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Abstract

This article adopts the asymmetric DCC with one exogenous variable (ADCCX) model de-
veloped by Vargas (2008), by updating the concept of ‘volatility surprise’ to capture cross-market
relationships. Current methods for measuring spillovers do not focus on volatility interactions,
and neglect cross-effects between the conditional variances. This paper aims to fill this gap. The
dataset includes four aggregate indices representing equities, bonds, foreign exchange rates and
commodities from 1983 to 2013. The results provide strong evidence of spillover effects coming
from the ‘volatility surprise’ component across markets. Against the background of the recent
financial crisis, the aim is to contribute to the literature on the interdependencies of financial
markets, both in conditional means and (co)variances. In addition, asset management implica-
tions are derived.
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1 Introduction

The study of volatility interaction is of interest to both academics and practitioners. Changes in

variance are said to reflect the arrival of information, and the extent to which the market evalu-

ates and assimilates new information.1 The transmission pattern in variance provides an insight

concerning the characteristics and dynamics of economic and financial prices, and such information

can be used to construct better econometric models describing the temporal dynamics of the time

series.

A rising research interest is directed towards the topic of international transmission mechanisms

– attributable to the ever-increasing degree of interdependence among world financial markets –

which seem to become more pronounced during financial crises. Regarding returns transmission,

the study of returns co-movements begins with the investigation of the benefits from international

diversification at various frequencies (Schwert (1989), Susmel and Engle (1994), Andersen and

Bollerslev (1997)). Returns, volatility and correlation changes are closely related in financial models

(Orlowski (2012), Bekiros (2013)).

Regarding volatility transmission, Ross (1989) shows that it is the volatility of an asset price,

not the asset’s price change, that is related to the rate of information flow to the market. This

empirical justifies the study of international volatility transmission, in addition to returns contagion.

Schwert, French and Stambaugh (1987) and Campbell and Hentschel (1992) introduce the notion of

the volatility feedback effect: volatility is typically higher after a stock market decrease than after it

increases, which explains the negative correlation between stock returns and future volatility. In the

same field, various studies examine the volatility spillover effects with univariate and multivariate

GARCH models (Lin, Engle and Ito (1994)). These models typically provide practical applications

for optimal portfolio selection or option pricing (Al Janabi (2012), Konermann, Meinerding and

Sedova (2013)).

Let us now discuss the concept of volatility surprise. In finance, the attention is usually focused

on the predictable variance, such as the conditional variance or the implied variance. However,

according to Engle (1993), it is the difference that cannot be forecast between the squared residuals
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and the conditional variance that is worthy of interest. Such a quantity has been coined a ‘volatility

surprise’. Hamao, Masulis and Ng (1990) were the first to interpret this quantity as a volatility

surprise since it lags behind the conditional variance. This new concept paved the way for numerous

studies (Kim and Rogers (1995), Chan-Lau and Ivaschenko (2003)).

Since the financial crisis of 2008, the topic of international volatility transmission across markets

has once more attracted a considerable attention. Many researchers have concentrated on ways of

measuring systematic risk, and spillovers have become a central issue. Some studies analyse the

extent of cross-market linkages over different asset classes: stocks and bonds (Straetmans and

Candelon (2013)), stocks and FX (Wang, Wu and Lai (2013)), stocks-bonds-oil-gold and real estate

markets (Chan, Treepongkaruna, Brooks and Gray (2011)), metals and energy (Chng (2009)), gold

and stocks (Hood and Malik (2013)), energy-food and gold (Mensi, Beljid, Boubaker and Managi

(2013)). Whereas the econometric methodologies sometimes differ from one study to another (e.g.

DCC models or copulas), the global conclusion gears towards the frequent identification of cross-

market links in recent empirical studies. Previous studies have mostly examined the spillovers

in multivariate GARCH-type models (Engle, Ito and Lin (1990), Hassan and Malik (2007), Cai,

Howorka and Wongswan (2008)), or with the BEKK VECM-GARCH model (Kavussanos et al.

(2014)).

In this paper, we contribute to the literature by proposing an alternative for modelling cross-

market relations with multivariate volatility processes, on the basis of the asymmetric dynamic con-

ditional correlation model with one exogenous variable (ADCCX) newly defined by Vargas (2008).

This model represents a parsimonious specification for measuring cross-market relations. It is flexi-

ble in the sense that each market’s shock may be fitted separately as a spillover on any combination

of bivariate volatility models. Computationally, Vargas (2008) has established the consistency of

the estimates in presence of high-dimensional optimization problems.

In contrast with previous works, this paper focuses on volatility interactions between equities,

bonds, foreign exchange rates and commodities, as further evidence is emerging for volatility to be

autocorrelated within its own market and also to be cross-correlated with volatility in other asset

markets. As an extension to the work of Hamao et al. (1990), its key contribution is to document
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the spillover effects coming from each market’s ‘volatility surprise’ component to the remaining

pairs of covariance volatilities.2 The two-step econometric methodology consists of (1) computing

the mean-zero ‘volatility surprise’ component from univariate GARCH models, and (2) plugging it

into the ADCCX model. As sensitivity tests, the performance of this technique is also examined

during sub-periods.

To summarize our results, this paper aims to empirically model and measure volatility spillovers

between four segments of the US financial markets: stocks, bonds, commodities, and foreign ex-

change rates. The selected model is that of Vargas (2008), who presents an asymmetric dynamic

conditional correlation model with exogenous variables in the covariance matrix’s movement equa-

tion (ADCCX model). The main contribution of the paper consists in defining and calculating

‘volatility surprises’ for each market, and in asking whether a volatility surprise in one market

affects the volatility of other markets (evaluated for each pair of assets). The paper finds evi-

dence of volatility spillovers with, apparently, the stock markets being identified as the main source

of volatility spillovers. By examining time-varying correlations, we are able to identify rising in-

terdependencies between financial and commodity markets – pointing to the ‘financialization of

commodity markets’ phenomenon (Tang and Xiong (2012)) – that are especially visible since 2008.

This conclusion holds true for both volatility and return shocks.

The volatility risk transmission channel can well explain the theoretical underpinnings behind

spillovers, whereby asset markets are inter-related through their dynamic conditional correlation

structure. Our analysis greatly enhances the understanding of volatility cross-market dynamics,

both in turbulent and calm times. Besides, we attempt to build implications for asset managers.

Finally, one central methodological contribution is brought to the attention of practitioners, related

to the use of the ‘volatility surprise’ component (alongside other traditional measures of volatility)

to apprehend fully the sensitivity of financial markets to volatility shocks.

