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Abstract

We investigate the family of concepts that an agent comes to know
through a set of defining features, and examine the role played by these
features in the process of categorization. When categorial membership
is measured through a weak order relation translating the fact that
a concept may apply more to an object than to another, the passage
from the features membership functions to this global ordering poses
a problem analogous to vote aggregation in social choice theory. This
similarity leads to an original solution that is particularly well-adapted
to the framework of cognitive psychology. The resulting membership
order extends to compound concepts, and provides a good description
of the guppy paradoxe and the conjunction effect.

Keywords categorization, concept, extension, categorial membership, guppy
effect, conjunction effect, word meaning, social choice, preference ag-
gregation.

1 Introduction

An important domain of categorization theory is that of categorial member-
ship, which analyzes the link between concepts and objects and the way the
former apply to the latter. The original Fregean view (Frege, 1879), which
reduced categorial membership to an all-or-nothing matter, was thereafter
enlarged to that of a graded notion with intermediate states: as pointed out
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by Eleanor Rosch, membership became a ‘matter of degrees’ (Rosch, 1975).
In this perspective, the fuzzy logic of Zadeh (Zadeh, 1965) seemed to pro-
vide the adequate tool for the treatment of categorial membership, replacing
the notion of membership degrees by that of membership functions taking
their values in the unit interval. Some drawbacks and counterintuitive re-
sults pointed out by Osherson and Smith (Osherson and Smith, 1981) and
Kamp and Partee (Kamp and Partee, 1995) drove the researchers to revise
the initial fuzzy model, and to look for alternative fuzzy logics - see (Dubois
et al., 2005) or (Lee, 2003) for an overview on the most recent work in this
area.

Our approach differs from the preceding ones in that we consider cat-
egorial membership as a qualitative rather than a quantitative notion. As
we argued in (Freund, 2008) and (Freund, 2009), the strength with which a
concept applies to an object is best accounted for by a (pre)order relation
among the objects of the universe: a given agent may be unable to deter-
mine to which degree a machine-gun may be considered as a weapon of mass
destruction (WMD), while judging that it falls more under the concept of
WMD than a cross-bow. From our point of view, categorial membership has
therefore to be accounted for by means of membership orders.

In this paper, we shall restrict our attention to the family of concepts
that come to an agent’s knowledge through a set of descriptive or defining
features. This family is far from covering the class of all concepts, but it is still
large enough to deserve a treatment of its own. We shall try to understand
how, for a concept of this type, categorial membership may be inherited from
its features. This situation is analogous to that encountered in social choice
theory or in multi-criteria decision theory, where a general preference order
has to be built by aggregating individual preferences. In this perspective, an
original solution will be proposed, leading to a construction that conforms
with the intuition and is free from several drawbacks encountered in previous
attempts. Its compositional properties put a new light on the so-called ‘guppy
effect’ which, together with the ‘conjunction fallacy’, is at the center of most
of the recent work in concept composition.

This paper is organized as follows: in Section 2, we recall some basic
facts concerning membership orders, their use and utility. The framework of
our study is specified in Section 3, where we discuss the difference between
concepts and features, introducing the notion of featured concepts. In Section
4, the central part of this paper, we show how to build a membership order
for concepts defined by their features. Two solutions are proposed, and their
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properties compared. We also show how to build from these (partial) orders
a membership distance function, which can be thereafter used to build a
membership degree function. The case of compound concepts is examined in
Section 5: there, we define the membership order that can be attached to a
composed concept obtained by determination or modification of a principal
concept; we also evoke some paradoxes of the classical theory and show that
they can receive a correct treatment in the framework of qualitative member-
ship orders. In Section 6, we show that the theory can be enlarged to a more
general family of concepts, covering the class of concepts that can be defined
through the elementary grammar of a dictionary. Section 7 is a conclusion.

The proof of the Observations is given in the Appendix.

2 Membership orders

In general, the human mind has no tool at its disposal to directly evaluate
the categorial membership of an object: even though, in the extremal cases,
we may be able to decide that a given object is or is not a member of the con-
cerned category, we do not know in the intermediate states how to quantify
its partial membership: a conventional bomb is definitely not a weapon-of-
mass-destruction (WMD), and the same is true for a machine gun, yet, we
are unable to attribute a precise degree of WMD-membership to any of these
items.

As a matter of fact, the only thing the human mind is capable of con-
cerning membership evaluation is to compare two objects and decide which
one, if any, falls ‘more’ under the concerned concept. Thus, the concept
to-be-a-weapon-of-mass-destruction will be generally considered as applying
more to a machine-gun than to an arquebus, and less to a spear than to an
arquebus. Clearly, this judgement shows the existence of a basic ordering
induced by the concept to-be-a-weapon-of-mass-destruction in the universe
of discourse. This ordering is by no means a consequence of degree assign-
ment that the agent has set a-priori on the objects at his disposal, although
such an assignment becomes possible once the agent has gathered a collec-
tion of specimen and proceeded to compare them to each other. For instance
the agent may decide to rank the weapons she knows into a non-decreasing
sequence that reflects their relative ability to be considered as a WMD. A
sequence like bludgeon ≤ sword ≤ spear ≤ crossbow ≤ arquebus ≤ gun ≤
machine-gun ≤ flamethrower ≤ conventional bomb ≤ scud ≤ atomic bomb
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could thus be established, rendering possible the attribution of an explicit
or implicit membership degree to each of the concerned items. If the agent
understands this sequence as a strictly increasing one, she will consider an
atomic bomb as being 100% a WMD, a scud as 90%, a conventional bomb
as 80% and so on. If she considers that the six first items of the sequence
are equivalent, being totally deprived of anything that evokes a WMD, the
agent will rank the scud as a WMD at degree 80%, the conventional bomb at
60%, the flamethrower at 40% and the machine-gun at 20%, while bludgeon,
sword, spear, crossbow, arquebus and gun are by no means to be considered
as WMD. The point is that, in any case, these WMD-degrees appear as a
consequence of a pre-recognized order among a given set of weapons: they
do not stand at the origin of it.

Order relations therefore appear to provide the most adequate model to
account for categorial membership as perceived by a cognitive agent. Ap-
pealing systematically to relations of this type whenever it is possible avoids
the drawbacks that may result from the application of more sophisticated
theories. In some cases, order relations may be insufficient to fully treat
categorial membership - this will be for instance the case for fuzzy concepts,
or for vague concepts of a continuous type: for these concepts, interesting
theories have been developed in different domains - fuzzy set theory (Zadeh,
1982), geometrical spaces (Gärdenfors, 2000), and even quantum mechanics
(Franco, 2009) and (Aerts, 2009). But for the specific class of concepts that
will be studied in this paper, the family of order relations is sufficiently wide
to adequately model the problem of categorial membership.

We need at this stage to specify what we mean by membership order :
the fact that a concept α may apply more (or better) to an item x than to
an item y is best translated by a preorder relation, that is a reflexive and
transitive relation on the set of objects O of the universe. This relation will
be denoted by �α. We shall therefore consider that the expression ‘x �α y’
translates the sentence ‘the concept α applies at least as much to the object
y as to the object x’, or, equivalently ‘x falls no more under the concept α
than y’. We shall denote by ≺α the corresponding strict partial order, that is
the relation ‘x �α y and not y �α x’. We can then translate the expression
‘x ≺α y’ by the sentence ‘the concept α applies more to y than to x’, or ‘x
falls less under α than y’. The equivalence relation induced by �α will be
denoted by ∼α: we have therefore x ∼α y if and only if x �α y and y �α x.

In the general case the relation �α will not be supposed to be total: in
this we depart from most of the existing theories. Indeed, we consider that
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there is no reason to a priori eliminate the case where the membership of
two objects is incomparable - which may be for instance the case when the
birdhood of a tortoise is compared with that of a bat .

