 1-minute log-returns are found to be statistically equivalent and superior during the calm period

(panel A) for H = 1.

All in all, these results question the usefulness of ultra-high-frequency data in the context of MIDAS-RV

models.
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Table 3: MIDAS sampling frequency puzzle

Panel A: Calm period (2007)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2423 0.0871 0.2161 0.0177 0.2203 0.0621 0.0971 0.0829 0.2357 0.2016 0.1083 0.0062

5min 0.2152 1.000 0.1369 1.0000 0.1904 1.0000 0.0823 0.9642 0.2061 0.7631 0.0861 0.1511

10min 0.2203 0.3659 0.1412 0.6095 0.1968 0.3761 0.0878 0.4254 0.2013 1.0000 0.0950 0.1413

15min 0.2265 0.0871 0.1447 0.5055 0.2060 0.0621 0.0881 0.4254 0.2245 0.2016 0.0948 0.0863

30min 0.2152 0.9986 0.1407 0.6095 0.1920 0.8218 0.0833 0.9642 0.2140 0.6053 0.0874 0.1413

1h05 0.2254 0.3659 0.1447 0.6095 0.2017 0.3761 0.0933 0.4254 0.2187 0.6053 0.0930 0.1413

3h15 0.2713 0.0223 0.1449 0.6095 0.2471 0.0621 0.0815 1.0000 0.2518 0.2016 0.0732 1.0000

Panel B: Crisis period (2008)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2185 0.1719 0.8640 0.1101 0.2337 0.1576 0.7399 0.1036 0.5308 0.0536 0.2231 0.1102

5min 0.2033 1.0000 0.2891 0.1699 0.2182 1.0000 0.7152 0.1036 0.4144 0.1468 0.1914 1.0000

10min 0.2166 0.1719 0.1848 1.0000 0.2340 0.1576 0.6791 0.1036 0.3245 0.4708 0.2839 0.0916

15min 0.2172 0.1719 0.1960 0.6048 0.2306 0.1576 0.1820 1.0000 0.3146 1.0000 0.9670 0.0207

30min 0.2317 0.0121 0.7694 0.1699 0.2662 0.0459 0.2397 0.1717 0.3408 0.1468 0.2670 0.0916

1h05 0.2428 0.0121 0.2566 0.1699 0.3081 0.0459 0.2958 0.1036 0.3850 0.1468 0.5070 0.0916

3h15 0.2468 0.1719 0.2612 0.1699 0.3437 0.0085 0.2485 0.1717 0.4352 0.0536 0.2213 0.3612

Note: This table presents the MCS test results for the S&P 500 and Microsoft. The results are reported for three forecasting horizons,
i.e., one day (H = 1), one week (H = 5) and two weeks (H = 10). The QLIKE is reported along with the p-value of the MCS test. The
confidence level for the MCS test is set to α = 25% and 10,000 bootstrap resamples are used, with block length of five observations, to
obtain the distribution under the null of equal predictive accuracy. The set of the competing models includes seven MIDAS specifications
with regressors sampled at a frequency ranging from one minute to about three hours.

4.3 Breaking the Wall

We have suggested several explanations for the existence of this “high-frequency wall”, i.e., an underlying DGP

whose conditional variance is constant by pieces of e.g., one or five minutes or the presence of intraday periodicity,

jumps and microstructure noise.

While no solution for breaking this wall might exist for the first one, filtering the raw lag-returns might help

to improve the performance of MIDAS-RV in presence of intraday periodicity, jumps and microstructure noise.

This is precisely the purpose of the this section.

4.3.1 Intraday periodicity

Figure 6 illustrates the intraday periodicity in the variance for the S&P 500 and Microsoft series, by plotting the

average squared log-returns for each 1-minute, 5-minute, 30-minute and 1h05 interval, respectively. A clear U-

shaped pattern is identifiable, as first noted by Wood et al. (1985), suggesting that the variance is systematically

18



high at the opening, declines to a low point at midday and then increases at the end of the trading day.

To estimate the intraday periodicity in volatility we rely on the non-parametric weighted standard deviation

(WSD) of Boudt et al. (2011), a non-parametric estimator that is robust to additive jumps. If ri denotes a raw

return (sampled at a certain frequency), the corresponding periodicity adjusted return is obtained by dividing

ri by f̂WSD

i , i.e., ri/f̂
WSD

i , where f̂WSD

i is the estimated WSD of Boudt et al. (2011) for the ith return.

Figure 6: Intraday periodicity
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Note: This figure displays the average squared log-returns for each 1-minute, 5-minute, 30-minute and 1h05 interval, for S&P 500 and
Microsoft.
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4.3.2 Jumps

To filter out the jumps in the regressors of the MIDAS-RV model, we first apply a modified version of the

jump test of Lee and Mykland (2008) proposed by Boudt et al. (2011). More specifically, we assume that the

log-price process log p(s) follows a Brownian SemiMartingale with Finite Activity Jumps (BSMFAJ) diffusion

d log p(s) = µ(s)ds+σ(s)dw(s)+κ(s)dq(s), where µ(s) is the drift, σ(s) is the spot volatility, w(s) is a standard

Brownian motion, the occurrence of jumps is governed by a finite activity counting process q(s) and the size of

the jumps is given by κ(s).

The idea behind the jump test of Lee and Mykland (2008) is that in the absence of jumps, instantaneous

returns are increments of Brownian motion and, therefore, standardized returns that are too large to plausibly

come from a standard Brownian motion must reflect jumps. In their original paper, Lee and Mykland (2008)

standardize every intraday returns ri by a robust estimate of the spot volatility, denoted ŝi, that assumes that

the volatility is constant on a local window spanning between several hours to one or two days before or around

the tested return. Their original statistic for jumps is Ji = |ri|
ŝi

, where ŝi is the averaged bi-power variation

belonging to the local window. To control for the size of the multiple jump tests Lee and Mykland (2008) use

the extreme value theory result that the maximum of n i.i.d. realizations of the absolute value of a standard

normal random variable is asymptotically (for n → ∞) Gumbel distributed. More specifically, in the absence of

jumps, the probability that the maximum of any set of n J-statistics exceeds gn,α = − log(− log(1− α))bn + cn,

with bn = 1/
√
2 log n and cn = (2 log n)1/2 − [log π + log(log n)]/[2(2 log n)1/2], is about α. Lee and Mykland

(2008)’s proposal is that all returns for which the J test statistic exceeds this threshold gn,α should be declared

to be affected by jumps. In the application, we set α = 1% and n to the total number of observations in the

sample.

However, for such long windows, the assumption of constant volatility is at odds with the overwhelming

empirical evidence that the intraday variation in market activity causes intraday volatility to be strongly time-

varying and even displays discontinuities (see Figure 6). For this reason, we implemented the modified version

proposed by Boudt et al. (2011) that accounts for the presence of intraday periodicity, i.e., FJWSD

i = |ri|

f̂WSD

i
ŝWSD

i

,

where f̂WSD

i is the estimated WSD of Boudt et al. (2011) for the ith return (which is standardized such that its

square has mean one in the local window).

Periodicity and jumps adjusted returns are computed as (ri/f̂
WSD

i )× I(FJWSD

i < gn,1%) + I(FJWSD

i > gn,1%),

where I(.) is an indicator function.
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4.3.3 Microstructure noise

As explained above, pre-averaging (Podolskij et al., 2009; Jacod et al., 2009) is a powerful technique to robustify

volatility estimators to the presence of microstructure noise. Instead of noisy intraday returns (rt), the

authors suggest using pre-averaged returns (r̃t) which, by the law of large numbers, asymptotically lose the

noise component. More precisely, r̃t is approximated by an average of staggered returns rt in a neighborhood

of t, the noise being hence averaged away. The pre-averaging approach depends on a bandwidth parameter, or

window length, that increases with the sample and indicates the weighting scheme to be put into effect. The

order of the window size is chosen to lead to optimal convergence rates (n−1/4).