The remainder of this paper is organized as follows. Section 2 contains a detailed description of

the new methodology proposed. Section 3 outlines the data set. Section 4 contains the illustration

with empirical results, along with a sensitivity analysis. Section 5 reflects on the implications in

terms of asset management. Section 6 concludes.
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2 The model

Vivid research areas in financial econometrics have attempted to model the time-varying volatility

of financial returns. Indeed, capturing the time-varying correlations between different securities

appears necessary for portfolio optimization, asset pricing and risk management. In this section, we

outline the building blocks of this quest for modelling multivariate processes. The representation of

the conditional covariance matrices adopted belongs to the DCC family.

2.1 The DCC family models

Multivariate GARCH (henceforth, MVGARCH) models are useful developments regarding the pa-

rameterization of conditional dependence. Different classes of MVGARCH models have been pro-

posed in the literature3. The first-generation models were introduced by Bollerslev, Engle, and

Wooldridge (1988), as well as Engle and Kroner (1995). The numerical difficulties encountered

with these models are linked to the large number of parameters to be estimated. Overparameteri-

zation will lead to a flat likelihood function, making statistical inference intrinsically difficult and

computationally troublesome.

To overcome these difficulties, Bollerslev (1990) has proposed a new class of MVGARCH model

in which the conditional correlations are constant (CCC). Even with such a simple specification,

the estimation typically involves solving a high-dimensional optimization problem as, for example,

the Gaussian likelihood function cannot be factorized into several lower dimensional functions.

The CCC assumption is relaxed by Engle (2002) and Tse and Tsui (2002), who generalize Boller-

slev’s (1990) model by making the conditional correlation matrix time-dependent. The dynamic

conditional correlation (DCC) model constrains the time-varying conditional correlation matrix to

be positive definite, and the number of parameters to grow linearly by following a two-step pro-

cedure. The first step fits each conditional variance with an univariate GARCH(1,1) model. The

second step allows the computation of the dynamic conditional correlations given the conditional

volatility estimated in the first step. The log-likelihood is therefore written as a sum of a volatility

part and a correlation part. This two-step estimation procedure provides adequate fitting when the
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bivariate systems exhibit different dynamic correlation structures, and minimizes the biases that

are inevitable in such an estimation strategy for the conditional correlation.

Cappiello, Engle and Sheppard (2006) extend the DCC model to account for asymmetries in

the correlation dynamics. Their asymmetric DCC (ADCC) model fits the leverage effects observed

in equity markets better. Vargas (2008) introduces the ADCCX model, which allows for spillover

effects. Therefore, it becomes possible to test for spillover effects in the correlation dynamics.4

Compared with the DCC method, the ADCCX approach involves modeling of inter-series dynamics.

This paper makes use of the ADCCX model in order to gauge the spillover effects coming from the

‘volatility surprise’ component across equities, bonds, foreign exchange rates and commodities.

Let us recall how to obtain first the volatility surprise component and second, the ADCCX

model that nests the ADCC model as a generalization of the DCC model.

2.2 The volatility surprise

Following Engle (1993), we define the ‘volatility surprise’ as the volatility component that cannot

be forecast. Consider the mean equation of a standard GARCH (1,1) specification:

rt = µ+ ǫt (1)

with rt the asset price returns, µ the unconditional mean, and ǫt = ztσt the innovations. zt

denotes a strong white noise, with E(zt) = 0 and E(z2t ) = 1. σt denotes the conditional variance:

V (rt|rt−1) = σ2
t , with rt−1 the historical information available at time t − 1. The purpose of the

time-varying conditional σt is to capture as much of the conditional variance in the residual ǫt as

follows:

σ2
t = ω + αǫ2t−1 + βσ2

t−1 (2)

More specifically, Engle (1993) defines the so-called ‘volatility surprise’, ς, as the difference

between the squared residuals ǫ2t and the conditional variance σ2
t . For scaling purposes, we normalize

this quantity by the conditional variance σ2
t . The ‘normalized volatility surprise’, ς̃, is given by:
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ς̃t =

(

ǫ2t − σ2
t

)

σ2
t

(3)

The volatility surprise component for each univariate time series can be computed accordingly.

It is easy to see that, once we have specified ς̃t, we obtain E(ς̃t|rt−1) =
E(ǫ2t |rt−1)−σ2

t

σ2
t

= 0, since by

construction E(ǫ2t |rt−1) = σ2
t . Hence, we are able to verify that – as a pre-requisite for an input to

any MVGARCH model – the ‘volatility surprise’ computed in eq.(3) is indeed mean-zero.

2.3 The ADCCX model

Let (rt) and (ς̃) represent, respectively, the price returns and the volatility surprise component. The

returns are computed as the logarithmic first difference of the asset price, i.e. rt = log(Pt/Pt−1).

Let xt be a n × 1 vector of spillover variables, ξ be a n × 1 vector of parameters, and I be an

n× n identity matrix. The variables (x1, x2, ..., xn) correspond to the cross-market spillover effects

coming from the volatility surprises computed in eq.(3).

Let us consider the vectorial process χt as representing the n × 1 vector of unpredictable ob-

servations (ǫt or ς̃t) at time t, which is assumed to be conditionally normal with mean zero and

covariance n× n matrix Ht:

χt|Ωt−1 ∼ N(0,Ht) (4)

with Ωt−1 the information set at time t−1. The conditional covariance matrix Ht can be decomposed

as follows:

Ht = DtRtDt (5)

with Rt the n × n time-varying correlation matrix. Dt = diag
(√

h1,t, ...,
√

hi,t, ...,
√

hn,t
)

is the

n×n diagonal matrix of time-varying standard deviations extracted from univariate GARCH mod-

els with
√

hi,t = σi,t on the ith diagonal.
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The dynamic conditional correlation structure in matrix form is given by:

Rt = Q∗−1
t QtQ

∗−1
t (6)

An element of Rt has the following form:

ρij,t =
qij,t√
qii,tqjj,t

(7)

Q∗
t = diag

(√
qii,t

)

is a diagonal matrix composed of the square root of the diagonal elements of

the covariance matrix Qt. The covariance matrix Qt of the ADCCX model evolves according to:

Qt =
(

Q−A
′

QA−B
′

QB − Γ
′

NΓ− Iξ
′

x
)

+

A
′
(

et−1e
′

t−1

)

A+B
′

(Qt−1)B + Γ
′
(

ηt−1η
′

t−1

)

Γ + Iξ
′

xt−1

(8)

where the unconditional covariance matrix Q is composed of the n × n vector of standard-

ized residuals ei,t =
χi,t√
hi,t

computed from the first stage procedure for which ei,t →֒ N (0, Rt).