A construction of a concept membership order has been already presented
in (Freund, 2008) and (Freund, 2009) in the particular case of definable con-
cepts, that is concepts that could be inductively defined from sharp concepts
like in a rudimentary dictionary. In this paper, we propose a different con-
struction, simpler than the original one, and applicable to a larger class of
concepts.

2.1 Finite membership orders

A (pre)order � will be said to be finite if it has only finitely many classes
for the associated equivalence relation. For such orders, any increasing chain
is of bounded length. Such is for instance the case for membership orders
associated with fuzzy concepts that admit a discrete membership degree
function. As a limit case, the simplest example is provided by sharp concepts,
for which the membership order has only two classes: one constituted by the
objects that fall under the concept, the other one by the objects that do not
fall under it. We shall justify in the next section the choice of these orders
to model concept membership. From a computational point of view, finite
membership orders are of particular interest because, even though they are
not total orders, they give rise to a natural notion of membership distance
and of membership degree, as we show now:

Let α be a concept with finite associated membership order �α, and
denote by Extα (the extension of α) the set of all ≺α-maximal objects 1.
Given an object x, we first define its α-membership distance µα(x) as the
maximal length of a chain x ≺α x1 ≺α x2 ≺α . . . ≺α xn starting from
x. Such a chain ends up with an element xn ∈ Extα. It measures how
far, for a given agent, an object stands from a category. We have clearly
µα(x) > µα(y) whenever x ≺α y, but the converse is not necessarily true.
Note that µα(x) = µα(y) whenever x ∼α y, and that x ∈ Extα if and only
if µα(x) = 0.

The membership distance yields a membership degree, as we saw in WMD
example. A membership degree function δα can be indeed defined by setting,

1We will show later that the extension of a concept exactly corresponds to the set of
all objects that fall under this concept.
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for every object x, δα(x) = 1 − µα(x)
Nα

, where Nα is a constant that can be
chosen as the maximal length of an ≺α-chain. Again, this length may vary
between two agents, leading to different degrees δα and δ′α even in the case
where the agents agree on the membership order �α. The degrees are then
related through the equality 1 − δα = k(1 − δ′α), with k = N ′

α

Nα
. In the WMD

examples for instance, we had k = 1/2.
Note that δα(x) = 1 if and only if x ∈ Extα, that δα(x) = 0 if and only

if x is ≺α-minimal, and that δα(x) < δα(y) whenever x ≺α y.

3 Featured concepts

Following the attributional view which gave rise to the so-called binary model
(Smith et al., 1974), (Smith and Medin, 1981), and (Osherson and Smith,
1982), class membership relative to a concept is accounted for by a set of
defining features, while all questions concerning typicality are taken care of
through a (different set) of characteristic features. It is only the former set
that will retain our attention in the present paper since our aim is actually to
provide a framework for categorial membership. (For a general treatment of
typicality, see (Freund, 2009)). Numerous counter examples however showed
that, contrary to this theory, arbitrary concepts cannot be generally reduced
to a list of constituents. Fodor (Fodor, 1998) argues for instance that here
exists practically no examples for successful definition around. Our position
stands between these two extremes: although it is clear that not all concepts
can be defined or described through a set of features, this remains still the
case for some important subclasses, like those of nominal, natural kind or
scientific concepts. They constitute a family large enough to deserve a study
of its own.

In an agent’s mind, the defining features attached to a concept are those
by which the concept may be fully seized and unsderstood: they are individu-
ally necessary and collectively sufficient to specify membership in a category
(Rosch and Mervis, 1975). In particular, an object falls under a concept if
and only if it falls under all its defining features. It is worth noticing that
this supposes the existence of an item on which all the defining features of
this concept apply simultaneously.

The attributional view links the categorization process relative to a con-
cept with categorization relative to its defining features. For example, if for a
given agent the defining feature set associated with the concept to-be-a-bird
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consists of the features to-be-warm-blooded, to-have-a-beak, to-have-feathers
and to-have-wings, the birdhood of a given animal is to be analyzed through
its membership relative to theses features. Similarly, to quote an example
of Putnam (Putnam, 1975), the meaning of the term tiger is to be searched
by reference to the terms yellow feline, fierce, black stripes, and jungle: the
defining features associated with the concept to-be-a-tiger consist of the prop-
erties to-be-a-yellow-feline, to-have-black-stripes, to-live-in-the-jungle and to-
be-fierce.

Of course, the defining features of a concept may vary from an agent to
another. It may even be the case that, for a given agent, a concept has
an attached set of defining features, while being deprived of such a set for
another agent. For this reason, our work is o be analyzed as an attempt to
model the categorization process of a single particular given agent at a well
defined moment.

The concepts we are interested in are, in a first place, those for which,
similarly to the attributional view, membership is measured through a set of
features. At a second stage we shall consider concepts whose definitions are
of a more elaborated type. This will encompass a more general family, large
enough to deserve a treatment of its own, even though it dos not cover the
whole set of concepts that are part of an agent’s knowledge.

3.1 Concepts and features

The terms concept and feature cover different notions. Formally, in English
language, concepts are most often introduced through the auxiliary to-be fol-
lowed by a noun: to-be-a-bird, to-be-a-vector-space, to-be-a-democracy. Fea-
tures may be presented through a verb (to-fly), the auxiliary to-have followed
by a noun (to-have-a-beak), or the auxiliary to-be followed by an adjective
(to-be-tall). While concepts appear as unary predicates, this condition is no
more necessary for features, which may take arbitrary forms. On the ground
level, we know that features, like concepts, apply to the objects at hand,
but, contrary to concepts, they borrow part of their significance from the
concept they are attached to. Properties like to-be-tall, to-be-rich, or to-be-
red take their full meaning only in a given context, that is when qualifying
a well-defined entity. Even simple verbal forms like to-fly, to-run, to-live-
in-water, to-be-made-of-metal need a principal referent concept to fully seize
the strength with which they apply to different items. Thus, the concept to
which the feature applies may be seen itself as a contextual determination of
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this feature. To summarize, we consider that the meaning of a feature de-
pends on the context in which this feature is used, contrary to the meaning
of a concept, which exits by itself.

It does not seem at this stage that any formalism can fully account for
the difference between features and concepts. It is true that in Description
Logics, different treatments are applied to one and two-places predicates:
binary predicates characterize indeed the roles of the language, which are
used to express relationship between the concepts (Nardi and Brachman,
2003). Thus, to-be-a-tree will be a concept, expressible by a single symbol
A, but to-have-green-leaves is a ‘role’, expressed by a formula of the type ‘∀
hasLeaves.Green’. However, no difference is made between unary predicates
that translate a notion of concept and those that translate a notion of feature.

Note finally that, when considering a concept α and a feature f of α,
the strength with which f applies to an object may be itself related to the
categorial membership of an auxiliary concept β. For instance, in order to
evaluate to which degree an item x may be considered as having-wings, we
must be able to determine what exactly covers the concept to-be-a-wing, and
which objects fall under it (for a discussion on the difference between knowing
what an X is and knowing what it is to have an X, see (Fodor, 1998)). This
observation shows that circularity cannot be avoided when trying to build
a general mathematical model for categorial membership. However, such is
not the purpose of this work: in this paper, we only try to model the way
categorial membership of concepts can be deduced from the knowledge of
their defining features, without questioning the nature and the sources of
this knowledge.

3.2 Applicability functions and applicability orders for

concept features

In a given ontology, the strength with which a feature f applies to an object
is usually measured through an applicability degree function δf with values in
the unit interval, satisfying δf (x) = 1 if f ‘fully’ applies to x, and δf (x) = 0
if x is totally deprived of f . Concerning the range of δf , it is important to
note that, most often, it can be circumscribed to a finite subset of [0, 1]:
this is clearly true for fuzzy features like to-be-tall, to-be-rich or to-be-warm,
since the measure of their applicability is always approximative (to an inch,
a cent or a degree). In Britain coast, for instance, the set of displayed water
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temperatures t in July ranges from 15 degrees Celsius to 25 degrees Celsius,
thus covering 10 possible values. The function associated with the concept
cold taken in this context may be given by δα

f = −t/10 + 2.5.
The finiteness of the range of δf is even more obvious in the general process

of categorization: in the context of a given concept α, ranking the objects
relatively to a feature yields only a small number of non equivalent classes.
To determine, for instance, to which extent a flower may be considered as a
poppy, one may, among others, evaluate its redness. Comparison with other
real or fictitious items shows only a finite number of non equivalent reds that
stand between the color of that particular flower and that of an ideal poppy.
Thus, in the context of a poppy, there exists only a small number of possible
degrees of redness.