To the best of our knowledge, pre-averaging has never been used in the context of MIDAS models. The

balanced pre-averaging has been applied on 1-minute and 5-minute returns previously filtered for intraday

periodicity and jumps, since it delivers according to Christensen et al. (2010) the best rate of convergence.

4.3.4 Results

Figure 7 displays the filtered 1-minute return series for S&P 500 and Microsoft, adjusted for intraday periodicity

and jumps. The correction procedure purges the intraday periodicity, identifies and smoothes the jumps, but

preserves the variance dynamics. The procedure is applied to the 5-minute return series as well.

Figure 7: Intraday returns and intraday jump-adjusted returns
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Note: This figure displays the 1-minute intraday return series (in red) as well as the 1-minute return series filtered for intraday periodicity
and jumps (in blue). (Lee and Mykland, 2008; Boudt et al., 2011).
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The MCS test is subsequently applied on the MIDAS out-of-sample obtained with both filtered and unfiltered

data. The results are reported in Table 4. We notice a significant improvement in the MIDAS variance forecasts

when using high-frequency predictors filtered for intraday periodicity and jumps. For the calm period (panel

A), the S&P 500 forecasts obtained with filtered (both for jumps and periodicity) 1-minute predictors always

belong to the set of superior forecasting models as identified by MCS. During the crisis period, similar results

are obtained with filtered 5-minute regressors for short horizons (H = 1 or H = 5). These results prove the

importance of using the filtered data, especially for short forecasting horizons.

Table 4: MIDAS sampling frequency puzzle: intraday periodicity and jumps adjustments

Panel A: Calm period (2007)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min RAW 0.2423 0.1328 0.2161 0.0076 0.2203 0.0905 0.0971 0.1130 0.2357 0.1235 0.1083 0.0104

1min Per.Adj 0.2320 0.1328 0.1521 0.0563 0.2078 0.4787 0.0993 0.0825 0.2228 0.6122 0.1104 0.0096

1min Jumps.Adj 0.2141 0.9970 0.1631 0.0076 0.1823 1.0000 0.1105 0.0066 0.2053 0.9283 0.1196 0.0014

5min RAW 0.2152 0.9473 0.1369 1.0000 0.1904 0.7622 0.0823 0.9899 0.2061 0.9283 0.0861 0.2238

5min Per.Adj 0.2138 1.0000 0.1399 0.7417 0.1884 0.8159 0.0831 0.9899 0.2063 0.9283 0.0873 0.2238

5min Jumps.Adj 0.2152 0.9970 0.1380 0.7799 0.1850 0.8159 0.0830 0.9899 0.2029 0.9314 0.0888 0.2127

10min 0.2203 0.3405 0.1412 0.7417 0.1968 0.4787 0.0878 0.5294 0.2013 1.0000 0.0950 0.2055

15min 0.2265 0.1328 0.1447 0.6101 0.2060 0.0905 0.0881 0.5294 0.2245 0.2513 0.0948 0.1162

30min 0.2152 0.9970 0.1407 0.7453 0.1920 0.8159 0.0833 0.9899 0.2140 0.8533 0.0874 0.2127

1h05 0.2254 0.3405 0.1447 0.7417 0.2017 0.5530 0.0933 0.5294 0.2187 0.6568 0.0930 0.2127

3h15 0.2713 0.0354 0.1449 0.7417 0.2471 0.0905 0.0815 1.0000 0.2518 0.1235 0.0732 1.0000

Panel B: Crisis period (2008)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2185 0.0193 0.8640 0.0157 0.2337 0.0350 0.7399 0.0094 0.5308 0.0764 0.2231 0.0526

1min Per.Adj 0.2112 0.0347 0.1635 0.1214 0.2227 0.3494 0.1465 0.1444 0.2975 0.0878 0.1679 1.0000

1min Jumps.Adj 0.2042 0.0347 0.1587 1.0000 0.2026 0.4552 0.1362 1.0000 0.3172 0.0878 0.1758 0.6448

5min 0.2033 0.0347 0.2891 0.0157 0.2182 0.3494 0.7152 0.0094 0.4144 0.0878 0.1914 0.2207

5min Per.Adj 0.2008 0.0347 0.1673 0.0986 0.2142 0.4552 0.1534 0.1444 0.2737 1.0000 0.4426 0.0116

5min Jumps.Adj 0.1842 1.0000 0.1598 0.8784 0.1956 1.0000 0.1528 0.1444 0.3073 0.0878 0.1735 0.6448

10min 0.2166 0.0193 0.1848 0.0157 0.2340 0.0350 0.6791 0.0094 0.3245 0.0878 0.2839 0.0212

15min 0.2172 0.0347 0.1960 0.0986 0.2306 0.0350 0.1820 0.0276 0.3146 0.0878 0.9670 0.0116

30min 0.2317 0.0160 0.7694 0.0157 0.2662 0.0217 0.2397 0.0094 0.3408 0.0878 0.2670 0.0116

1h05 0.2428 0.0160 0.2566 0.0157 0.3081 0.0217 0.2958 0.0094 0.3850 0.0878 0.5070 0.0116

3h15 0.2468 0.0193 0.2612 0.0157 0.3437 0.0040 0.2485 0.0184 0.4352 0.0323 0.2213 0.2207

Note: This table presents the MCS test results obtained for two assets (S&P 500 and Microsoft) during both calm and crisis periods. The
results are reported for three forecasting horizons, namely one day (H = 1), one week (H = 5) and two weeks (H = 10). For each of them,
we present the average value of the QLIKE loss function along with the corresponding p-value resulting from the MCS test. The confidence
level for the MCS test is set to α = 25% and 10,000 bootstrap resamples are used, with block length of five observations, to obtain the
distribution under the null of equal predictive accuracy. The set of the competing variance models includes seven MIDAS specifications with
regressors sampled at a frequency ranging from one minute to three hours, as well as four MIDAS models with 1- and 5-minute regressors
adjusted for intraday periodicity and jumps.
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Figure 8: S&P 500 average QLIKE
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Note: S&P 500 - This figure displays the average QLIKE for the MIDAS-RV forecasts for various sampling frequencies (m1) of the predictors for three forecasting horizons. The left panel
corresponds to the calm period (2007) and the right panel to the crisis period (2008). The solid blue line corresponds to the MIDAS-RV model with raw data sampled at frequencies 1-min to 3h15.
The black and red dotted lines correspond respectively to the MIDAS-RV models on periodicity and jumps and periodicity filtered log-returns sampled at frequencies 1-min and 5-min.
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Figure 9: Microsoft average QLIKE
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Figures 8 and 9 display the average QLIKE for the calm and crisis periods, and the three forecasting horizons,

for both S&P 500 and Microsoft. First, we remark that the gains related to the use of filtered data for intraday

periodicity are generally lower than the gains related to data filtered both for periodicity and jumps. Second,

considering filtered data during a relatively calm period, we get a loss function which smoothly decreases with

the sampling frequency m1 as in the Monte Carlo experiment.

To complete our analysis, we also perform MIDAS variance forecasts based on regressors filtered for pe-

riodicity, jumps and microstructure noise (through the pre-averaging technique). The results are available in

Appendix 6.1 and Appendix 6.2. For instance, we observe that 1-minute pre-averaged regressors improve Mi-

crosoft variance forecasts during both the calm and crisis periods. These results apply also for the S&P 500

variance forecasts at short forecasting horizons. They become more puzzled for long forecasting horizons (e.g.,

two weeks), as well as for the crisis period.