ηt = 1[et<0] ◦ et is a n × 1 dummy variable equals to unity when standardized residuals et < 0 and

zero otherwise. The asymmetry caused by ηt happens for any ith element ei,t < 0. A, B and Γ are

n×n diagonal matrices where A = diag(
√
a), B = diag(

√
b) and Γ = diag(

√
γ). The model implies

that all correlations are equally influenced by any exogenous variable. ξ is the n×1 vector of param-

eters capturing the influence of the xt spillover variables. I is set as an identity matrix. Capiello,

Engle and Sheppard (2006) show that to ensure positive definiteness of the covariance matrix Qt, a

sufficient condition is a2 + b2 + δγ2 < 1 where δ is the maximum eigenvalue of (Q
−1/2

)(N )(Q
−1/2

).

a, b and γ are scalar parameters. Furthermore, Q = T−1
∑T

t=1 ete
′

t, N = T−1
∑T

t=1 ηtη
′

t and

x = T−1
∑T

t=1 xt.

Vargas (2008) extends the scalar ADCC model of Cappiello et al. (2006) by allowing exogenous

variables to drive correlations. The model implies that all correlations are equally influenced by any
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exogenous variable. The scalar version of the ADCCX model can be written as:

Qt =
(

Q− a2Q− b2Q− γ2N − Iξ
′

x
)

+

a2
(

et−1e
′

t−1

)

+ b2 (Qt−1) + γ2
(

ηt−1η
′

t−1

)

+ Iξ
′

xt−1

(9)

The ADCCX model reduces to the ADCC version when ξ = 0, and to the DCC version when

γ = 0 and ξ = 0. In other words, models are nested in the sense that the DCC and ADCC may

be viewed as special cases of the more general ADCCX. To ensure the positive definiteness of the

conditional correlation matrices, Vargas (2008) bounds the vector that measures the impact of the

exogenous variables xt between 0 and 1. We view the ADCCX as a model that is capable of catching

sophisticated dynamical correlation structures, but this poses limitation on the dimensionality of

the spillover variable(s) with the available computing capacity. That is why we restrict our analysis

by including only one exogenous variable at a time.

The resulting constrained maximum likelihood function is maximized with respect to two sets of

parameters in succeeding steps: first variances, second unconditional correlations and other terms

in the intercepts of Qt, third conditional correlation parameters.5 The minimization problem is

typically solved by iterative algorithms.

3 Descriptive statistics

We apply the ADCCX method to investigate the cross-market relations based on real examples

from financial and commodity markets. Our analysis is performed on the long data span of 7,828

daily observations covering the period from 25 January 1983 to 25 January 2013. Four markets are

represented by aggregate indices retrieved from Thomson Financial Datastream:

1. GSCI is the S&P Goldman Sachs Commodity Spot Price Index (GSCI).

2. SP500 is the S&P 500 Price Index.

3. BMUS10Y is the US Benchmark 10-Year DS Government Index - Clean Price Index.

4. UKDOLLR is the UK GBP to USD (WMR) Exchange Rate.

Insert Figure 1
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Insert Figure 2

Raw series can be observed in Figure 1. They are characterized by various shocks impact-

ing financial, foreign exchange and commodity markets over the period. Volatility surprise series,

computed from eq.(3), are pictured in Figure 2. The ADCCX framework takes as an input these

volatility series during the estimation process. What is striking for the financial economist is that

we are using quantities that are very different from returns visually.

Insert Table 1

Table 1 provides the descriptive statistics of the four time series used in the paper, under the form

of both returns and volatility surprises. In particular, the interested reader can verify (by means of

one-sided t-tests) that the volatility surprise components calculated from eq.(3) are mean-zero, as

they will be re-used as an input to the ADCCX model.

Besides, we observe that the unconditional cross-correlations are typically very low (0.2 or below)

between our variables of interest, which will not undermine our econometric work. We have also

applied Chow break tests to the time series under consideration, which indicated the need to resort

to sub-sampling estimates.

To evaluate how the markets are inter-related, we run preliminary data analyses by means of

OLS regressions. The gist of the results can be seen at the bottom of Table 1. First, in most cases,

the intercept is not significant. Second, UKDOLLR returns receive a negative impact from the three

other variables, which are all significant. Indeed, the S&P500, bonds and commodity aggregates

are accounted for in the construction of the UKDOLLR parity expectation. Third, commodities

can be explained only by the S&P500, either for returns or for the volatility surprise component.

Finally, the S&P500 lagged volatility surprise is the only variable that influences all three other

market volatility surprises. The bottom line is that whatever the specification, no variable seems

always to have a statistically significant impact on the other markets. For that reason, we continue

to explore the covariance structure of these four aggregate indices with volatility surprise spillover

effects in the ADCCX framework.

Insert Table 2
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Table 2 lists the univariate GARCH, EGARCH and TGARCH models estimated to fit σ2
t for

each time series (as the preliminary step before computing the volatility surprise component). The

identification of the univariate volatility process that provides the best goodness-of-fit to each time

series calls for a broader search than the initial GARCH(p,q) model. That is why we also consider

thresholds and leverage effects. Asymmetric effects are present in equities (as documented by

Cappiello et al. (2006)) and FX. In contrast, standard GARCH models are preferred (according to

the AIC criterion) for sovereign bonds and commodities. To account for the conditional mean of

the return series, a vector AR(1) model, which was selected by the AIC, was first fitted to the data.

In the remainder of the paper, we shall similarly model the conditional covariance matrix process

with DCC(1,1) terms.

4 Empirical findings

In this section, we present the main empirical results obtained by plugging the volatility surprise

component into the ADCCX model to evaluate cross-market volatility spillovers. The advantages

of this new approach include (i) flexibility in modelling each market spillover effect separately on

bivariate volatility models, and (ii) allowing the volatility model for one pair of assets to depend

on the (lagged) value of the market at the origin of the spillover effect. We check the accuracy of

the estimation by running additional sub-sample tests.

4.1 Volatility surprise effect on pairwise volatility

Let us consider the volatility surprise introduced as a spillover variable6 xt−1 in the ADCCX

model, and examine its impact on the covariance structure of two other volatility surprises. To

obtain parsimonious specifications, we select only one exogenous variable at a time. By do-

ing so, we obtain the spillover effects coming from the ‘volatility surprise’ of one time series

{ς̃(GSCI(−1), SP500(−1), BMUS10Y (−1), UKDOLLR(−1))} on the covariance structure of two

other volatility surprises {ς̃(GSCI), ς̃(SP500), ς̃(BMUS10Y ), ς̃(UKDOLLR)}. In other words, we

only have ς̃ variables7 entering the ADCCX model given by eq.(9). We report below the specification
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adopted:

Qt =
(

Q− a2Q− b2Q− γ2N −Kξ
′

x
)

+a2
(

et−1e
′

t−1

)

+b2 (Qt−1)+γ2
(

ηt−1η
′

t−1

)

+Kξ
′

xt−1 (10)

By identifying which market is at the origin of the shock, it will give us an understanding about

the other markets’ responses. Table 3 presents quasi maximum-likelihood estimates and diagnostic

statistics of the twelve possibilities to explore. Standard errors based on the normality assumption

are given in parentheses below parameter estimates.

Insert Table 3

Let us now detail the volatility spillover effects at stake between the financial, foreign exchange,

and commodity markets under analysis.