For this reason, we shall restrict our attention to the family of concepts
whose defining features can be weighed on a finite scale. We shall call these
concepts featured concepts. Given such a concept α, the way any of its
defining features f applies to an item can be therefore accounted for by an
applicability function δα

f that takes only a finite number of values. Equiva-
lently, we may say that f , as an α-feature, generates on the set of objects
at hand a finite and total applicability (pre)order �α

f , defined by: x �α
f y iff

δα
f (x) ≤ δα

f (y). Given an object x totally deprived of f and an object y to
which f fully applies, there exists only a finite number of intermediate states.

Putting together what precedes, we are now ready to introduce the notion
of featured concepts :

Definition 1 A featured concept α is a concept for which there exists a set
of defining features ∆(α) satisfying the two properties :

1. for every feature f of ∆(α), the corresponding applicability function δα
f

takes a finite number of values.

2. There exists at least an item z such that δα
f (z) = 1 for all f ∈ ∆(α).

In order to lighten the notations, we shall omit the superscript, and simply
write �f and δf for �α

f and δα
f . However, we have to keep in mind that

applicability orders or functions are always defined in the frame of a given
concept.

We shall write x ∼f y for (x �f y and y �f x).
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4 Categorial membership and preference ag-

gregation

We suppose given a featured concept α together with its set of defining fea-
tures ∆(α) = {f1, f2, . . . , fk}. In the perspective of the attributional view,
the categorization process relative to α is tightly linked with the categoriza-
tion process relative to its defining features. This means that the knowledge
of the applicability orders induced by (f1, f2, . . . , fk) is sufficient to deter-
mine the membership order associated with α. In this section, we shall try
to understand how one completes the passage from the �f1

,�f2
, . . . ,�fk

to
the target order �α.

It is interesting to observe that the problem of determining �α from the
�fi

’s is closely related with that encountered in social choice or in multicrite-
ria decision theory : there indeed, one tries to aggregate individual preferences
concerning a certain number of items into a general preference that would
best approach the individual ones. Let us give two examples:

Example 1 Suppose you want to buy an apartment in a given town. You
are offered a list of several possibilities. You will make up your mind after
evaluating the apartments of the list relatively to a certain amount of criteria
(f1, f2, . . . , fk) - the price, the surface, the district, the condition of the place,
the view and the existence of some items : elevator, parking possibilities,
closeness of a metro or a bus station. Once you have compared the plus and
minus of each of the proposed apartments in the light of these criteria, you
can rank the elements of the list and eventually choose the best one. Each
criterium fi induced an order �fi

on your list, and a final order was obtained
by aggregating together these orders.

Example 2 Electoral systems are confronted with the problem of aggregating
individual votes in the situation where several candidates have to be ranked by
a set of voters (f1, f2, . . . , fk). Each voter fi proposes a ranking �fi

among
the set of candidates, and the task of the electoral system is to aggregate
together these orders so that the resulting ranking best reflects the individual
preferences of the voters.

Since the original work of Borda (1781) and Condorcet (1785), a considerable
amount of research has been done on the problem of aggregating individual
preferences into a ranked order. In 1953, Arrow’s impossibility theorem (Ar-
row, 1953) showed that no solution coud be expected that would satisfy the

10



three axioms of non-dictatorship (no voter can impose its preferences regard-
less to other voters), unanimity (if all voters prefer y to x, then y should
be preferred to x in the final order) and independence (the final preference
between two items does not depend on the rank of the other items). In the
framework of categorial membership, things, though, are different. First, as
mentioned before, the relation to be built is not required to be total. Second,
the Arrow axioms need not be all satisfied: it is clear that a property like
unanimity should hold in the framework of concept membership - if all the
features of a concept apply more to an object y than to an object x, then it
should be the case that the concept itself applies more to y than to x - but
the two other Arrow properties are of less importance.

To fix the ideas, let us quickly examine two solutions that can be proposed
at a basic level.
The Pareto rule

The simplest way to build the relation �α from the relations �fi
is to take

their intersection, setting �α=
⋂

fi∈∆(α)(�fi
). This amounts to considering

that the concept α applies no more to x than to y if such is the case for
each of its defining features. Note that this construction satisfies all Arrow’s
properties. However, in this very skeptical approach, any feature fi of α can
be considered as a weak dictator : if for some i one has x ≺fi

y, then it
cannot be the case that y �α x, no matter how x and y stand relatively to
the other features.
The Borda method

In this method, the membership order induced by α rests on the sum of
the applicability degrees relative to each feature. That is, we have x ≤α y
iff

∑
δfi

(x) ≤
∑

δfi
(y). The axioms of non-dictatorship and unanimity are

satisfied, but this is not the case for that of independence: the preference
between x and y depends on the associated degrees δfi

(x) and δfi
(y), and

these are attributed after ranking all the elements of O.

Coming back to the general case, we note that although there exist formal
similarities between the classical problems of social choice theory and that
of categorial membership for featured concepts, there exists an important
difference: contrary to voters, whose votes have all the same weight, the
defining features of a concept are usually not considered as equivalent. Some
features are more salient than others, and the set ∆(α) is usually presented
with a salience relation between its elements. For instance, a particular agent
that has associated with the concept to-be-a-bird the defining set {to-be-a-
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vertebrate, to-be-oviparous, to-have-feathers, to-have-a-beak, to-have-wings}
may consider that having wings is a more important feature for birdhood
than having a beak. From her point of view, a bat will be endowed with more
birdhood than a tortoise.

We have therefore to take into account the relative salience of the elements
of ∆(α). When this salience is quantifiable, that is, when it can be translated
by a natural number corresponding to a degree or to a rank of importance,
this can be done through a simple perequation, the voice of a voter of rank
i weighing i times that of an ‘ordinary’ voter. For instance, a weight wα(fi)
being attributed to each feature fi, a natural extension of the Borda method,
would yield x ≤α y iff

∑
i wα(fi)δfi

(x) ≤
∑

i wα(fi)δfi
(y) (see (Hampton,

1993) or (Hampton, 1995)).
However, there is no reason why the defining features of a concept should

be attributed such a numerical rank of importance. Again, an agent may
be quite able to compare the relative salience of two features of a concept
without being able to associate a degree to any of these saliences. In the
most general case, the salience of a defining feature should be considered
as a qualitative notion. We shall therefore simply consider that the salience
relation among the features of α is translated by an arbitrary strict partial
order on the set ∆(α), which will be denoted by >s.

Coming back to our analogy, we must now build a voting procedure that
takes into account the hierarchy that may exist inside a group of voters. We
propose two solutions to this problem.

4.1 The lexicographic order

The idea is that the voice of a voter can be overruled by any of its hierarchical
superior: a candidate x will be considered as at most as good as a candidate
y if, for each voter that prefers x to y, there exists a more important voter
that prefers y to x.

Formally we set

x �α y iff for each defining feature fi such that y ≺fi
x, there exists a

defining feature fj, fj >s fi, such that x ≺fj
y.

It is immediate that this relation is reflexive. The connectedness of the
�fi

’s implies that it is also transitive and therefore constitutes a (partial)
preorder:
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Observation 1 The relation �α is transitive.2

The strict partial order induced by �α reads

x ≺α y if and only if x �α y and for some defining feature fi, it holds
x ≺fi

y.