4.4 MIDAS and Other Competing Variance Models

In this section, we compare the predictive accuracy of the MIDAS-RV forecasts with those obtained for four

widely used variance models based on daily and/or intradaily data, i.e., the GARCH model, the Generalized

Autoregressive Score (GAS), the Heterogeneous Autoregressive Realized Volatility-based model (HAR-RV) and

the HAR-RV adjusted for jumps (HAR-RV-J).

i) The first competing model is the popular GARCH(1,1) model, pioneered by Engle (1982) and Bollerslev

(1986), i.e.:

rt+1,t = c+ zt+1,t

√
ht+1,t, (10)

ht+1,t = α0 + α1(rt,t−1 − c)2 + β1ht,t−1. (11)

ii) The second model is the GAS model, recently introduced by Harvey (2013) and Creal et al. (2013). This

model is designed to better treat large outliers. We consider the Student GAS specification where the one

step-ahead conditional variance is defined as follows:

ht+1,t = w0 + a1ut,t−1ht,t−1 + φ1ht,t−1, (12)

with ut,t−1 = ((v + 1)z2t,t−1)/(v − 2 + z2t,t−1)− 1, and zt ∼ t(0, 1, v).

Notice that for the GARCH and GAS models, the variance forecasts for H > 1 are obtained as
∑H

i=1 ht+i,t

and not directly from rt+H,t as opposed to the MIDAS-RV model.

iii) The third competing model is the HAR-RV model, proposed by Corsi (2009):

RVt+1,t = α0 + α1RVt,t−1 + α2RV w
t,t−1 + α3RV m

t,t−1 + εt+1, (13)
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where RVt+1,t is the daily realized variance (Eq. 3) and by convention, RV w
t,t−1 = 1

5

∑4
i=0 RVt−i,t−i−1 and

RV m
t,t−1 = 1

22

∑21
i=0 RVt−i,t−i−1. This model is conceived as an additive cascade of different variance components

defined over different time horizons of one day, one week (w), and one month (m), respectively. The HAR-

RV is therefore a constrained version of the MIDAS-RV model with intradaily squared return regressors and a

particular weight structure. Indeed, given the definition of the realized volatility, Eq. (13) can be rewritten as

a weighted sum of past observations of the intraday squared returns. For more details, see Appendix 6.3.

iv) Andersen et al. (2007) extended the classical HAR-RV framework by taking into account the lagged effect

of jumps. The HAR-RV-J model (where J stands for jumps) is formally defined as following:

RVt+1,t = α0 + α1RVt,t−1 + α2RV w
t,t−1 + α3RV m

t,t−1 + γ1Jt,t−1 + γ2J
w
t,t−1 + γ3J

m
t,t−1 + εt+1, (14)

where Jt,t−1 = It × (RVt,t−1 −BVt,t−1) is a random variable that is nonzero for the intervals in which jumps do

occur and zero otherwise, BV is the daily realized bipower variation (Barndorff-Nielsen and Shephard, 2004b)

which is defined as:

BVt = µ−2
1

m∑

l=2

|rt,l||rt,l−1|, (15)

with µ1 =
√
(2/π) ≈ 0.79788, and It ≡ I (Zt > Φ0.999), where Zt is defined as:

Zt =
m2(RVt,t−1 −BVt,t−1)RV −1

t,t−1

[(µ−4
1 + 2µ−2

1 − 5)max{1, TQt,t−1(m)BV −2
t,t−1}]1/2

, (16)

with TQt,t−1 the tri-power quarticity13, a robust estimator of the integrated variance, and Φ0.999 the 99.9%

quantile of the standard normal distribution.

The MCS procedure is now applied on 17 models, namely the seven MIDAS models with regressors sampled

between 1-min and 3h15, the six MIDAS specifications with 1- and 5-minute regressors adjusted for intraday

periodicity, jumps and/or microstructure noise, and the four competing variance models (HAR-RV, HAR-RV-J,

Student GAS, GARCH). The results are summarized in Table 5. The global conclusion is that the MIDAS models

provide (at least for these two assets) comparable, or even better, variance forecasts than the other competing

models. In terms of the loss function, the models are dominated during the calm period by the MIDAS models,

except for the daily Microsoft forecasts. For the calm period, we find that the forecasts provided by different

MIDAS specifications are statistically comparable to those issued from the HAR-RV and HAR-RV-J models.

The GAS model provides comparable forecasts only in the case of S&P 500 for a forecasting horizon of two

weeks. During the crisis, the best forecasts are generally provided by the MIDAS models with 1- or 5-minute

filtered predictors, and the cluster of superior forecasting models no longer includes the HAR-RV and HAR-

RV-J models. For longer horizons, the GAS and the GARCH provide similar results to those obtained with

13TQt ≡ mµ−3

4/3

∑m
l=3

|rt,l|
4/3|rt,l−1|

4/3|rt,l−2|
4/3, where µ4/3 ≡ 22/3Γ(7/6)Γ(1/2)−1.

26



the MIDAS model. These findings confirm the intuition that high-frequency data can be used to successfully

forecast volatility, provided that these data are filtered for periodicity and jumps. For these two assets, MIDAS

models outperform in many cases standard variance models such as the GARCH model, or even the HAR-RV,

HAR-RV-J or GAS models.

Table 5: Comparing competing variance models

Panel A: Calm period (2007)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2423 0.1433 0.2161 0.0144 0.2203 0.1316 0.0971 0.1537 0.2357 0.1831 0.1083 0.0124

1min Per.Adj 0.2320 0.1433 0.1521 0.0717 0.2078 0.6353 0.0993 0.1175 0.2228 0.6942 0.1104 0.0026

1min Jumps.Adj 0.2141 0.9965 0.1631 0.0144 0.1823 1.0000 0.1105 0.0075 0.2053 0.9209 0.1196 0.0021

1min Jumps.Adj-Preav 0.2155 0.1433 0.1560 0.0144 0.1900 0.7911 0.1000 0.0075 0.4243 0.1831 0.1054 0.0026

5min 0.2152 0.9765 0.1369 0.7653 0.1904 0.7911 0.0823 0.9894 0.2061 0.9209 0.0861 0.2322

5min Per.Adj 0.2138 1.0000 0.1399 0.7653 0.1884 0.8272 0.0831 0.9894 0.2063 0.9209 0.0873 0.2322

5min Jumps.Adj 0.2152 0.9765 0.1380 0.7653 0.1850 0.8272 0.0830 0.9894 0.2029 0.9332 0.0888 0.2322

5min Jumps.Adj-Preav 0.2149 0.9965 0.1560 0.0240 0.1899 0.7911 0.1001 0.0075 0.4286 0.1831 0.1052 0.0026

10min 0.2203 0.1433 0.1412 0.7653 0.1968 0.6353 0.0878 0.5385 0.2013 1.0000 0.0950 0.2131

15min 0.2265 0.1433 0.1447 0.2921 0.2060 0.1316 0.0881 0.4830 0.2245 0.3187 0.0948 0.1386

30min 0.2152 0.9965 0.1407 0.7653 0.1920 0.8272 0.0833 0.9894 0.2140 0.8513 0.0874 0.2322

1h05 0.2254 0.1433 0.1447 0.6464 0.2017 0.7046 0.0933 0.4830 0.2187 0.7082 0.0930 0.2322

3h15 0.2713 0.0510 0.1449 0.7653 0.2471 0.1316 0.0815 1.0000 0.2518 0.1831 0.0732 1.0000