The pairwise ‘volatility surprises’ of GSCI and S&P500 (ς̃(GSCI)+ ς̃(SP500)) is symmetric (as

the γ coefficient is not statistically significant), which implies that the covariance function between

volatilities reacts similarly after a positive or a negative volatility variation. Interestingly, both one-

day lagged volatility surprises coming from the US 10-Year Sovereign Bond (ς̃(BMUS10Y (−1)))

and the UK/Dollar parity (ς̃(UKDOLLR(−1))) appear positive and significant (at the 1% level)

when introduced (separately) as exogenous variables. This means that there is a clear volatility

transmission channel from the bonds / foreign exchange markets to the joint volatility of equities

and commodities. In addition, the conditional correlation of the GSCI and S&P500 volatility

surprises are highly persistent, as shown by the sum of the significant parameter estimates of the

ADCC model.

When looking at the pairwise ‘volatility surprises’ of the GSCI and the US 10-Year Sovereign

Bond (ς̃(GSCI)+ς̃(BMUS10Y )), we remark that the covariance function is symmetric, and that the

lagged volatility spillovers coming from either the S&P500 or the UK/Dollar parity are significant (at

1%) and positive. Hence, we may consider that strong volatility spillovers stem from the UKDOLLR

and SP500 (when set as exogenous variables in the ADCCX model) on the pairwise volatility of

bonds and commodities.
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The third combination of GSCI and UK/Dollar ‘volatility surprises’ (ς̃(GSCI)+ς̃(UKDOLLR))

yields to the same line of comments. The covariance structure is symmetric. The added explanatory

variable is positive and significant, when considering separately as spillover the S&P500 and the US

10-Year Sovereign Bond.

Globally, we have been able to identify strong volatility spillovers channeling through commodity

markets (when paired with each one of the three other aggregate indices). These spillover effects

inform us that the volatility of commodity markets is very sensitive to that of the equity, bond and

foreign exchange markets. Such volatility spillovers also reflect that the risks attached to traditional

financial markets can easily be transmitted to commodity markets.

The linkages between these traditional asset markets are also interesting to comment upon. The

joint ‘volatility surprises’ of equities and bonds (ς̃(SP500)+ ς̃(BMUS10Y )) exhibit an asymmetric

covariance function (as the γ coefficient is statistically significant at the 5% level), which implies that

the correlation function increases more after negative returns than after positive ones. Moreover, the

equity/bond covariance is positively affected by lagged ‘volatility surprises’ spillover effects coming

from commodities and the UK/Dollar parity (at the 1% level).

The same comments apply for the pair of ς̃(SP500)+ ς̃(UKDOLLR) when setting as exogenous

variables either commodities or bonds.8 Across our models, we may conclude that the ‘volatility

surprise’ component of the S&P500 is highly correlated to that of the UK/Dollar parity.

Last but not least, we examine the case where the pair ς̃(BMUS10Y ) + ς̃(UKDOLLR) is

impacted by the ‘volatility surprises’ coming from either GSCI or SP500. While the covariance

function is found to be symmetric, both lagged volatility spillovers are significant and positive at

the 1% level.

Overall, we uncover as the most striking feature that all the volatility surprises introduced (sepa-

rately) as spillover variables into the combinations of pairwise volatilities are statistically significant

(at the 1% level), and positive. The spillover coming from the lagged S&P500 volatility surprise is

the most influential, as the coefficient estimates of ς̃(SP500) have the highest magnitude. Therefore,

Table 3 shows clear evidence of cross-market volatility spillovers between the equity, bond, foreign

exchange and commodity markets during our sample period (1983-2013). In terms of interpretation,
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we may conclude that higher risk levels are transmitted across markets through higher volatilities.

Conversely, in presence of lagged spillover volatility effects, market risks are more correlated.

In light of these strong volatility surprise spillovers, commodities do not appear as a segmented

market, since they affect and are affected by the three other financial markets. There exists a

sparse literature concerning the statistical patterns observed between commodities and standard

assets.9 Kat and Oomen (2007a,b), Gorton and Rouwenhorst (2005) and Erb and Campbell (2006)

have previously established that commodities exhibit a long-term correlation with traditional asset

classes. These inter-relationships in volatility surprise series between commodities and financial

markets might be interpreted as a result of the growing integration among various asset classes (e.g.

phenomenon of ‘financialization’ of commodity markets (Tang and Xiong (2012)).

Our MVGARCH tests encompass the usual checks, such as testing the null of no ARCH in

standardized errors (LM-test), misspecification tests (functional form, symmetry and parameter

constancy, see Lundbergh and Terasvirta (2002)). Following the lead of Reinsel (1997), we employ

a multivariate portmanteau statistic to test for the autocorrelation in the vectorized cross-product

of residuals. What concerns parameter stability tests, we have conducted LR-type tests on our

models with spillovers (ADCCX) against models without spillovers (ADCC). We are able to verify

that the effects coming from the spillover variables significantly modify the likelihood. Hence, the

twelve ADCCX models carry additional explanatory power regarding the cross-market relationships

at stake, that would me missed without plugging in the exogenous variables. Overall, diagnostic

statistics indicate that the ADCCX models provide a good fit for this particular data set.10

Insert Figure 3

Figure 3 displays the time plots of the estimated conditional variance processes for each of our

twelve models. It is evident from these plots that the volatility surprise stemming from one market

strikes back on the conditional correlation function of two other markets’ volatility surprises. The

overall interpretation behind positive trends for all assets is that risks are spreading from one market

(e.g., equities, fixed income, FOREX, commodities) to another. Thanks to the spillover variable

that is set in each model, we can identify from where the shock is coming, and how it impacts
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dynamically the time-varying conditional correlation for pairwise assets. Hence, we are able to

show the superiority of the ADCCX model in uncovering market interdependencies, which have

come under the scrutiny of financial economists with a greater intensity since the 2008 financial

crisis. Moreover, these graphs confirm the time-varying nature of the correlation function, and

hence the need to resort to DCC-type models. The most striking feature of the figures is the change

in correlation during the simultaneous recession and oil price shock of 1991-1992, the subsequent

two recessions in 2001 and 2007-2009 (the latter overlapping the oil shocks of 2005-2008). Note that

correlations have become less negative since the onset of the European debt crisis in 2010.

4.2 Sub-periods decomposition

Insert Table 4

Given the rather long data sample (thirty years), structural breaks in the relation across series

must be evaluated. To do so, we rely on Chow break tests (Chow (1960)) to determine the sub-

periods. According to Table 4, the following break dates are identified:

• 16 January 1995, i.e. with fears that the soaring U.S. trade deficit might destabilize the world

economy and rising geopolitical tensions (economic sanctions against Iran).

• 13 November 2000, i.e. in the aftermath of the dot-com bubble burst.