Note that �α satisfies the unanimity and the independence rules, but not the
non-dictatorship one: if a feature f dominates all other ones, one has x �α y
whenever x �g y.

The equivalence relation ∼α induced by �α is easily seen to be the inter-
section of the ∼f , for f ∈ ∆(α) :

Observation 2 One has x ∼α y if and only if x ∼f y for all features f of
∆(α).

Example 3 Let α be the concept to-be-a-bird, and suppose that, from the
point of view of an agent, its defining feature set, in the context of being-
an-animal, is given by ∆α = {to-have-two-legs, to-lay-eggs, to-have-a-beak,
to-have-wings}, all of these features being considered as two-valued functions
for the agent. Suppose also that the salience of these features is as follows:
to-have-a-beak >s to-lay-eggs >s to-have-two-legs, and to-have wings >s

to-lay-eggs.
Let s, m, t, b and d respectively stand for a sparrow, a mouse, a tortoise,

a bat and a dragonfly, and let us compare their relative birdhood. In order
to determine the induced membership order, we first build the following array:

two − legs lay − eggs beak wings
sparrow ⋆ ⋆ ⋆ ⋆
mouse
tortoise ⋆ ⋆

bat ⋆ ⋆
dragonfly ⋆ ⋆

We readily check that d ≺α s, m ≺α t, and m ≺α b. Note that we have
b �α d, since the concept to-have-two-legs under which the bat falls, contrary
to the dragonfly, is dominated by the concept to-lay-eggs that applies to the

2We recall that the proof of the observations is given in the appendix.
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dragonfly and not to the bat. On the other hand, we do not have d �α b,
as nothing compensates the fact that the dragonfly lays eggs and the bat does
not. This yields b ≺α d. We also remark that the tortoise and the bat are
incomparable, that is, we have neither b �α t, nor t �α b.

The strict α-membership order induced by the agent on these five elements
is thus given by the following Hasse diagram:

m

b

d
t

s

✚
✚

❝
❝

❝

❝
❝

❝

✔
✔
✔✔

Coming back to the construction of �α let us examine how it behaves in
the two following limit cases:

• Suppose that the salience order on ∆(α) is empty. We have then x �α y
iff x �f y for all elements of ∆(α). Thus, y falls at least as much as
x under α, if and only if every single defining feature of α applies at
least as much to y as to x. We retrieve here �α as an intersection:
�α=

⋂
i �fi

.

Note that in the case of an empty salience order, the Borda-Hampton
method evoked above yields x ≤α y iff

∑
f∈∆(α) δf (x) ≤

∑
f∈∆(α) δf (y).

This may lead to counterintuitive or undesirable effects: if for instance
α has three defining features f , g, and h, whose appliance degrees on
two items x and y are δf (x) = δg(x) = 0.7, δh(x) = 1; δf (y) = δg(y) =
1, δh(y) = 0, then, one gets y <α x although two out of the three
defining features of α apply more to y than to x.

• Suppose now that the salience order on ∆(α) is total. Let x and y be
two arbitrary items. Then, either we have x ∼α y, or, by Observation 2,
there exists a defining feature fi for which it is not the case that x ∼fi

y.
We can suppose that fi is of maximal salience for this property. We
have then x ≺α y or y ≺α x depending whether x ≺fi

y or y ≺fi
x.

This means that the most salient voter that distinguishes between x
and y dictates his opinion. Note that �α is then a total preorder.
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The lexicographic order provides a satisfactory answer for the construc-
tion of a natural membership order for featured concepts. It can be built
in the presence of a purely qualitative salience order, and appears to be free
from the drawbacks encountered in classical solutions. One of its features
however may appear to be undesirable, which is the preeminence it gives to
hierarchy, independently of the number of voices that stand for or against a
candidate. Suppose for instance that the features in ∆(α) are of equivalent
salience except for one, fi, that dominates all the other ones. Let x and y be
two objects such that x ≺fj

y for all j 6= i, but y ≺fi
x. Then the hierarchical

order will necessarily yield y ≺α x. The object x will be considered as falling
more under α than y for the only reason that the dominant feature applies
more to x than to y. The fact that fi is more salient than any individual
other feature fj makes it a dictator, that has more weight than all the f ’s
taken together.

Although the cases where ∆(α) consists of one single salient feature op-
posed to a bunch of non salient defining properties are rare, it may be useful
to consider a slight modification of the lexicographic order in order to also
account for the number of voters that prefer candidate x to candidate y.

4.2 The proportional order

The idea is to prevent a same single individual from overruling several subor-
dinate voters. For this purpose, we shall first consider the relation �′

α defined
by:

x �′

α y if, for each sequence of distinct elements f1, f2, . . . fn of ∆(α) such
that y ≺fi

x, there exists a sequence of distinct elements g1, g2, . . . gn of
∆(α), gi >s fi, such that x ≺gi

y.

In this situation, each voter may see his decision overruled by a person-
ally attached direct superior, but the voice of a single voter, be it the most
important of all, cannot overrule more than one voice.

The relation �′

α is clearly reflexive, but unlike �α, it is generally not
transitive, as can be seen from the following example:

Example 4 Suppose that ∆(α) consist of the three features f , g, h, with
h >s f and h >s g. Let x, y and z be three objects such that z ≺f x, x ∼f y,
y ∼g z, z ≺g x, and x ≺h y ≺h z. Then one has x �′

α y and y �′

α z but not
x �′

α z.
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Rather than the relation �′

α itself, we have therefore to consider its transitive
closure, which we shall denote by �∗

α. We will refer to it as to the proportional
order relation. From its definition, we have thus x �∗

α y iff there exists a
sequence of k items x1 = x, x2, . . . , xk = y such that xi �

′

α xi+1.
The behaviour of �∗

α in the case of an empty salience order on ∆(α) is
clearly identical to that of �α: �∗

α boils down to the intersection of all the
membership orders induced by the defining features of α. In the second limit
case, when the salience order is total, the proportional order differs from the
hierarchical one: the most salient voter fi that distinguishes between x and
y no longer dictates his opinion, and the inequality x ≺fi

y is not sufficient
to imply x �∗

α y.
In the general case, one easily sees that the proportional order is em-

bedded in the lexicographic one: the inequality x �∗

α y implies x �α y.
Similarly, the strict inequality x ≺∗

α y implies x ≺α y; the same is also true
for the indifference relation: by Observation 2, x ∼α y readily implies x ∼∗

α y.

4.3 Some common properties of the lexicographic and

the proportional orders

The first property enjoyed by the two α-membership orders is the common
characterization of their maximal elements as the extension of the concept
α:

Observation 3 Define the extension Extα of α as the set of all objects z
such that δf (z) = 1 for all f of ∆(α). Then one has x ≺α z and x ≺∗

α z for
all x /∈ Extα and z ∈ Extα.

Note that condition (2) of Definition 1 guarantees that Extα is a non-
empty set. Observation 3 asserts that the objects that fall under all defining
features of α fall more under α than any other objects. They will be con-
sidered as forming the category associated with α. More precisely, we shall
say that an object x ‘falls’ under the concept α if x is an element of its ex-
tension, that is if x ∈ Extα. This is equivalent to say that x is ≺α-maximal
or ≺∗

α-maximal among the objects that constitute the universe of discourse:
there exists no object y such that x ≺α y or x ≺∗

α y. In this case, we may
also say that x is an instance or an exemplar of α. This definition by means
of maximal membership conforms with the intuition: an object x (fully) falls
under a concept α if α cannot apply more to an object y than to x. It has
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as a consequence that whatever salience order is set on ∆(α), an object falls
under the featured concept α if and only if it falls under each of its defining
features. We retrieve here the classical characterization of a defining feature
set, as a set of features that are individually necessary and jointly sufficient
to ensure membership relative to α.