HAR-RV 0.2176 0.1433 0.1345 1.0000 0.1941 0.7601 0.0868 0.4830 0.2172 0.7082 0.0943 0.1852

HAR-RV-J 0.2187 0.1433 0.1359 0.7653 0.1973 0.7046 0.0883 0.4830 0.2226 0.4483 0.0960 0.1212

GARCH 0.3240 0.0510 0.2208 0.0144 0.2849 0.1316 0.1677 0.0075 0.2935 0.1831 0.1747 0.0021

GAS 0.3161 0.0510 0.1884 0.0144 0.2669 0.1316 0.1292 0.1175 0.2688 0.3187 0.1296 0.0564

Panel B: Crisis period (2008)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2185 0.0296 0.8640 0.0246 0.2337 0.0501 0.7399 0.0141 0.5308 0.0250 0.2231 0.0899

1min Per.Adj 0.2112 0.0713 0.1635 0.1816 0.2227 0.4943 0.1465 0.1426 0.2975 0.1171 0.1679 1.0000

1min Jumps.Adj 0.2042 0.0713 0.1587 1.0000 0.2026 0.6264 0.1362 1.0000 0.3172 0.1171 0.1758 0.6378

1min Jumps.Adj-Preav 0.2430 0.0296 0.1698 0.1816 0.2596 0.0269 0.1725 0.0309 0.3517 0.1171 0.1918 0.4482

5min 0.2033 0.0713 0.2891 0.0246 0.2182 0.4943 0.7152 0.0141 0.4144 0.1171 0.1914 0.2987

5min Per.Adj 0.2008 0.0713 0.1673 0.1429 0.2142 0.6264 0.1534 0.1426 0.2737 0.3803 0.4426 0.0214

5min Jumps.Adj 0.1842 1.0000 0.1598 0.8742 0.1956 1.0000 0.1528 0.1426 0.3073 0.1171 0.1735 0.6378

5min Jumps.Adj-Preav 0.2418 0.0296 0.1780 0.0330 0.2627 0.0269 0.1757 0.0237 0.3502 0.1171 0.1943 0.2987

10min 0.2166 0.0296 0.1848 0.0246 0.2340 0.0501 0.6791 0.0141 0.3245 0.1171 0.2839 0.0214

15min 0.2172 0.0713 0.1960 0.0330 0.2306 0.0501 0.1820 0.0309 0.3146 0.1171 0.9670 0.0214

30min 0.2317 0.0296 0.7694 0.0246 0.2662 0.0269 0.2397 0.0141 0.3408 0.1171 0.2670 0.0214

1h05 0.2428 0.0296 0.2566 0.0246 0.3081 0.0269 0.2958 0.0141 0.3850 0.0305 0.5070 0.0214

3h15 0.2468 0.0296 0.2612 0.0246 0.3437 0.0063 0.2485 0.0211 0.4352 0.0250 0.2213 0.2987

HAR-RV 0.2102 0.0713 0.1781 0.0330 0.2449 0.0501 0.1754 0.0211 0.3563 0.0305 0.2346 0.0214

HAR-RV-J 0.2148 0.0713 0.1719 0.1429 0.2472 0.0501 0.1669 0.0675 0.3569 0.0250 0.2205 0.0330

GARCH 0.2291 0.0713 0.2205 0.0246 0.2282 0.4943 0.2041 0.0211 0.2723 0.2751 0.2208 0.2987

GAS 0.2363 0.0296 0.2447 0.0246 0.2173 0.6264 0.2142 0.0211 0.2348 1.0000 0.2226 0.2987

Note: This table presents the MCS test results obtained for two assets (S&P 500 and Microsoft) during both calm and crisis periods. The
results are reported for three forecasting horizons, namely one day (H = 1), one week (H = 5) and two weeks (H = 10). For each of them,
we present the average value of the QLIKE loss function along with the corresponding p-value resulting from the MCS test. The confidence
level for the MCS test is set to α = 25% and 10,000 bootstrap resamples are used, with block length of five observations, to obtain the
distribution under the null of equal predictive accuracy. The set of the competing variance models includes seven MIDAS specifications
with regressors sampled at a frequency ranging from one minute to about three hours, six MIDAS models with 1- and 5-minute regressors
adjusted for intraday periodicity, jumps and/or microstructure noise, the HAR-RV, HAR-RV-J, GARCH and GAS models.
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4.5 Robustness Check

In this section we examine the robustness of our results. The most frequent criticism on both MIDAS and

HAR-RV models concerns the absence of some constraints ensuring the positivity of the variance process. A

straightforward solution consists in predicting the logarithm of the variance proxy, i.e.,

Log-MIDAS:

log(RV
(m2)
t+H,t) = µH,m1

+ φH,m1
ΩH,m1

(L1/m1) log(X
(m1)
t,t−1/m1

) + εt. (17)

Log-HAR-RV:

log(RVt+H,t) = α0 + α1 log(RVt,t−1) + α2 log(RV w
t,t−1) + α3 log(RV m

t,t−1) + εt+1. (18)

Log-HAR-RV-J:

log(RVt+H,t) = α0 + α1 log(RVt,t−1) + α2 log(RV w
t,t−1) + α3 log(RV m

t,t−1) (19)

+γ1 log(Jt,t−1 + 1) + γ2 log(J
w
t,t−1 + 1) + γ3 log(J

m
t,t−1 + 1) + εt+1.

To forecast the logarithm of the realized measure of volatility, we follow exactly the same procedure as for

the level of variance. Next, in order to compare the log-variance forecasts with the level of variance proxy, the

following transformation is required (Andersen et al., 2003):

R̂V ′
t+H,t = exp(log(R̂V t+H,t) +

1

2
V ar(et+H,t)), (20)

where log(R̂V t+H,t) is the forecast of the log of realized volatility and V ar(et+H,t) is the variance of the fore-

casting errors.

The results of the MCS-based comparison procedure are reported in Table 6. Once again, during the calm

period, the standard models are generally dominated by the log-MIDAS models. For shorter forecasting hori-

zons (one day and one week), the cluster also includes the log-HAR-RV-J model. Only in the case of S&P

500, the GAS model provides statistically comparable forecasts for an horizon of one and two weeks. During

the crisis, the daily log-MIDAS-RV with 5-minute regressors pre-filtered for intraday periodicity, jumps and

microstructure noise has the smallest QLIKE. For the one-week forecasting horizon the better forecast fit is

given by the log-HAR-RV-J model for both Microsoft and S&P 500. The subset of superior forecasting models

(as identified by the MCS) encompasses a smaller number of log-MIDAS specifications than in the calm period,

the log-HAR-RV-J model (for one day and one week forecasting horizons) and the Student GAS model (for one

and two week-ahead S&P 500 forecasts).
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Table 6: Log version - MCS Test

Panel A: Calm period (2007)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2406 0.4797 0.1553 0.0850 0.2299 0.4750 0.0998 0.0826 0.2454 0.0388 0.1136 0.0146

1min Per.Adj 0.2350 0.8721 0.1546 0.0850 0.2294 0.4750 0.0997 0.3562 0.2057 1.0000 0.1253 0.0065

1min Jumps.Adj 0.2395 0.3885 0.1660 0.0850 0.2118 0.8000 0.1262 0.0019 0.2152 0.8574 0.1263 0.0005

1min Jumps.Adj-Preav 0.2295 0.6477 0.1656 0.0850 0.2174 0.4805 0.1126 0.0633 1.0253 0.0011 0.1145 0.0146

5min 0.2251 0.8721 0.1403 0.9503 0.1987 0.8000 0.0862 0.8052 0.2149 0.9264 0.0915 0.5738

5min Per.Adj 0.2252 0.8721 0.1419 0.9151 0.2051 0.8000 0.0913 0.5983 0.2178 0.8574 0.0924 0.5738

5min Jumps.Adj 0.2246 0.8721 0.1409 0.9503 0.2097 0.6152 0.0902 0.5983 0.2079 0.9822 0.0948 0.4988

5min Jumps.Adj-Preav 0.2105 1.0000 0.1517 0.0850 0.1931 1.0000 0.1022 0.0826 0.2305 0.8574 0.1056 0.0230