• 06 March 2009, i.e. in the midst of the 2008 sub-primes crisis (and after the crash and rally

of commodities due to the July 2008 oil price swing).

Therefore, these results suggest a decomposition of the 1983-2013 full sample into four sub-

periods:

• Sub-period #1: 25 January 1983 to 16 January 1995 (3,124 observations)

• Sub-period #2: 17 January 1995 to 13 November 2000 (1,520 observations)

• Sub-period #3: 14 November 2000 to 06 March 2009 (2,169 observations)
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• Sub-period #4: 07 March 2009 to 25 January 2013 (1,014 observations)

In Figure 1, structural break dates are represented by vertical dotted lines. Next, we move to

the estimation of our ADCCX model composed of volatility surprise series during sub-periods.

Insert Table 5

Insert Table 6

Insert Table 7

Insert Table 8

Results are given in Tables 5 to 8. The main purpose of these additional Tables is to test

the stability of the parameter estimates obtained during the full period, and thus they may be

seen as robustness checks of the main results. We find significant cross-effects across the volatility

models, with asymmetric volatility response to positive and negative shocks, and high levels of

time-varying correlations. By and large, sub-period results tend to confirm the remarkable stability

of our findings with respect to cross market volatility spillovers. During the sub-period #1 (1983-

1995), parameter estimates for exogenous spillover variables are found to be statistically significant

for each of the twelve pairs of assets considered (Table 5). The stability of the results is confirmed

during the sub-period #3 going from 2000 to 2009 (Table 7), as well as during the sub-period

#4 covering the recession period after the 2008 financial crisis and the 2011 European debt crisis

(Table 8). Only during the sub-period #2 (1995-2000), we are able to identify seven statistically

significant parameters for the exogenous spillover variables (out of twelve). Vanishing ‘volatility

surprise’ impacts stem from bonds, FX and commodities. However, the S&P 500 impacts are always

statistically significant. We may infer from this last set of comments that the S&P 500 stands out

as the most influential market. Besides, the sub-period decomposition allows us to conclude that

the cross-market spillover effects are very satisfactory when considering volatility surprise spillovers

on pairs of assets in the ADCCX framework.11
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5 Asset management implications

Time-varying covariances are crucial inputs for many tasks of financial, portfolio and risk manage-

ment. In particular, they are worthy of interest not only from an empirical perspective, but also

from a practitioner’s point of view.

First, the most striking result concerns Table 3 in which all the volatility surprise spillover

parameters are highly significant. Therefore, we uncover that the transmission channels across

asset markets are related to the volatility surprise phenomenon, which means that a volatility shock

is more likely to be transmitted from one market to another than a return shock. In addition, the

most influential variable is the equity market (as judged by the size of the parameter and/or the

statistical significance).

From an asset manager’s standpoint, these findings imply that the cross-market unpredicted

risks are cumulative. To build a hedging strategy against such risks, investors need to take volatility

shocks into account. Variance swaps, computed on unpredicted components of implied volatility

and historical volatility, can be seen as an ideal tool in this context, in order to buy and sell

the volatility stemming from each market (Carr and Wu (2009)). This constitutes the key asset

management implication to take from our paper.12

Second, a shared belief in the asset management industry is that including commodities brings

diversification to a portfolio. However, this study shows that commodities might be considered

as an integrated market as they contribute to global risk. This result contradicts the view that

commodities form an alternative asset class for investments (i.e. a segmented market), as suggested

by the bulk of the literature (see Buyukshahin, Haigh and Robe (2010)). Our results are more in

line with Daskalaki and Skiadopoulos (2011), who challenged the alleged diversification benefits of

commodities by resorting to mean-variance spanning tests.

Finally, practitioners will also find the following methodological contribution of the paper to be

of interest: we update the concept of ‘volatility surprise’ that matches considerably the needs of any

hedging strategy implemented by asset managers. Indeed, what hurts asset managers more is the

unpredicted volatility. By construction, the ‘volatility surprise’ component addresses precisely this
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issue since it represents the difference between the squared residuals (representing the unpredicted

squared returns) and the conditional variance (representing the observable risk). Besides standard

volatility series (e.g. GARCH volatility, implied volatility, realized volatility, variance risk premium),

we would advise market practitioners also to include the series of volatility surprises in their standard

econometric toolbox.

By doing so, their portfolio assets will be better protected against unfavorable volatility shocks.

Why? Simply because the volatility surprise represents the unexpected volatility component that

is typically ignored, whereas common practice focuses on the predictable variance (e.g. GARCH).

With reference to Ben Bernanke’s view on the Fed monetary policy, GARCH conditional variances

correspond to the ‘known unknown’. It is important to keep in mind such a measure, of course.

However, according to Engle (1993), the volatility surprise is the non predictable variance from

which the unexpected risks arises, and that can adversely affect the P&L of the asset manager.

This unexpected risk could be called the ‘unknown unknown’.

6 Conclusional remarks

Analysis of conditional covariances is indisputably one of the most important topics in multivari-

ate financial time series modelling. Our basic idea consists in investigating volatility interactions

stemming from the ‘volatility surprise’ component (Hamao et al. (1990)) with cross effects and

time-varying correlations in financial and commodity markets. The objective consists in studying

the transmission channels of a long forgotten risk measure – e.g. the volatility surprise – that is

invisible but hurts the asset manager.

Indeed, there has been recently increasing interest in the transmission of variance across various

financial asset price movements. In our setting, volatility spillovers are quantified by resorting to

Vargas’s (2008) asymmetric DCC model with one exogenous variable (ADCCX). The model entails

fitting a univariate model that incorporates changing variances to each time series, and fitting the

resulting volatility surprise series in a multivariate GARCH model with an additional spillover.

The ADCCX model is both original and flexible in the sense that any variable can be set as the
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spillover, which leads to uncovering new results across financial and commodity markets through

pairwise conditional correlations.

Most of the literature uses classical pairwise DCC models. We take the analysis one step further,

since we investigate how one spillover variable might impact pairs of assets. To this end, the ADCCX

model brings forth a novel analysis. The appealing features of this approach make it very useful in

practice, by providing information on the interaction between time series data and also by helping

construct a more complex multivariate model. Following a two-step procedure, we separate the

estimation task first by fitting each variance with an appropriate univariate volatility model (such

as GARCH), and second by plugging the resulting volatility surprise quantities into the ADCCX

equation.

The dataset includes four agregates indices representing equities, bonds, foreign exchange rates

and commodities from 1983 to 2013. Setting the ‘volatility surprise’ component as a spillover vari-

able yields strong volatility transmission effects in the ADCCX framework. Depending on model

specifications, volatility spillovers are shown to exist within financial markets and across commodi-

ties. This observation motivates us to conclude in favor of the ‘financialization of commodities’

phenomenon, recently highlighted by Tang and Xiong (2012). We also check the reliability of

these results by running sub-period estimates. Besides, we have applied several diagnostic checking

statistics to assess the various fitted models.