From the finiteness condition (1) we now deduce an important result:

Observation 4 �α and �∗

α are finite membership orders.3

It is now possible to associate with every featured concept α a membership
degree as was done in section 2.1. We denote by µα and µ∗

α the membership
distances induced by �α and �∗

α, and by δα and δ∗α the corresponding mem-
bership degrees.

We have then x ∈ Extα if and only if µα(x) = 0 = µ∗

α(x), that is if and
only if δα(x) = 1 = δ∗α(x).

Example 5 We take again Example 3 and the Hasse diagram giving the
membership order induced by the concept to-be-a-bird on the set {sparrow,
tortoise, bat, mouse, dragonfly}:

m

b

d
t

s

✚
✚

❝
❝

❝

❝
❝

❝

✔
✔
✔✔

Let us compute the different membership distances and degrees that an
agent may attribute to the 5 items above: this agent may consider that µα(t)
= 1, not knowing of any oviparous animal a that has a beak and satisfies
t ≺α a ≺α s. Similarly, she would set µα(d) = 1, since there exists no animal
a′ such that d ≺α a′ ≺α s. Because the bat falls under two out of the five
elements of ∆α, one must have µα(b) ≤ 2, and the inequality b ≺α d ≺α s
then yields µα(b) = 2. As for the mouse, it holds m ≺α b ≺α d ≺α s, but
this is not a chain of maximal length. For instance, noting that macaques
have two legs, the agent may consider the chain m ≺α k ≺α b ≺α d ≺α s,
where k denotes a macaque. This shows that µα(m) ≥ 4, and thus µα(m) = 4

3The original proof of this observation is due to Daniel Lehmann (Lehmann, 2010).
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since, among the animals, only four simple features are sufficient to define a
bird. This also shows that for our agent, in the context of animals, the longest
possible birdhood-chain has length Nα = 4 Putting all this together, the agent
will finally get δα(m) = 0, δα(k) = 1/4, δα(b) = 1/2, δα(t) = 3/4 = δα(d) and
δα(s) = 1.

Let us now briefly examine what happens in the two limit cases of an
empty or a total salient order :

• When the salience order is empty, we see that µα(x) = µ∗

α(x) ≤
Σfnf (x), where nf (x) is the number of different values greater than
δf (x) taken by the membership function δf .

• In case of a total salience order, we have seen that �α is a total order.
From this, it follows that one has δα(x) < δα(y) if and only if x ≺α y:
the membership function exactly models in this case the membership
order.

5 The case of compound concepts

Elementary concepts may aggregate through different ways to give birth to
compound ones. The simplest one is the ordinary conjunction, which corre-
sponds to a simple juxtaposition of terms. A more sophisticated connective
was introduced in (Freund, 2008) to account for the modification or the de-
termination of a concept by another one. The compound concepts we shall
study are those obtained through conjunction or determination of simple
concepts. Similarly to the simple case, membership relative to compound
concepts can be described through a partial order among the objects of the
universe. As we shall see, this order is closely related to the membership
orders induced by each of the constituents of the compound concept. In this
sense, categorial membership is a compositional notion that can be naturally
extended in the case of concept conjunction as well as concept determination.

5.1 Categorial membership and concept conjunction

Taking the conjunction of two arbitrary concepts may lead to meaningless
notions, like (to-be-a-cloth)&(to-be-a-country). For this reason, we shall re-
strict ourselves to the case where the extensions of the components intersect.
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Given two featured concepts α and β such that Extα ∩ Ext β 6= ∅, the
membership order on the conjunction α&β is taken as the intersection of the
membership orders of its components.

We have thus x �α&β y iff x �α y and x �β y, and x �⋆
α&β y iff x �⋆

α y
and x �⋆

β y.
Observe that in this construction, the feature sets of α and β are treated

as if they had no common element. This comes from the fact that, as we
emphasized previously, features borrow part of their significance from the
concept they are attached to: a feature f considered as an element of ∆(α)
may receive a different treatment than the same feature considered as an
element of ∆(β). This situation may be compared to that encountered in
social choice in the case of a two-stages election, with first set of voters
{f1, f2, . . . , fn} and second set of voters {g1, g2, . . . , gk}: it may then happen
that a same voter ranks the candidate x before the candidate y in the first
election, and changes her mind at the second stage, setting y before x. In
this case, x and y will be simply incomparable in the final result.

Similarly to what has been done is the case of elementary concepts, let us
define the extension of the conjunction α&β as the set of all ≺α&β-maximal
elements. The hypothesis made on Extα and Ext β implies that this set is
also the set of all ≺⋆

α&β-maximal elements. We easily check that full mem-
bership is compositional in the sense that Extα ∩ Ext β = Ext (α&β).

The relations �α&β and �⋆
α&β can be directly recovered by assigning to

the concept α&β a fictitious defining feature set equal to the disjoint union
of ∆(α) and ∆(β). More precisely, let ∆̃(α) be the set {(fi, α); fi ∈ ∆(α)}
equipped with the salience order that makes (fi, α) more salient than (fj, α)

if and only if fi is more salient than fj. Similarly, set ∆̃(β) = {(gi, β); δ ∈
∆(β)} with the salience order that makes (gi, β) more salient than (gj, β) if
and only if gi is more salient than gj. The structure of these sets emphasizes
the fact that features depend of the concept they apply to. Consider now
the set ∆̃(α&β) = ∆̃(α)∪ ∆̃(β) with the salience order that extends those of

∆̃(α) and ∆̃(β) and is empty elsewhere. The membership order induced by

the concept α&β with associated defining feature set ∆̃(α&β) is then exactly
the order �α&β.
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5.2 Categorial membership and concept determination

The determination operator can be used to account for the modification of a
principal concept α by a modifier β. This determination, denoted by β ⋆ α,
is most often translated in English by the combination of an adjective or an
adjectived verb with a noun, like in the compositions to-be-a-carnivorous-
animal, to-be-a-flying-bird, to-be-a-french-student, to-be-a-red-apple. How-
ever, it can also take the form of a noun-noun combination like in to-be-a-
pet-fish, to-be-a-barnyard-bird, and, more generally, of a relative clause that
will be globally encapsulated by the concept β (e.g.to-be-an-American-who-
lives-in-Paris).

Note that the modifier becomes a feature of the compound concept β ⋆α:
to-be-red is clearly a feature of the composed concept to-be-a-red-car, and
to-be-a-woman becomes a feature of the concept to-be-physician-that-is-a-
woman.

It is important to keep in mind that we consider only the conceptual
combinations that are intersective: the objects that fall under the composed
concept β ⋆α are exactly the ones that both fall under α and under β. Thus,
and to mention the most known examples, the determination connective
cannot be used to form complex concepts like to-be-a-brick-factory, to-be-a-
criminal-lawyer or to-be-a-topless-district : indeed, a brick factory need not
be a factory that is made out of bricks, a criminal lawyer is not a lawyer
that is a criminal, and a topless district is not a district that is topless
(see (Kamp and Partee, 1995) for the distinction between intersective and
non-intersective modifiers). Similarly, we shall not consider determination
through features that quantify concepts, like in to-be-a-tall-man or to-be-
a-big-fish, since these compositions are not intersective: a tall man is not
something that is tall and that is a man, a big fish is not something that is
big and that is a fish.

Observe finally that the star-operator ⋆ is a partial operator: given ar-
bitrary α and β, it might be meaningless to try to form the concept β ⋆ α.
For instance, there is no sense in talking of a quick-number or a wooden-
salience. These pseudo-concepts correspond to nothing, and no object, real
or fictitious, can be thought of falling under them, contrary to imaginary
concepts like a pink-elephant, a striped-apple or a flying-cow : these latter
definitely have a non-empty extension, because we can imagine a pink ele-
fant, a striped apple or a flying cow. When forming the composition β ⋆α, it
is always understood that the intersection Extα∩Ext β is a non empty set.
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Note also that unlike conjunction, the connective ⋆ is not supposed to satisfy
commutativity: the concept of a woman-that-is-a physcian is not the same
as the concept of a physician-that-is-a-woman(for examples and discussion,
and in particular the distinction between games-that-are-sports and sports-
that-are-games (see (Storms and al., 1999) with an ambiguous title however,
mixing categorial membership and typicality) .