10min 0.2252 0.8721 0.1432 0.9151 0.2116 0.4805 0.0902 0.5983 0.2294 0.5842 0.0905 0.5738

15min 0.2324 0.4797 0.1451 0.6570 0.2180 0.4750 0.0893 0.5579 0.2289 0.5842 0.0906 0.4988

30min 0.2198 0.8721 0.1369 1.0000 0.2158 0.6152 0.0811 0.8052 0.2118 0.9822 0.0834 0.7378

1h05 0.2348 0.5216 0.1420 0.9503 0.2193 0.4805 0.0837 0.8052 0.2104 0.9822 0.0800 0.8746

3h15 0.2644 0.0522 0.1508 0.6570 0.2498 0.2066 0.0773 1.0000 0.2523 0.0388 0.0785 1.0000

HAR-RV 0.2444 0.0959 0.1528 0.0850 0.2622 0.0112 0.1179 0.0007 0.3308 0.0011 0.1425 0.0004

HAR-RV-J 0.2205 0.8721 0.1386 0.9503 0.2161 0.4805 0.0922 0.5579 0.2615 0.0338 0.1056 0.0146

GARCH 0.3240 0.0522 0.2208 0.0631 0.2849 0.2066 0.1677 0.0007 0.2935 0.0388 0.1747 0.0005

GAS 0.3161 0.0522 0.1884 0.0850 0.2669 0.4750 0.1292 0.0826 0.2688 0.5842 0.1296 0.0230

Panel B: Crisis period (2008)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.3628 0.0033 0.1881 0.0894 0.5074 0.0019 0.2244 0.0154 0.6579 0.0016 0.3851 0.0049

1min Per.Adj 0.3553 0.0033 0.2575 0.0282 0.5223 0.0019 0.2093 0.0154 0.4240 0.1012 0.4045 0.0040

1min Jumps.Adj 0.3369 0.0039 0.2407 0.0282 0.4799 0.0133 0.3244 0.0154 0.6406 0.0024 0.4123 0.0049

1min Jumps.Adj-Preav 0.2926 0.0048 0.2369 0.0277 0.4875 0.0133 0.3434 0.0154 0.6936 0.0024 0.4136 0.0049

5min 0.2530 0.0048 0.2085 0.0768 0.3928 0.0133 0.2029 0.0154 0.5136 0.0024 0.1682 1.0000

5min Per.Adj 0.2544 0.0048 0.1712 0.0894 0.4154 0.0133 0.2683 0.0154 0.5072 0.0024 0.1737 0.3601

5min Jumps.Adj 0.2083 0.0332 0.2011 0.0894 0.3872 0.0133 0.1986 0.0154 0.5550 0.0024 0.3325 0.0049

5min Jumps.Adj-Preav 0.1514 1.0000 0.1471 1.0000 0.2404 0.5878 0.2175 0.0154 0.3625 0.1012 0.2851 0.1817

10min 0.2323 0.0332 0.1699 0.0894 0.2952 0.0133 0.1624 0.0643 0.4903 0.0024 0.3197 0.0049

15min 0.1930 0.0332 0.1591 0.3847 0.2065 0.9080 0.1946 0.0154 0.4679 0.0498 0.1820 0.2623

30min 0.1926 0.0332 0.1725 0.0894 0.2992 0.0133 0.2407 0.0154 0.2814 0.3350 0.2797 0.1283

1h05 0.1857 0.0332 0.2122 0.0282 0.2854 0.1674 0.2594 0.0154 0.3575 0.1012 0.2628 0.0950

3h15 0.1993 0.0332 0.2173 0.0405 0.2552 0.0133 0.2300 0.0154 0.3809 0.0778 0.2717 0.1649

HAR-RV 0.1748 0.1448 0.1662 0.0894 0.2649 0.0133 0.1821 0.0154 0.4382 0.0024 0.2644 0.0049

HAR-RV-J 0.1667 0.2256 0.1497 0.8191 0.2039 1.0000 0.1426 1.0000 0.3294 0.1012 0.1965 0.1817

GARCH 0.2291 0.0048 0.2205 0.0894 0.2282 0.5878 0.2041 0.0154 0.2723 0.2243 0.2208 0.1817

GAS 0.2363 0.0332 0.2447 0.0282 0.2173 0.9080 0.2142 0.0154 0.2348 1.0000 0.2226 0.1817

Note: This table presents the MCS test results obtained for the two assets under analysis (S&P 500 and Microsoft) during both calm and
crisis periods. The results are reported for three forecasting horizons, namely one day (H = 1), one week (H = 5) and two weeks (H = 10).
For each of them, we present the average value of the QLIKE loss function along with the corresponding p-value resulting from the MCS test.
The confidence level for the MCS test is set to α = 25% and 10,000 bootstrap resamples are used, with block length of five observations,
to obtain the distribution under the null of equal predictive accuracy. The set of the competing variance models includes seven log-MIDAS
specifications with regressors sampled at a frequency ranging from one minute to about three hours, six log-MIDAS models with 1- and
5-minute regressors adjusted for intraday periodicity, jumps and/or microstructure noise, the log-HAR-RV, log-HAR-RV-J, GARCH and
GAS models.

Another robustness check exercise consists in changing the measure of variance to be predicted. It is well-

documented that the realized variance estimator may become biased and inconsistent in the presence of market

microstructure noise. A large number of alternative proxies of variance (e.g., realized bipower variation, realized

kernel, etc.) that deal with issues such as jumps and other market microstructure noise, have consequently
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been introduced by Barndorff-Nielsen and Shephard (2004a), Zhang (2006), Barndorff-Nielsen et al. (2008),

Hansen and Horel (2009), inter alios. To assess the robustness of our results, we also consider the realized kernel

(Barndorff-Nielsen et al., 2008) as dependent variable in our specifications and obtain similar results (Appendix

6.4). Our results are also robust to the choice of the predictors of variance (absolute intradaily returns or

intradaily bipower variation instead of squared intradaily returns). For a synthesis of all these extra findings see

Appendix 6.5 and Appendix 6.6.

5 Conclusion

This paper analyses the forecasting performance of MIDAS-RV models in which future variances are directly

related to past intraday log-returns. These predictors are usually constructed from tick-by-tick data and, conse-

quently, the econometrician needs to choose a sampling frequency. The question we raise is whether ultra-high

frequency data is needed to forecast variances.

The main findings of our study are the following. First, we show in a Monte Carlo simulation study that,

in a world without jumps, periodicity in volatility and microstructure noise, there is an advantage in using the

highest available frequency for the predictors. The information content of very high-frequency data improves

significantly the quality of the MIDAS forecasts. Second, when considering two highly liquid assets (namely

Microsoft and S&P 500) contaminated with typical market microstructure noise and intraday periodicity, we

find that the use of very high-frequency predictors may become problematic. In particular, we show that

there may exist a “high-frequency wall”, i.e., a limit frequency above which the MIDAS forecasts may be less

accurate. This result clearly illustrates the influence of the jumps and the intraday periodicity on the prediction

of volatility, and not only on its measurement. Third, we discuss the potential solutions to combine the gains

issued from high-frequency predictors and the negative impact of microstructure noise. A first solution consists

in augmenting the MIDAS model by modifying the weighting scheme in order to limit the influence of the

contaminated observations. A second solution consists in applying the MIDAS regression model on filtered

data. Here, we adopt the latter solution and show that estimating MIDAS-RV models on filtered log-returns

leads to significantly better out-of-sample forecasts. Finally, we compare the MIDAS model to other competing

variance models including GARCH, GAS, HAR-RV and HAR-RV-J models. Results suggest that, for both assets,

MIDAS models yield better forecasts in most cases and importantly never yield inferior forecasts, provided they

are applied on filtered data.