The further interdependence between asset prices therefore concerns the links between their

dynamic conditional correlations. It seems reasonable for volatility to vary across time and space,

so that volatility in one asset market moves contemporaneously or leads the volatility of other assets.

These effects are most of the time due to the processing and transmission of economic news (e.g.

1987 Black Monday, 1997 Asia Crisis, 2000 Dot.com, 2008 Financial Crisis, 2011 European Debt

Crisis) and/or changes in the patterns of the trading volumes.

Although spillovers are frequently studied, little is known about their dynamics. The spillovers

of volatility surprises (on pairwise volatilities) can be interpreted as a permanent transmission

channel of risk. It is shown indeed that the traditional asset markets (equities, bonds, FX) as well

as commodities are mutually sensitive to each other’s volatilities across our model estimates. For
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instance, the transmission of risk affects the covariance structure of equities and bonds through the

commodity variable. Overall, the econometric methodology based on the ADCCX model provides

useful information on the temporal dynamics and the interactions at stake between commodity and

financial markets.

The picture would not be complete without deriving some asset management implications, based

on the full span of derivatives products. The prevention of unwanted volatility shocks can be

achieved by resorting to variance swaps, or by purchasing options. Hedging equity return spillovers

can be performed by relying on equity futures. Last but not least, we bring to the fore the need for

market practitioners and fund managers to reconsider the use of the ‘volatility surprise’ component

– along with more traditional measures of volatility – to capture fully the cumulative risks at stake

on financial markets.
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Notes

1Ross (1989) shows that, in a no-arbitrage economy, the variance of price changes is directly related to the rate of
information flow to the market. Engle, Ito and Lin (1990) attribute movements in variance to the time required by
market participants in processing new information.

2Alternative econometric methodologies, to cite few, include exploiting high-frequency data for improved (realized)
covariance matrix measurement (Andersen, Bollerslev, Christoffersen and Diebold (2007)), and the Multivariate
Realized GARCH model (Hansen, Lunde and Voev (2014)). The extension of these models to allowing one exogenous
spillover variable between pairs of assets is left for future research.

3One of the most general multivariate generalized auto-regressive conditional heteroskedasticity GARCH(p,q)
models is the BEKK representation (Engle and Kroner (1995)). Although the form of this model is quite general, it
suffers from overparameterization. Hence, we do not detail further BEKK-type models. For a survey, see Bauwens,
Laurent and Rombouts (2006).

4Sheppard (2008) proposes an alternative approach, whereby the conditional covariance matrix is a linear function
of one or more exogenous variables, by using spectral decomposition. However, in this paper, we wish to employ
Vargas’s (2008) model.

5The interested reader may refer to Vargas (2008) for further discussion regarding the applicability of the asymp-
totic normal distributions in the analysis, and the conditions for the stationarity of the covariance process in eq.(9).

6Introduced with a lag to judge its predictive power.
7Recall that the notation ς̃ stands for the volatility surprise component.
8Note however that the covariance symmetric function is symmetric.
9Tang and Xiong (2012) argue that the increase of investments in commodities via commodity indexes (financial-

ization of commodities) tends to integrate the equity with the commodity markets (see also Singleton, 2014). Hong
and Yogo (2012) find that there are common variables which predict commodity futures and equity returns.

10To conserve space, these results are not reproduced in the paper, and can be accessed upon request.
11Dynamic conditional correlations recorded during each sub-period are not reproduced to conserve space, and can

be accessed upon request to the authors.
12Moreover, we remark that the bond and currency volatilities contribute the most to explaining equity returns.

Thus, another asset management implication would consist of hedging risks in priority against bond and currency
volatility spillovers. Equity funds can implement this strategy by purchasing call options on bonds and currencies.
Interestingly, the most influential market in terms of return spillovers on pairwise returns is the S&P 500 variable,
contrary to the US 10-year Sovereign Bond which is the least influential. To address this issue, one last piece of
advice for asset managers would be to construct a hedging strategy relying on futures contracts on the S&P500 index
futures.
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7 Appendix

7.1 Figures
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Figure 1: Raw series: S&P 500 (top left), Bonds (top right), S&P GSCI (bottom left), UK/Dollar
FX (bottom right)

Note: Structural breaks identified by means of Chow tests are represented by vertical dotted lines.

23



JAN 83 NOV 86 SEP 90 JUL 94 JUN 98 MAR 02 JAN 06 NOV 09 FEB 13
−20

0

20

40

60

80

100

120
Volatility Surprise for S&P 500

JAN 83 NOV 86 SEP 90 JUL 94 JUN 98 MAR 02 JAN 06 NOV 09 FEB 13
−5

0

5

10

15

20

25

30

35

40

45
Volatility Surprise for BMUS10Y

JAN 83 NOV 86 SEP 90 JUL 94 JUN 98 MAR 02 JAN 06 NOV 09 FEB 13
−10

0

10

20

30

40

50
Volatility Surprise for S&P GSCI

JAN 83 NOV 86 SEP 90 JUL 94 JUN 98 MAR 02 JAN 06 NOV 09 FEB 13
−5

0

5

10

15

20

25

30
Volatility Surprise for UKDOLLR

Figure 2: ‘Volatility surprise’ series: S&P 500 (top left), Bonds (top right), S&P GSCI (bottom
left), UK/Dollar FX (bottom right)
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Figure 3: Dynamic Conditional Correlations computed from the ADCCX Model during the Full Sample [1983-2013]
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7.2 Tables
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Table 1: Descriptive statistics
Returns Mean Standard Skewness Kurtosis Standardized Standardized

Deviation Skewness Kurtosis

GSCI 0.02 1.25 -0.60 12.97 -0.48 10.35
SP500 0.03 1.14 -1.27 31.69 -1.11 27.74

BMUS10Y 0.01 1.14 -1.58 43.13 -1.39 37.95
UKDOLLR 0.00 0.62 -0.01 6.68 -0.01 10.83

Volatility Surprise Mean Standard Skewness Kurtosis Standardized Standardized
Deviation Skewness Kurtosis

GSCI 0.04 187.59 7.38 123.23 0.03 0.65
SP500 -0.10 258.26 22.01 844.44 0.08 3.26

BMUS10Y 0.22 194.06 6.34 79.25 0.03 0.41
UKDOLLR 0.32 181.24 4.80 40.31 0.02 0.22

Unconditional cross-correlations

Returns GSCI SP500 BMUS10Y UKDOLLR

GSCI 1 0.12 -0.13 -0.14
SP500 1 -0.06 -0.03

BMUS10Y 1 -0.01
UKDOLLR 1

Unconditional cross-correlations

Volatility Surprise GSCI SP500 BMUS10Y UKDOLLR

GSCI 1 0.13 0.09 0.07
SP500 1 0.21 0.05

BMUS10Y 1 0.08
UKDOLLR 1

OLS Regressions

Returns C GSCI(-1) SP500(-1) BMUS10Y(-1) UKDOLLR(-1) R2×100

1 GSCI 0.01 0.06*** 0.02 0.03 0.32
2 SP500 0.01** -0.03** 0.11*** 0.01 0.32
3 BMUS10Y 0.01 0.01 0.01 -0.01 0.03
4 UKDOLLR 0.01 -0.02*** -0.03*** -0.04*** 0.41