5.2.1 Evaluating membership relative to a modified concept

We suppose that α is a featured concept and that β is either a featured
concept, or a simple feature whose associated membership order has been
defined in the context of α. To extend the order �α (resp.�∗

α) to the concept
β ⋆ α, giving preeminence to α over β, we set:

x �β⋆α y if x �α y and either x ≺α y, or x �β y.

Similarly, we define

x �∗

β⋆α y if x �∗

α y and either x ≺∗

α y or x �∗

β y.

In this model, the concept to-be-a-flying-bird will be considered as applying
more to a penguin than to a bat, because the principal concept is that of
being-a-bird : to-fly appears as a simple feature, less important than the con-
cept it modifies. The relations we obtain this way are reflexive and transitive.
They correspond to the membership orders induced by a featured concept
whose defining feature set ∆(β ⋆ α) would include all the defining features
of α and β, ordered with a salience order that extends the salience orders
of ∆(α) and of ∆(β) \∆(α), making furthermore any element of ∆(α) more
salient than any element of ∆(β) \ ∆(α).

Note that �β⋆α and �∗

β⋆α are finite orders, so that it is possible to build
from them a membership distance and a membership degree function, as
was done in 2.1 and 4.3. Note also that this construction treats α and β
as features of the new concept β ⋆ α. In fact, one easily checks that these
compound membership orders exactly correspond to the lexicographic and
the proportional preorders that would be induced by a fictitious featured
concept whose defining feature set would simply consist in two ‘features’ α
and β, α being considered as more salient than β.

In the particular case where β is itself a defining feature of α, the mem-
bership orders induced by �β⋆α and �α agree: one has x �β⋆α y iff x �αy.
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Membership relative to the concept to-be-a-bird-with-wings is the same than
membership relative to the concept to-be-a-bird.

From its definition, the relation �β⋆α is clearly a subrelation of �α, and
the same is true for �∗

β⋆α and �∗

α. This means that if an object y falls at
least as much as x under the concept β ⋆α, then it also falls at least as much
as x under α.

Concerning the corresponding strict partial orders, it holds:

x ≺β⋆α y if and only if either x ≺α y, or x �β⋆α y and x ≺β y

x ≺∗

β⋆α y if and only if either x ≺∗

α y, or x �∗

β⋆α y and x ≺∗

β y.

As in the case of simple concepts, full categorial membership can be recov-
ered through the �β⋆α-maximal or ≺∗

β⋆α-maximal elements. More precisely,
we have the following result:

Observation 5 Define the extension Ext (β ⋆α) of β ⋆α to be the set of all
�β⋆α-maximal elements, and let z be an arbitrary object. Then the following
conditions are equivalent:

• z is ≺β⋆α-maximal

• z is ≺∗

β⋆α-maximal

• z ∈ Ext (β ⋆ α)

• z ∈ Extα ∩ Ext β

• ∀x /∈ Ext (β ⋆ α), x ≺β⋆α z

• ∀x /∈ Ext (β ⋆ α), x ≺∗

β⋆α z.

Membership relative to modified concepts again appears to be compos-
tional : the equality Ext (β ⋆ α) = Extα ∩ Ext β shows that an object fully
falls under a modified concept if and only if it fully falls both under the con-
cept and under its modifier. The category of red-cars exactly covers all the
items that are red and that are cars.
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5.3 Membership degree for compound concepts: the

conjunction effect

The conjunction effect or guppy effect was observed in 1981 by Osherson
and Smith (Osherson and Smith, 1981); it has been thereafter at the center
of numerous research and experiments (see in particular (Hampton, 1988),
(Kamp and Partee, 1995) or more recently (Aerts, 2009) and (Franco, 2009);
it can be described by the fact that an item may be found to be more strongly
a member of the composition of two concepts than a member of one of them.
Thus, a cuckoo was found to be more strongly a member of the composed
concept (to-be-a-pet-bird) than a member of the concept to-be-a-pet on its
own, and a guppy more a member of the concept (to-be-a-pet-fish) than a
member of the concept to-be-a-fish. This appears to be paradoxical, since
any item falling under a composition α ⋆ β must already fall under each of
its components.

A similar effect, the Linda paradox, was observed in (Tversky and Kahne-
man, 1983): subjects were told about a woman, Linda, who has been involved
at college in liberal politics. Some subjects were then asked to rate the prob-
ability that Linda has become a bank teller, other subjects were asked to rate
the probability that she became a feminist bank teller. The result showed
that it was judged more probable that Linda has become a feminist bank
teller. This again seems in contradiction with classical logic and probability
theory, since being a feminist bank teller necessarily implies being a bank
teller, so that the probability of the first event should not exceed that of the
second event. However, and in spite of ‘desperate manipulations designed to
induce subjects to obey the conjunction rule’, the result of the experiments
all concluded in the sense of a so-called ‘violation’ of the conjunction rule.

These two ’paradoxes’ seem to have promoted the introduction in con-
cept theories of the quantum mechanics formalism: thus, Franco writes that
‘Quantum mechanics, for its counterintuitive predictions, seems to provide a
good formalism to describe puzzling effects of contextuality ’. Similarly, Aerts
pleads for adopting in cognition theory the attitude of theoretical physicists
for whom ‘data showing deviations from set theoretic rules are a major indica-
tion of the presence of quantum structure’; he thus devotes special attention
to the example of the guppy effect as ‘none of the currently existing concept
theories provides a satisfactory descriptionand/or explanation of such effect
for concept combinations.’

We do not take sides on the question whether the rather complex and

23



artificial formalism of quantum mechanics is or is not suitable to model cog-
nitive theories; however, we depart from the quoted authors in that we think
that the guppy effect and the conjunction fallacy can be simply described and
explained through a classical formalism, using for instance the tools which
were developed in the preceding sections.

Since in the conjunction effect we compare the categorial membership
of a same object relatively to two different concepts, we need to precisely
evaluate this categorial membership. The only natural tools we can use for
this purpose are those of membership distance and membership degree.

Let us denote by µβ⋆α (resp. µ∗

β⋆α) the membership distances corre-
sponding to ≺β⋆α and ≺∗

β⋆α. Since ≺α is embedded in ≺β⋆α, a ≺α-chain
is also a ≺β⋆α-chain, and one has µα(x) ≤ µβ⋆α(x). Similarly, we have
µ∗

α(x) ≤ µ∗

β⋆α(x).
Recall that the associated membership degrees δβ⋆α and δ∗β⋆α are defined

by

δβ⋆α(x) = 1 −
µβ⋆α(x)

Nβ⋆α
and δ∗β⋆α(x) = 1 −

µ∗

β⋆α
(x)

N∗

β⋆α

,

where Nβ⋆α (resp. N∗

β⋆α) is the length of a maximal ≺(β⋆α) (resp.≺∗

(β⋆α))-
chain. Note that Nβ⋆α ≤ Nα, and N∗

β⋆α ≤ N∗

α.
Coming back to the guppy effect, we observe that, while the membership

distance relative to a composed concept cannot be smaller than its distance
relative to any of the components, the same is not true for the corresponding
degrees: because of the presence of the normalizing constant Nβ⋆α, we can
have δα(x) < δβ⋆α(x) for some item x, which will be therefore considered as
falling more under β ⋆ α than under α. This is exactly the guppy effect.