A future research direction will be to compare the approach taken in this paper, where realized variance is

directly related to past intraday data, as in Ghysels et al. (2006), with that of Ghysels et al. (2006) or Ghysels

and Sinko (2011), where daily realized measures (that are potentially robust to microstructure noise and jumps)
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are introduced in a MIDAS-RV model.

6 Appendix
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6.1 Appendix A: Pre-averaged MIDAS regressors – S&P 500

Figure 10: S&P 500 average QLIKE
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frequencies of 1-min and 5-min.
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6.2 Appendix B: Pre-averaged MIDAS regressors – Microsoft

Figure 11: Microsoft average QLIKE
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6.3 Appendix C: HAR-RV versus MIDAS

In this appendix, we show that the HAR-RV model proposed by Corsi (2009) can be written as a weight-

constrained form of the MIDAS model with regressors sampled at a frequency m2. The HAR-RV model is

defined as:

RV
(m2)
t+1,t = α0 + α1RV

(m2)
t,t−1 + α2RV

(m2)w
t,t−1 + α3RV

(m2)m
t,t−1 + εt+1, (21)

where RVt+1,t is the daily realized variance given by:

RV
(m2)
t+1,t = Im2

(L1/m2)r
(m2)2
t+1,t+1−1/m2

, (22)

with Im2
(L1/m2) =

∑m2−1
j=0 Lj/m2 , and m2 the sampling frequency of the squared returns used to compute the

realized variance. By convention

RV
(m2)w
t,t−1 =

1

5

4∑

i=0

RV
(m2)
t−i,t−i−1, (23)

and

RV
(m2)m
t,t−1 =

1

22

21∑

i=0

RV
(m2)
t−i,t−i−1. (24)

To complete the explanation, we include Eq. (22), Eq. (23) and Eq. (24) into the definition of the model

and obtain:

RV
(m2)
t+1,t = α0 + (α1 +

1
5α2 +

1
22α3)RV

(m2)
t,t−1 + ( 15α2 +

1
22α3)

∑4
i=1 RV

(m2)
t−i,t−i−1+

1
22α3

∑21
i=5 RV

(m2)
t−i,t−i−1 + εt+1

= α0 + (α1 +
1
5α2 +

1
22α3)Im2

(L1/m2)r
(m2)2
t,t−1/m2

+ ( 15α2 +
1
22α3)

∑4
i=1 Im2

(L1/m2)r
(m2)2
t−i,t−i−1/m2

+ 1
22α3

∑21
i=5 Im2

(L1/m2)r
(m2)2
t−i,t−i−1/m2

+ εt+1.

(25)

Finally, the HAR-RV model takes the form of a daily MIDAS-RV model with squared return regressors

sampled at a frequency m2:

RV
(m2)
t+1,t = α0 + (α1 +

1
5α2 +

1
22α3)

∑m2−1
j=0 Lj/m2r

(m2)2
t,t−1/m2

+ ( 15α2 +
1
22α3)

∑4
i=1

∑m2−1
j=0 Lj/m2r

(m2)2
t−i,t−i−1/m2

+ 1
22α3

∑21
i=5

∑m2−1
j=0 Lj/m2r

(m2)2
t−i,t−i−1/m2

+ εt+1.

(26)
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6.4 Appendix D: MIDAS-RK Specification

Table 7: MIDAS-RK specification

Panel A: Calm period (2007)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2488 0.1245 0.2008 0.1365 0.2165 0.1919 0.1096 0.0501 0.2306 0.1782 0.1132 0.0050

1min Per.Adj 0.2403 0.1245 0.2029 0.0953 0.2039 0.5378 0.1115 0.0471 0.2199 0.2961 0.1142 0.0050

1min Jumps.Adj 0.2211 0.8981 0.2164 0.0159 0.1738 1.0000 0.1244 0.0027 0.1960 0.7260 0.1302 0.0005

1min Jumps.Adj-Preav 0.2209 0.1245 0.1993 0.1365 0.1792 0.6902 0.1087 0.0467 0.4065 0.1782 0.1086 0.0050

5min 0.2204 0.8981 0.1841 0.5713 0.1836 0.6902 0.0914 0.9376 0.2044 0.4319 0.0903 0.2666

5min Per.Adj 0.2192 1.0000 0.1886 0.3179 0.1810 0.6902 0.0929 0.9365 0.1998 0.6095 0.0900 0.2666

5min Jumps.Adj 0.2231 0.1245 0.1870 0.3179 0.1771 0.7363 0.0929 0.9376 0.1944 1.0000 0.0921 0.2666

5min Jumps.Adj-Preav 0.2200 0.9341 0.1993 0.1365 0.1787 0.7363 0.1090 0.0396 0.4063 0.1782 0.1084 0.0050

10min 0.2254 0.1245 0.1888 0.3179 0.1905 0.5378 0.0993 0.4091 0.2127 0.1782 0.0980 0.1356

15min 0.2313 0.1245 0.1899 0.3179 0.1988 0.1973 0.0967 0.6333 0.2194 0.2961 0.0953 0.1356

30min 0.2228 0.1245 0.1852 0.3179 0.1866 0.6902 0.0928 0.9376 0.2079 0.6095 0.0912 0.2666

1h05 0.2339 0.1245 0.1900 0.3179 0.1946 0.5940 0.1027 0.4091 0.2115 0.4319 0.0963 0.2666

3h15 0.2766 0.0795 0.1857 0.3179 0.2366 0.1919 0.0883 1.0000 0.2417 0.1782 0.0762 1.0000

HAR-RV 0.2242 0.1245 0.1809 1.0000 0.1916 0.5501 0.0979 0.4903 0.2127 0.2961 0.0982 0.1356

HAR-RV-J 0.2292 0.1245 0.1837 0.3179 0.1953 0.5378 0.1007 0.1164 0.2178 0.1782 0.1030 0.0249

GARCH 0.3195 0.0795 0.2203 0.0953 0.2663 0.1919 0.1265 0.0501 0.2708 0.1782 0.1236 0.0249

GAS 0.3102 0.0795 0.2026 0.3179 0.2466 0.1919 0.1043 0.6333 0.2451 0.1782 0.0954 0.2666

Panel B: Crisis period (2008)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2342 0.0145 0.3377 0.0520 0.2458 0.0834 1.1943 0.0039 0.3280 0.0649 0.3076 0.0044

1min Per.Adj 0.2255 0.0318 0.4581 0.0520 0.2353 0.4954 0.5386 0.0215 0.3120 0.0844 0.4533 0.0044

1min Jumps.Adj 0.2119 0.0318 0.1886 0.8930 0.2155 0.5462 0.1502 1.0000 0.3344 0.0844 0.1797 1.0000

1min Jumps.Adj-Preav 0.3830 0.0087 0.1976 0.2830 0.2973 0.0021 0.1858 0.0633 0.4030 0.0649 0.1991 0.4525

5min 0.2193 0.0318 0.1976 0.1087 0.2301 0.4954 0.1963 0.0633 0.2995 0.0844 0.9667 0.0037

5min Per.Adj 0.2150 0.0318 0.1932 0.2830 0.2280 0.5462 0.1646 0.1684 0.2873 0.3356 0.4717 0.0044

5min Jumps.Adj 0.1805 1.0000 0.1878 1.0000 0.2065 1.0000 0.1649 0.1378 0.3243 0.0844 0.1805 0.9304

5min Jumps.Adj-Preav 0.2587 0.0087 0.2083 0.0520 0.3011 0.0021 0.1880 0.0524 0.4033 0.0649 0.2012 0.3479

10min 0.2306 0.0145 0.2083 0.0520 0.2423 0.0834 0.3447 0.0039 0.3428 0.0649 0.3525 0.0037