OLS Regressions

Volatility Surprise C GSCI(-1) SP500(-1) BMUS10Y(-1) UKDOLLR(-1) R2×100

1 GSCI 0.01 0.02** 0.01 -0.01 0.07
2 SP500 -0.01 0.02 -0.01 -0.01 0.02
3 BMUS10Y 0.01 -0.01 0.11*** -0.02 1.97
4 UKDOLLR 0.01 -0.01 0.03*** 0.04*** 0.43

Note: The standardized skewness and kurtosis are the skewness and kurtosis of the returns and ‘volatility surprise’

components standardized by their estimated standard deviation. Parameter estimates are given for the OLS Regressions,

which have been estimated with Newey-West Standard Errors and Covariance. The statistical significance is indicated at the

1%(***), 5%(**), and 10%(*) levels. C stands for the intercept, and (−1) for lag one. Diagnostic tests for OLS Regressions

(Ljung-Box-Pierce residuals autocorrelation in particular) can be accessed upon request.
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Table 2: Univariate GARCH models
Asset Model selected with AIC ω α γ β

1 GSCI GARCH 0.0005 0.0609 0.9375
2 SP500 EGARCH -0.2600 0.1233 -0.0940 0.9820
3 BMUS10Y GARCH 0.0003 0.0448 0.9431
4 UKDOLLR TGARCH 0.0003 0.0480 -0.0128 0.9510

Note: All parameters are found to be statistically significant at the 1% level. Intercept parameters are calculated on
10 times the returns to facilitate working with extremely small numbers. The GARCH specifications tested are
briefly recalled below.
GARCH:

ht = ω + αǫ
2
t−1 + βht−1

Exponential GARCH (EGARCH):

ln(ht) = ω + α
|ǫt−1|√
ht−1

+ γ
ǫt−1√
ht−1

+ β ln(ht−1)

Threshold GARCH (TGARCH):

h
1/2
t = ω + α|ǫt−1|+ γI[ǫt−1 < 0]|ǫt−1|+ βh

1/2
t−1
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Table 3: ADCCX estimates for the Full Sample [1983-2013]
Parameters Spillover Origin Diagnostics

Volatility Surprise a2 b2 γ2 ξ ξ ξ ξ SC Log L
(ς̃(GSCI(−1))) (ς̃(SP500(−1))) (ς̃(BMUS10Y (−1))) (ς̃(UKDOLLR(−1)))

1 ς̃(GSCI)+ ς̃(SP500) 0.0441*** 0.9255*** 0.0010 0.0065*** 1.5828 -6175.63
(0.0036) (0.0082) (0.0313) (0.0016)

2 ς̃(GSCI)+ς̃(SP500) 0.0438*** 0.9261*** 0.0159 0.0057*** 1.5843 -6181.63
(0.0041) (0.0096) (0.0243) (0.0016)

3 ς̃(GSCI)+ς̃(BMUS10Y) 0.0514*** 0.8879*** 0.0033 0.0092*** 2.0045 -7825.77
(0.0038) (0.0087) (0.0299) (0.0003)

4 ς̃(GSCI)+ς̃(BMUS10Y) 0.0519*** 0.8885*** 0.0027 0.0060*** 1.9897 -7767.95
(0.0042) (0.0103) (0.0290) (0.0023)

5 ς̃(GSCI)+ς̃(UKDOLLR) 0.0412*** 0.9052*** 0.0132 0.0084*** 2.0090 -7843.58
(0.0029) (0.0057) (0.0277) (0.0009)

6 ς̃(GSCI)+ς̃(UKDOLLR) 0.0401*** 0.9081*** 0.0010 0.0076*** 2.0069 -7835.23
(0.0030) (0.0059) (0.0270) (0.0017)

7 ς̃(SP500)+ς̃(BMUS10Y) 0.0475*** 0.9050*** 0.0563** 0.0082*** 1.5516 -6053.73
(0.0030) (0.0070) (0.0222) (0.0013)

8 ς̃(SP500)+ς̃(BMUS10Y) 0.0484*** 0.9031*** 0.0566** 0.0073*** 1.5522 -6056.01
(0.0033) (0.0077) (0.0234) (0.0013)

9 ς̃(SP500)+ς̃(UKDOLLR) 0.0479*** 0.8973*** 0.0293 0.0100*** 1.6090 -6278.29
(0.0064) (0.0148) (0.0313) (0.0016)

10 ς̃(SP500)+ς̃(UKDOLLR) 0.0442*** 0.8975*** 0.0105 0.0078*** 1.6089 -6277.78
(0.0056) (0.0141) (0.0310) (0.0012)

11 ς̃(BMUS10Y)+ς̃(UKDOLLR) 0.0475*** 0.8962*** 0.0065 0.0062*** 2.0073 -7836.88
(0.0017) (0.0044) (0.0258) (0.0018)

12 ς̃(BMUS10Y)+ς̃(UKDOLLR) 0.0477*** 0.8956*** 0.0056 0.0097*** 2.0187 -7881.33
(0.0017) (0.0044) (0.0283) (0.0001)

Note: Standard errors in parentheses below coefficient estimates. Statistical significance is indicated at the 1%(***), 5%(**), and 10%(*) levels. Lag 1 is noted (-1).
LogL is the log-likelihood value. SC is the Schwarz information criteria.

The ‘volatility surprise’ component is given by eq.(3): ς̃t =
(ǫ2t−σ2

t )
σ2
t

.

The ADCCX model is given by eq.(9): Qt =
(

Q− a2Q− b2Q− γ2N −Kξ
′

x
)

+ a2
(

et−1e
′

t−1

)

+ b2 (Qt−1) + γ2
(

ηt−1η
′

t−1

)

+Kξ
′

xt−1.
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Table 4: Chow test results
Break Dates 16/01/1995 13/11/2000 06/03/2009

Chow Test RSS0 RSS1 RSS2 RSS3 RSS4 RSSa F ∗ F c 5% Structural breaks?

