B. Juanals and J. Minel, The evolution of forms of cultural mediation in the digital age in museums, between tradition and change, Seven International Conference on the Inclusive Museum, 2014.
URL : https://hal.archives-ouvertes.fr/halshs-00993439

B. Juanals, Museums as Reterritorialization Spaces in the Digital Age, The International Journal of the Inclusive Museum, vol.9, issue.2, p.8, 2014.
DOI : 10.18848/1835-2014/CGP/v09i02/19-26

L. Johnson, The NMC Horizon Report: 2012, 2013, Museum Edition The New Media Consortium, 2012.

N. Ellison and D. Boyd, The Oxford Handbook of Internet Studies, 2007.

M. Zimmer and J. Proferes, A topology of Twitter research: disciplines, methods, and ethics, Aslib Journal of Information Management, vol.66, issue.3, pp.250-261, 2014.
DOI : 10.1108/AJIM-09-2013-0083

A. Tumasjan, O. Sprenger, R. P. Sandne, and M. Welpe, Election Forecasts with Twitter: How 140 Characters Reflect the Political Landscape, Social Science Computer Review, pp.29-33, 2011.

J. Bollen, H. Mao, and X. Zeng, Election Forecasts with Twitter: How 140 Characters Reflect the Political Landscape, Journal of Computational Science, vol.21, pp.1-8, 2011.

T. Sakaki, M. Okazaki, and Y. Matsuo, Earthquake shakes Twitter users, Proceedings of the 19th international conference on World wide web, WWW '10, pp.851-860, 2010.
DOI : 10.1145/1772690.1772777

B. O-'connory, R. Balasubramanyan, B. Routledge, A. Smithy, V. Lampos et al., From Tweets to Polls : Linking Text Sentiment to Puvlic Opinion Time Series, 48th International AAI Conference on Weblogs and Social Media Effects of the Recession on Public Mood in the UK 21st International Conference Companion on World Wide Web, pp.1221-1226, 2010.

M. Thelwall, K. Buckley, C. D. Paltoglou, and A. Kappas, Sentiment strength detection for the social web, Journal of the American Society for Information Science and Technology, vol.6458, issue.2, pp.163-176, 2010.
DOI : 10.1002/asi.21662

F. Colace, M. D. Santo, and L. Greco, A Probabilistic Approach to Tweets' Sentiment Classification, 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, pp.37-42, 2013.
DOI : 10.1109/ACII.2013.13

B. Pang, L. Lee, and V. S. , Thumbs up? Sentiment Classification Using machine Learning Techniques, ACL-02 Conference on Empirical Methods in Natural language Processing, pp.79-86, 2002.

A. Pak and P. Paroubek, Twitter as a corpus for sentiment analysis and opinion mining, pp.1320-1326, 2010.

A. Agarwal, B. Xie, I. Vovsha, O. Rambow, and R. Passonneau, Sentiment analysis of twitter data, ACL, Workshop on Language in Social Media, pp.30-38, 2011.

E. Kouloumpis, T. Wilson, and J. Moore, Twitter sentiment analysis: The good the bad and the OMG!, fifth international conference on weblogs and social media, 2011.

A. Courtin, B. Juanals, J. Minel, and M. Desaint-léger, A Tool-Based Methodology to Analyze Social Network Interactions in Cultural Fields: The Use Case ???MuseumWeek???, The 6th International Conference on Social Informatics. DYAD Workshop, 2014.
DOI : 10.1007/978-3-319-15168-7_19

B. Gonçalves, N. Perra, and A. Vespignani, Modeling Users' Activity on Twitter Networks: Validation of Dunbar's Number, PLoS ONE, vol.158, issue.8, 2011.
DOI : 10.1371/journal.pone.0022656.s001

E. Ferrara, O. Varol, C. Davis, F. Menczer, and A. Flammini, The rise of social bots, Communications of the ACM, vol.59, issue.7, 2014.
DOI : 10.1145/2818717

O. Seminck, Prototype d'un Classifieur de Tweets à Buts Communicatifs, 2014.

A. Mccallum, Multi-label text classification with a mixture model trained by EM, AAAI' 99 Workshop on Text Learning, 1999.

J. Makhoul, R. Scwartz, and R. Weischdel, Performance Measures for Information Extraction, DARPA Broadcast News Workshop, pp.249-252, 1999.