15min 0.2319 0.0145 0.3678 0.0520 0.2448 0.0834 0.7383 0.0039 0.3320 0.0649 0.5074 0.0037

30min 0.2491 0.0087 0.2585 0.0520 0.2887 0.0175 0.2169 0.0215 0.3600 0.0649 0.2417 0.0213

1h05 0.2606 0.0087 0.2300 0.0520 0.3137 0.0364 0.6801 0.0039 0.4043 0.0649 0.3155 0.0037

3h15 0.2635 0.0145 0.2847 0.0520 0.3670 0.0021 0.2551 0.0215 0.4520 0.0371 0.2275 0.3479

HAR-RV 0.2355 0.0318 0.2022 0.1087 0.2735 0.0834 0.1890 0.0524 0.3950 0.0403 0.2519 0.0044

HAR-RV-J 0.2418 0.0145 0.1968 0.2830 0.2742 0.0829 0.1818 0.0633 0.3943 0.0371 0.2397 0.0044

GARCH 0.2445 0.0318 0.2285 0.0520 0.2385 0.4954 0.1907 0.1378 0.2772 0.3356 0.1976 0.7575

GAS 0.2533 0.0145 0.2589 0.0520 0.2293 0.5462 0.2112 0.0524 0.2426 1.0000 0.2126 0.3479

Note: This table presents the MCS test results obtained for S&P 500 and Microsoft during both calm and crisis periods. The results are
reported for three forecasting horizons, namely one day (H = 1), one week (H = 5) and two weeks (H = 10). For each of them, we
present the average value of the QLIKE loss function along with the corresponding p-value resulting from the MCS test. The confidence
level for the MCS test is set to α = 25% and 10,000 bootstrap resamples are used, with block length of five observations, to obtain the
distribution under the null of equal predictive accuracy. The set of the competing variance models includes seven MIDAS-RK specifications
with regressors (squared return) sampled at a frequency ranging from one minute to about three hours, six MIDAS-RK models with 1-
and 5-minute regressors adjusted for intraday periodicity, jumps an/or microstructure noise, the HAR-RV, HAR-RV-J, GARCH and GAS
models.
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6.5 Appendix E: MIDAS with Absolute Return Regressors

Table 8: MIDAS with absolute return regressors

Panel A: Calm period (2007)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2307 0.8883 0.1551 0.1123 0.1998 0.7409 0.0969 0.0549 0.2202 0.8202 0.1062 0.0059

1min Per.Adj 0.2329 0.8883 0.1559 0.1002 0.1998 0.7409 0.0975 0.0490 0.2197 0.8965 0.1074 0.0022

1min Jumps.Adj 0.2386 0.5373 0.1621 0.0597 0.2020 0.7409 0.1035 0.0084 0.2284 0.5357 0.1126 0.0019

1min Jumps.Adj-Preav 0.2153 1.0000 0.1576 0.0186 0.2447 0.5811 0.0988 0.0084 0.3901 0.5357 0.1037 0.0022

5min 0.2226 0.8883 0.1387 0.5411 0.2043 0.7409 0.0825 0.9210 0.2258 0.5357 0.0870 0.3491

5min Per.Adj 0.2232 0.8883 0.1408 0.5411 0.2045 0.7409 0.0829 0.9210 0.2259 0.5357 0.0875 0.3491

5min Jumps.Adj 0.2289 0.5373 0.1408 0.5411 0.2056 0.7409 0.0837 0.8663 0.2279 0.5357 0.0890 0.3491

5min Jumps.Adj-Preav 0.2160 0.8883 0.1574 0.0186 0.2368 0.7007 0.0988 0.0084 0.3909 0.1500 0.1034 0.0026

10min 0.2244 0.8883 0.1422 0.5411 0.2093 0.7409 0.0854 0.8663 0.2307 0.5357 0.0888 0.3491

15min 0.2311 0.4120 0.1457 0.5411 0.2168 0.7007 0.0865 0.8663 0.2271 0.5357 0.0890 0.3491

30min 0.2235 0.8883 0.1450 0.5411 0.2108 0.7409 0.0839 0.9210 0.2296 0.5357 0.0881 0.3491

1h05 0.2383 0.4120 0.1440 0.5411 0.2204 0.7409 0.0882 0.8663 0.2314 0.5357 0.0911 0.3491

3h15 0.2957 0.1030 0.1455 0.5411 0.2715 0.4483 0.0813 1.0000 0.2745 0.5357 0.0755 1.0000

HAR-RV 0.2176 0.8883 0.1345 1.0000 0.1941 1.0000 0.0868 0.8663 0.2172 1.0000 0.0943 0.3491

HAR-RV-J 0.2187 0.8883 0.1359 0.5411 0.1973 0.7409 0.0883 0.8663 0.2226 0.5357 0.0960 0.3491

GARCH 0.3240 0.1937 0.2208 0.0186 0.2849 0.5811 0.1677 0.0084 0.2935 0.5357 0.1747 0.0019

GAS 0.3161 0.1682 0.1884 0.0186 0.2669 0.6078 0.1292 0.0084 0.2688 0.5357 0.1296 0.0530

Panel B: Crisis period (2008)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2047 0.5243 0.1606 0.5608 0.2195 0.4701 0.1391 0.4253 0.2789 0.5124 0.4582 0.0198

1min Per.Adj 0.2048 0.5243 0.1612 0.5608 0.2176 0.4701 0.1386 0.4253 0.2769 0.5124 0.4573 0.0198

1min Jumps.Adj 0.2096 0.5243 0.1595 1.0000 0.2228 0.4701 0.1373 1.0000 0.2866 0.5124 0.4128 0.0198

1min Jumps.Adj-Preav 0.2069 0.5243 0.1757 0.4526 0.2317 0.4701 0.1796 0.0161 0.3016 0.5124 0.1920 0.0995

5min 0.1994 1.0000 0.1643 0.5608 0.2165 0.4701 0.1491 0.3714 0.2714 0.6234 0.4339 0.0198

5min Per.Adj 0.2001 0.5243 0.1660 0.5608 0.2150 1.0000 0.1473 0.4107 0.2706 0.6234 0.1638 1.0000

5min Jumps.Adj 0.2033 0.5243 0.1656 0.5608 0.2176 0.4701 0.1472 0.4107 0.2789 0.5124 0.1646 0.7402

5min Jumps.Adj-Preav 0.2160 0.5243 0.1788 0.1468 0.2323 0.4701 0.1814 0.0161 0.3012 0.5124 0.1941 0.0995

10min 0.2087 0.5243 0.1782 0.1468 0.2351 0.4701 0.1724 0.0161 0.2948 0.5124 0.2268 0.0198

15min 0.2145 0.5243 0.1701 0.5608 0.2235 0.4701 0.1578 0.1304 0.2904 0.5124 0.7828 0.0198

30min 0.2165 0.5243 0.1962 0.1383 0.2352 0.4442 0.2109 0.0161 0.3041 0.2871 0.9052 0.0198

1h05 0.2259 0.5243 0.2175 0.1383 0.2637 0.3085 0.2418 0.0161 0.3227 0.2871 0.2734 0.0198

3h15 0.2604 0.0181 0.2554 0.0664 0.2836 0.0107 0.2449 0.0161 0.3364 0.0275 0.2334 0.0198