Example 6 Let α be the concept to-be-a-bird and β the feature to-be-black,
which for simplicity we suppose modelled by a simple two-valued function.
The composition β ⋆ α translates the concept to-be-a-black-bird. From Ex-
ample 5, we know that the birdhood degree an agent may attribute to a
macaque k is δα(k) = 1/4. Starting from the maximal α-chain

m ≺α k ≺α b ≺α d ≺α s

of Example 5, the agent may consider the maximal (β ⋆ α)-chain

m ≺β⋆α m′ ≺β⋆α k′ ≺β⋆α k ≺β⋆α b ≺β⋆α b′ ≺β⋆α d ≺β⋆α d′ ≺β⋆α s ≺β⋆α r,

where the items are
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m: a white mouse; m’: a black cat; k’: a (red-brown) capuchin; k: a
(black) macaque; b: a brown bat; b’: a black bat;

d: a (blue) dragonfly; d’: a (black) fly; s: a sparrow; r a raven.

For this agent, it now holds Nβ⋆α = 9 and µβ⋆α(k) = 6, which leads to
δβ⋆α(k) = 1/3: the macaque falls more strongly under the compound concept
to-be-a-black-bird than under the component to-be-a-bird taken alone.

Note that for an agent that would omit the link corresponding to k′ -
for example an agent knowing only one species of monkeys - the length of
a maximal chain would reduce to Nβ⋆α = 8 and the resulting degree would
then be δβ⋆α(k) = 1/4. In this case, no guppy effect would be observed. This
agrees with the fact that the guppy effect is not universal, as shown in the
experiments: some agents still consider that the guppy is no more a member
of the concept (to-be-a-pet-fish) than of the concept to-be-a-fish.

It can be objected that in the case of full membership our model seems to
be contradicted by Hampton’s conclusions (Hampton, 1988), following which
a large number of items ...(are) more often judged to belong in a conjunction
such as school furniture or protective clothing than in the categories from
which these concepts are supposedly drawn, namely furniture and clothing.
Thus, he pursues, items belonged in a conjunction that did not belong in one
of its constituent concepts. This stands in total contradiction with the results
of our Observation 5, by which which an object belongs to the extension of
the compound β ⋆α if and only if it belongs both to the extension of α and to
the extension of β. But if we look closely at the different experimental results
displayed in Hampton’s paper, we note that they are not really explicit as
long as full membership is concerned. Let us recall indeed that membership,
in Hampton experiments, was rated by a positive number from 1 to 3 ‘to
indicate degree of typicality’, while non-membership was rated by a negative
number from -1 to -3 ‘to indicate relatedness as a non member’. In other
words, Hampton treated on the same level categorial membership and typ-
icality. It turns out that in the case of proper concept determination (thus
excluding the cases of kitchen furniture, sport vehicle and protective cloth-
ing), the results, displayed pp.22-23 of Hampton’s paper show that when an
item’s membership relative to one of the components is less or equal to -1, its
membership relative to the conjunction is always strictly less than 1. This
means that an item that is known not to fall under one of the components of a
conjunction will never be considered as (fully) falling under this conjunction.
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6 Structured defining sets

In developing our theory of elementary featured concepts, we restricted our-
selves to the simple and rather isolated cases where the defining feature set
consists of a simple list of elementary features. Usually however, defini-
tions are of a more complicated type, as they rest on a set of key words -
nouns, verbs, and modifiers - to which an apparatus consisting of auxiliary
verbs, pronouns, locutions and ingredient markers provides the final Gestalt.
Thus, the grammar of a definition is as important as the set of defining fea-
tures it proposes. This fact has already been underlined by Ray Jackendoff
(Jackendoff, 1993) and Anna Wierzbicka (Wierzbicka, 1996). In particu-
lar, in her research on a Natural Semantic Metalanguage (NSM), Wierzbicka
and her followers proposed, together with a list of conceptual primitives, a
list of conceptual elementary structures that constitute the syntax of this
(meta)language ((For an introduction to Wierzbicka’s work, see (Peeters and
Goddard, 2006) or (Koselak, 2003)).

Categorial membership becomes more difficult to evaluate in the case of
a concept that uses a non-trivial grammar for its definition, but the method
developed in the preceding sections still remains valid for this elaborated
case. To illustrate this, let us consider, as an example of resolution, the
following (structured) definition of a maple:

‘Tall tree growing in northern countries, whose leaves have five points, and
the resin of which is used to produce a syrup’.

We first note that, among the features listed in this definition, only that of
tree directly applies to the target concept maple. All the other ones are linked
with some secondary concepts: thus, tall refers to tree, to-have-fivepoints
refers to leaves, northern refers to country, and syrup refers to resin. The key
features that intervene in this definition are the concepts tree, tall, northern,
fivepoints, syrup. The apparatus is encapsulated by the sequence: is a + key-
feature, that is + key-feature, whose growing country is +key-feature,
whose shape of leaves is + key-feature, whose resin produces + key-
feature. We can formalize the whole definition by a tree in which the edges
translate the verbs used in the definition process, and the nodes underlined
in roman letters stand for the key features while those in italics indicate the
auxiliary concepts used in the Gestalt(see fig.1).

Suppose now we want to evaluate the categorial membership of a given
object x relatively to the concept to-be-a-maple. This maple membership of
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Figure 1: definition tree for maple.

x not only depends on its tree membership but also on the membership of
other objects (eg. the leaves of x, the resin of x) relative to auxiliary concepts
(eg.to-have-five-points, to-provide-a-syrup): it is not the object x itself that
may be qualified as having fivepoints but the auxiliary object ‘leaves of x’. We
see in this example that there exists an important difference with the simple
defining features sets used in the preceding sections, where the membership
of an object relative to the target concept was directly evaluated through the
membership of this same object relative to the defining features.

The problem is that the auxiliary objects that correspond to the auxiliary
concepts may simply not exist: thus, it may be the case that x is not a tree,
so that its tallness as a tree is meaningless; it may also happen that x is a
pine-tree and has no leaves, in which case it is again meaningless to pretend
to evaluate the membership of its leaves relative to the concept to-have-
fivepoints.

To solve this problem, we have to re-interprete the initial definition by say-
ing that an object is a maple if it is a tree that is tall, if this tree has a growing
country that is northern and if this tree has resin that produces syrup. This
translation enables us to consider the membership of a same single object
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relative to the four compound concepts (to-be-tall)⋆(to-be-a-tree), to-have-a-
((northern)⋆(growing-country)), to-have((five points) ⋆(leaves)), to-have-a-
((producing syrup)⋆(resin)).

The first concept - (to-be-tall)⋆(to-be-a-tree) - is obtained through a de-
termination, and its application to any object will be evaluated as shown in
Section 5. As for the other ones, we have to consider them as complex inde-
composable concepts: there exists indeed no way to compute their associated
membership through that of their constituents, the same way we could not
decompose the concept to-eat-a-red-apple using the concepts to-eat, to-be-
an-apple and to-be-red. We retrieve here the difference of treatment between
one-place and two-place predicates.

In order to compare the respective maplehood of two items, it is therefore
enough to compare their respective categorial membership relative to each
of the four mentioned concepts. This amounts to associating with the target
concept to-be-a-maple the following set considered as a set of defining features

{(to-be-tall)⋆(to-be-a-tree), to-have-a-((northern)⋆(growing-country)),
to-have((five points) ⋆(leaves)), to-have-a-((producing syrup)⋆(resin))}.

It is again possible to equip this set with a salience order, yielding an asso-
ciated membership order as was done in the case of featured concepts.

7 Conclusion

For a specific class of concepts, the featured concepts, we have shown that
membership to the corresponding category can be easily modelled through
a simple and natural preorder that takes into account the salience relation
which may exist among the defining features of a concept, even in the case
where this salience is not evaluated through a degree function. The proposed
model easily extends to compound concepts, and explains the phenomenon
of conjunction effect without appealing to the more elaborated and much so-
phisticated latest quantum theories. This model can also be used in the case
of concepts whose ‘definitions’ are more sophisticated, adding to a list of fea-
tures or key-words an elementary grammar that has to be taken into account.
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A Proofs

Observation 1 Let �α be the relation defined by

x �α y iff for each feature f ∈ ∆(α) such that y ≺f x, there exists a feature
g ∈ ∆(α), g more salient than f , such that x ≺g y.