HAR-RV 0.2102 0.5243 0.1781 0.4526 0.2449 0.4701 0.1754 0.0161 0.3563 0.2871 0.2346 0.0198

HAR-RV-J 0.2148 0.5243 0.1719 0.5608 0.2472 0.4442 0.1669 0.3714 0.3569 0.2871 0.2205 0.0995

GARCH 0.2291 0.5243 0.2205 0.1468 0.2282 0.4701 0.2041 0.0161 0.2723 0.5124 0.2208 0.0995

GAS 0.2363 0.5243 0.2447 0.1383 0.2173 0.4701 0.2142 0.0161 0.2348 1.0000 0.2226 0.0995

Note: This table presents the MCS test results obtained for S&P 500 and Microsoft during both calm and crisis periods. The results are
reported for three forecasting horizons, namely one day (H = 1), one week (H = 5) and two weeks (H = 10). For each of them, we present
the average value of the QLIKE loss function along with the corresponding p-value resulting from the MCS test. The confidence level for
the MCS test is set to α = 25% and 10,000 bootstrap resamples are used, with block length of five observations, to obtain the distribution
under the null of equal predictive accuracy. The set of the competing variance models includes seven MIDAS specifications with regressors
(absolute return) sampled at a frequency ranging from one minute to about three hours, six MIDAS models with 1- and 5-minute regressors
adjusted for intraday periodicity, jumps and/or microstructure noise, the HAR-RV, HAR-RV-J, GARCH and GAS models.
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6.6 Appendix F: MIDAS with Bipower Variation Return Regressors

Table 9: MIDAS with bipower variation return regressors

Panel A: Calm period (2007)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2506 0.1758 0.2468 0.0136 0.2298 0.1230 0.0972 0.0648 0.2417 0.2713 0.1089 0.0080

1min Per.Adj 0.2391 0.2355 0.1534 0.0480 0.2158 0.6271 0.0994 0.0648 0.2307 0.4880 0.1112 0.0067

1min Jumps.Adj 0.2127 0.9420 0.1589 0.0136 0.1816 1.0000 0.1047 0.0193 0.2062 1.0000 0.1149 0.0019

1min Jumps.Adj-Preav 0.2155 0.2355 0.1560 0.0136 0.1900 0.8235 0.1000 0.0193 0.4248 0.2713 0.1053 0.0191

5min 0.2089 1.0000 0.1363 0.7438 0.1890 0.8235 0.0803 0.7465 0.2095 0.9527 0.0860 0.5852

5min Per.Adj 0.2097 0.9420 0.1379 0.7438 0.1887 0.8235 0.0796 1.0000 0.2086 0.9527 0.0849 0.5852

5min Jumps.Adj 0.2145 0.8431 0.1386 0.7438 0.1885 0.8235 0.0815 0.7465 0.2085 0.9527 0.0881 0.2409

5min Jumps.Adj-Preav 0.2137 0.9420 0.1566 0.0136 0.1891 0.8235 0.1003 0.0438 0.4424 0.2683 0.1046 0.0191

10min 0.2171 0.2355 0.1397 0.7438 0.1987 0.7649 0.0888 0.1841 0.2161 0.6856 0.0934 0.1692

15min 0.2212 0.2355 0.1507 0.0756 0.2016 0.7649 0.0928 0.0648 0.2230 0.6495 0.0969 0.1692

30min 0.2200 0.2355 0.1499 0.2492 0.1970 0.8235 0.0916 0.0648 0.2302 0.4880 0.0957 0.1692

1h05 0.2625 0.2355 0.1456 0.5857 0.2101 0.6271 0.0964 0.0648 0.2229 0.6856 0.1037 0.0191

3h15 0.3410 0.0163 0.1502 0.2922 0.3065 0.1230 0.0833 0.7465 0.2993 0.2713 0.0766 1.0000

HAR-RV 0.2176 0.2355 0.1345 1.0000 0.1941 0.8235 0.0868 0.0687 0.2172 0.7592 0.0943 0.1230

HAR-RV-J 0.2187 0.2355 0.1359 0.7438 0.1973 0.7649 0.0883 0.0648 0.2226 0.4880 0.0960 0.0191

GARCH 0.3240 0.1516 0.2208 0.0136 0.2849 0.1230 0.1677 0.0193 0.2935 0.2713 0.1747 0.0019

GAS 0.3161 0.1419 0.1884 0.0136 0.2669 0.1230 0.1292 0.0193 0.2688 0.2713 0.1296 0.0191

Panel B: Crisis period (2008)

H=1 H=5 H=10

S&P 500 MSFT S&P 500 MSFT S&P 500 MSFT

QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value QLIKE p-value

1min 0.2261 0.0304 0.8523 0.0042 0.2428 0.0102 0.7263 0.0029 0.3122 0.1654 1.2599 0.0095

1min Per.Adj 0.2200 0.0304 0.1990 0.1150 0.2330 0.0477 0.5763 0.0178 0.3000 0.5006 0.1664 1.0000

1min Jumps.Adj 0.2095 0.0317 0.1605 1.0000 0.2031 0.5510 0.1343 1.0000 0.3207 0.5006 0.1748 0.5822

1min Jumps.Adj-Preav 0.2431 0.0304 0.1717 0.3030 0.2609 0.0102 0.1741 0.0178 0.3524 0.1654 0.1927 0.3582

5min 0.4821 0.0304 0.1722 0.1150 0.2314 0.4275 0.1586 0.0537 0.8549 0.0355 0.2625 0.0216

5min Per.Adj 0.1858 0.0317 0.1663 0.3030 0.2025 0.5510 0.1508 0.1685 0.2866 0.5006 0.1702 0.6634

5min Jumps.Adj 0.1747 1.0000 0.1620 0.8312 0.1937 1.0000 0.1519 0.1228 0.3097 0.5006 0.1721 0.6260

5min Jumps.Adj-Preav 0.2465 0.0304 0.1927 0.1150 0.2712 0.0102 0.1848 0.0178 0.3625 0.1654 0.2002 0.1221

10min 0.2233 0.0304 0.2059 0.0042 0.2293 0.1029 0.3507 0.0029 0.3277 0.1654 0.6099 0.0143

15min 0.2139 0.0304 0.1743 0.3030 0.2249 0.1029 0.2972 0.0178 0.5412 0.0355 0.3097 0.0143

30min 0.1937 0.0317 0.2547 0.0042 0.2454 0.0102 0.2603 0.0131 0.8991 0.0355 0.2655 0.0143

1h05 0.2339 0.0304 0.2638 0.0042 0.2985 0.0102 0.3464 0.0029 0.3637 0.1654 1.0577 0.0143

3h15 0.2937 0.0304 0.2880 0.0042 0.2843 0.0102 0.2497 0.0058 0.9281 0.0355 0.2327 0.0897

HAR-RV 0.2102 0.0317 0.1781 0.1150 0.2449 0.0477 0.1754 0.0178 0.3563 0.0364 0.2346 0.0143

HAR-RV-J 0.2148 0.0317 0.1719 0.3030 0.2472 0.0477 0.1669 0.0537 0.3569 0.0355 0.2205 0.0216

GARCH 0.2291 0.0317 0.2205 0.1150 0.2282 0.4275 0.2041 0.0178 0.2723 0.5006 0.2208 0.1221

GAS 0.2363 0.0304 0.2447 0.1150 0.2173 0.5510 0.2142 0.0178 0.2348 1.0000 0.2226 0.1221

Note: This table presents the MCS test results obtained for S&P 500 and Microsoft during both calm and crisis periods. The results are
reported for three forecasting horizons, namely one day (H = 1), one week (H = 5) and two weeks (H = 10). For each of them, we present
the average value of the QLIKE loss function along with the corresponding p-value resulting from the MCS test. The confidence level for
the MCS test is set to α = 25% and 10,000 bootstrap resamples are used, with block length of five observations, to obtain the distribution
under the null of equal predictive accuracy. The set of the competing variance models includes seven MIDAS specifications with regressors
(bipower variation) sampled at a frequency ranging from one minute to about three hours, six MIDAS models with 1- and 5-minute regressors
adjusted for intraday periodicity, jumps and/or microstructure noise, the HAR-RV, HAR-RV-J, GARCH and GAS models.
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