Then �α is transitive.

Proof: Let x, y and z be three items such that x �α y and y �α z, and
suppose that there exists f ∈ ∆(α) such that such that z ≺f x. We have to
show that there exists a feature g ∈ ∆(α), g more salient than f , such that
x ≺g z. We make a proof by cases:

• Suppose first that x �f y. Then we have z ≺f y, and there exists a
feature k ∈ ∆(α), k more salient than f , such that y ≺k z. We can
suppose that k is maximally salient in ∆(α) for this property (recall
that ∆(α) is finite). If x �k y, we get x ≺k z and we are done.
Otherwise, because of the connectedness of �k, we have y ≺k x. Since
we supposed x �α y, this implies that there exists a concept g ∈ ∆(α),
g more salient than k, such that x ≺g y. We cannot have z ≺g y
otherwise there would exist h ∈ ∆(α), h more salient than g, such that
y ≺h z, contradicting the choice of k. We have therefore y �g z, hence
x ≺g z as desired.

• Suppose now that y ≺f x. Then there exists k ∈ ∆(α), k more salient
than f such that x ≺k y, and we can again suppose k maximally
salient for this property. If y �k z, we get x ≺k z and we are through.
Otherwise, we have z ≺k y and there exists g more salient than k such
that y ≺g z. Let us show that x �g y: if this were not the case, we
would have y ≺g x, so that there would exist h more salient than g
such that x ≺h y. But then h would be more salient than k, which is
impossible. We have therefore x �g y, hence x ≺g z, and the proof is
complete. �
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Observation 2 One has x ∼α y if and only if x ∼f y for all features f of
∆(α).

Proof: It is clear that x ∼α y holds whenever x ∼f y for all features f of
∆(α). Suppose conversely that we do not have x ∼f y for some feature f of
∆(α), and let f be of maximal salience in ∆(α) for this property. Since �f

is a total preorder, we necessarily have x ≺f y or y ≺f x. In the first case,
and by the choice of f , we cannot have y �α x; in the second case, we cannot
have x �α y. This shows that we cannot have x ∼α y. �

Observation 3 Define the extension Extα of α as the set of all objects z
such that δf (z) = 1∀f ∈ ∆(α). Then it holds x ≺α z and x ≺∗

α z for all
x /∈ Extα and z ∈ Extα.

Proof: If z is such that δf (z) = 1 for all f ∈ ∆(α), it follows from the
definitions of �α and �∗

α that one has necessarily x �α z and x �∗

α z for all
objects x of the universe. If moreover there exists a defining feature f such
that δf (x) < 1, these inequalities are strict, so that x ≺α z and x ≺∗

α z as
desired. �

Observation 4 . �α and �∗

α are finite membership orders.

Proof: Concerning �α, the proof follows from Observation 2. As for �∗

α,
we see, again by Observation 2 that every�α- equivalence class is embedded
in a �∗

α-equivalence class, whence the result.

Observation 5 Define the extension Ext (β ⋆α) of β ⋆α to be the set of all
�β⋆α-maximal elements, and let z be an arbitrary object. Then the following
conditions are equivalent:

• z ∈ Ext (β ⋆ α)

• z is ≺∗

β⋆α-maximal

• z ∈ Extα ∩ Ext β

• x ≺β⋆α z ∀x /∈ Ext (β ⋆ α)

• x ≺∗

β⋆α z ∀x /∈ Ext (β ⋆ α).
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Proof: Since we have ≺∗

β⋆α⊆≺β⋆α, any ≺β⋆α-maximal element is ≺∗

β⋆α-
maximal. If x is not ≺∗

β⋆α-maximal, it holds x ≺∗

β⋆α z for any element z of
Extα ∩ Ext β, since ≺∗

β⋆α corresponds to the proportional order induced by
the fictitious defining features set {α, β}. This shows that any ≺∗

β⋆α-maximal
element must lie in Extα ∩ Ext β, and is therefore also ≺β⋆α-maximal. The
proof of the Observation follows. �

References

Aerts, D. (2009). Quantum structure in cognition. Journal of Mathematical
Psychology, (53-5):314–348.

Arrow, K. J. (1953). Social Choice and Individual Values. Cowles Founda-
tion Monographs; New York: Wiley 1964.

Dubois, D., Esteva, F., Godo, L., and Prade, H. (2005). An information-
based discussion of vagueness. In Cohen and Lefebvre, editors, Hand-
book of Categorization in Cognitive Science, pages 892–913.

Fodor, J. (1998). Concepts: where cognitive science went wrong. Oxford
University Press.

Franco, R. (2009). The conjunction fallacy and interference effects. Journal
of Mathematical Psychology, (53-5):415–422.

Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete
Formelsprache des reinen Denkens. Halle.

Freund, M. (2008). On the notion of concept I. Artificial Intelligence,
(172):570–590.

Freund, M. (2009). On the notion of concept II. Artificial Intelligence,
(173):167–179.

Gärdenfors, P. (2000). Conceptual Spaces: The Geometry of Thought. MIT
Press.

Hampton, J. (1988). Overextension of conjunctive effects: Evidence for
a unitary model of concept typicality and class inclusion. Journal for
Experimental Psychology : Learning, Memory, and Cognition, (14):12–
32.

31



Hampton, J. (1993). Prototype models of concept representation. In Van
Mechelen et al.(Eds.), L. A. P., editor, Categories and concepts: The-
oretical views and inductive data analysis.

Hampton, J. (1995). Testing the prototype theory of concepts. Journal of
Memory and Laguage, (34):686–708.

Jackendoff, R. (1993). Patterns in the mind: language and human nature.
New York Harvester Wheatsheaf.

Kamp, H. and Partee, B. (1995). Prototype theory and compositionality.
Cognition, (57):129–191.

Koselak, A. (2003). La semantique naturelle d’Anna Wierzbicka et les en-
jeux interculturels. Questions de communication, (4):83–95.

Lee, J. (2003). Ordinal decomposability and fuzzy connectives. Fuzzy sets
and systems, (136):237–249.

Lehmann, D. (2010). personal communication.

Nardi, D. and Brachman, R. (2003). An introduction to description logics.
In Baader, F., editor, The Description Logic Handbook, pages 1–44.
Cambridge University Press.

Osherson, D. and Smith, E. (1981). On the adequacy of prototype theory
as a theory of concepts. Cognition, (11):237–262.

Osherson, D. and Smith, E. (1982). Gradedness and conceptual combina-
tion. Cognition, (12)):299–318.

Peeters, B. and Goddard, C. (2006). The natural semantic metalanguage
(nsm) approach: An overview with reference to the most important Ro-
mance languages. In B. Peeters (ed.), Semantic primes and universal
grammar. Empirical evidence from the Romance languages, (19):13–88.

Putnam, H. (1975). The meaning of meaning. In Mind, language and re-
ality, pages 115–120. Cambridge University Press.

Rosch, E. (1975). Cognitive representations of semantic categories. Journal
of Experimental Psychology, (104):192–233.

Rosch, E. and Mervis, C. (1975). Family resemblances: studies in the
internal structure of categories. Cognitive Psychology, (7):573–605.

Smith, E. and Medin, D. (1981). Categories and concepts. Harvard Uni-
versity Press, Cambridge.

32



Smith, E., Shoben, E., and Rips, L. (1974). Structure and process in se-
mantic memory: a featural model for semantic decisions. Psychological
Review, (81):214–241.

Tversky, A. and Kahneman, D. (1983). Extension versus intuitive reason-
ing: The conjunction fallacy in probability judgement. Psychological
Review, (90):141–168.

Wierzbicka, A. (1996). Semantics. Primes and Universals. Oxford Univer-
sity Press.

Zadeh, L. (1965). Fuzzy sets. Information and Control, (8):338–353.

Zadeh, L. (1982). A note on prototype theory and fuzzy sets. Cognition,
(12):291–297.

33