1 SP500 893758.70 24621.14 219281.60 459457.80 189212.40 892572.94 5.19 2.99 Yes
2 BMUS10Y 2416.91 50.52 562.32 1169.70 630.23 2412.78 6.69 2.99 Yes
3 CGYSPT 180998.20 11234.84 6360.23 101747.70 61417.20 180759.98 5.15 2.99 Yes
4 UKDOLLR 0.12 0.06 0.01 0.02 0.01 0.12 6.45 2.99 Yes

Note: Chow tests are conducted with three potential break dates. Each regression model is estimated with a constant and an AR(1) component. RSS0

stands for the Residual Sum of Squares for the model estimated during the full sample. RSS1 to RSS4 correspond to the model estimates for each

sub-period. RSSa = RSS1 +RSS2 +RSS3 +RSS4. F ∗ is the F -statistic computed as (SCR0−SCRa)/(k+1)
SCRa/(T−2(k+1))

. k denotes the number of variables. T

denotes the number of observations, equal to 7826. F c is the critical value provided by the Fisher-Snedecor tables for (k + 1, T − 2(k + 1)) degrees of

freedom.
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Table 5: ADCCX estimates for the Sub-Period #1 [1983-1995]
Parameters Spillover Origin Diagnostics

Volatility Surprise a2 b2 γ2 ξ ξ ξ ξ SC Log L
(ς̃(GSCI(−1))) (ς̃(SP500(−1))) (ς̃(BMUS10Y (−1))) (ς̃(UKDOLLR(−1)))

1 ς̃(GSCI)+ ς̃(SP500) 0.0616*** 0.9295*** 0.0087** 0.1118*** 7.3161 -3676.44
(0.0057) (0.0048) (0.0032) (0.0168)

2 ς̃(GSCI)+ς̃(SP500) 0.0625*** 0.9256*** 0.0118** 0.0698*** 6.2601 -3148.10
(0.0032) (0.0031) (0.0051) (0.0178)

3 ς̃(GSCI)+ς̃(BMUS10Y) 0.0559*** 0.9289*** 0.0150 0.1184*** 6.8181 -3427.00
(0.0043) (0.0061) (0.0091) (0.0109)

4 ς̃(GSCI)+ς̃(BMUS10Y) 0.0861*** 0.8925*** 0.0041 0.0924*** 7.8641 -3950.45
(0.0051) (0.0063) (0.0028) (0.0188)

5 ς̃(GSCI)+ς̃(UKDOLLR) 0.0646*** 0.9254*** 0.0098 0.0304*** 6.5341 -3285.12
(0.0059) (0.0053) (0.0064) (0.0105)

6 ς̃(GSCI)+ς̃(UKDOLLR) 0.0606*** 0.9331*** 0.0061 0.0830*** 7.2401 -3638.61
(0.0034) (0.0022) (0.0038) (0.0169)

7 ς̃(SP500)+ς̃(BMUS10Y) 0.0579*** 0.9334*** 0.0085** 0.2362*** 6.7081 -3372.09
(0.0026) (0.0036) (0.0021) (0.0300)

8 ς̃(SP500)+ς̃(BMUS10Y) 0.0586*** 0.9290*** 0.0123*** 0.0870*** 6.4941 -3265.11
(0.0062) (0.0049) (0.0048) (0.0302)

9 ς̃(SP500)+ς̃(UKDOLLR) 0.0778*** 0.9066*** 0.0154 0.0701*** 7.6041 -3820.67
(0.0043) (0.0047) (0.0091) (0.0178)

10 ς̃(SP500)+ς̃(UKDOLLR) 0.0590*** 0.9341*** 0.0068 0.3041*** 6.4181 -3227.19
(0.0024) (0.0037) (0.0041) (0.0281)

11 ς̃(BMUS10Y)+ς̃(UKDOLLR) 0.0760*** 0.9005*** 0.0092 0.1249*** 7.7281 -3882.28
(0.0221) (0.0243) (0.0066) (0.0187)

12 ς̃(BMUS10Y)+ς̃(UKDOLLR) 0.0641*** 0.9009*** 0.0070 0.0191*** 6.9761 -3506.33
(0.0177) (0.0357) (0.0016) (0.0080)

Note: Standard errors in parentheses below coefficient estimates. Statistical significance is indicated at the 1%(***), 5%(**), and 10%(*) levels. Lag 1 is noted (-1).
LogL is the log-likelihood value. SC is the Schwarz information criteria.

The ‘volatility surprise’ component is given by eq.(3): ς̃t =
(ǫ2t−σ2

t )
σ2
t

.

The ADCCX model is given by eq.(9): Qt =
(

Q− a2Q− b2Q− γ2N −Kξ
′

x
)

+ a2
(

et−1e
′

t−1

)

+ b2 (Qt−1) + γ2
(

ηt−1η
′

t−1

)

+Kξ
′

xt−1.
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Table 6: ADCCX estimates for the Sub-Period #2 [1995-2000]
Parameters Spillover Origin Diagnostics

Volatility Surprise a2 b2 γ2 ξ ξ ξ ξ SC Log L
(ς̃(GSCI(−1))) (ς̃(SP500(−1))) (ς̃(BMUS10Y (−1))) (ς̃(UKDOLLR(−1)))

1 ς̃(GSCI)+ ς̃(SP500) 0.0578*** 0.9370*** 0.0051 0.0229 7.2461 -3641.05
(0.0039) (0.0063) (0.0039) (0.0177)

2 ς̃(GSCI)+ς̃(SP500) 0.0594*** 0.9329*** 0.0076 0.0266 6.1941 -3115.66
(0.0038) (0.0068) (0.0050) (0.0227)

3 ς̃(GSCI)+ς̃(BMUS10Y) 0.0757*** 0.9117*** 0.0124 0.2199*** 7.8941 -3965.92
(0.0031) (0.0074) (0.0091) (0.0227)

4 ς̃(GSCI)+ς̃(BMUS10Y) 0.0591*** 0.9284*** 0.0123 0.0570** 6.5321 -3284.82
(0.0076) (0.0030) (0.0077) (0.0254)

5 ς̃(GSCI)+ς̃(UKDOLLR) 0.0607*** 0.9329*** 0.0062 0.0773*** 7.9261 -3981.00
(0.0041) (0.0070) (0.0041) (0.0235)

6 ς̃(GSCI)+ς̃(UKDOLLR) 0.0441*** 0.9099*** 0.0057 0.0579** 6.3581 -3197.65
(0.0077) (0.0357) (0.0036) (0.0258)

7 ς̃(SP500)+ς̃(BMUS10Y) 0.0577*** 0.9365*** 0.0057** 0.0466 7.4521 -3744.61
(0.0050) (0.0023) (0.0015) (0.0314)

8 ς̃(SP500)+ς̃(BMUS10Y) 0.0598*** 0.9331*** 0.0069*** 0.0915*** 7.6281 -3832.11
(0.0054) (0.0024) (0.0018) (0.0278)

9 ς̃(SP500)+ς̃(UKDOLLR) 0.0595*** 0.9272*** 0.0131 0.0338 6.2121 -3124.32
(0.0039) (0.0061) (0.0074) (0.0289)

10 ς̃(SP500)+ς̃(UKDOLLR) 0.0813*** 0.9056*** 0.0130 0.2644*** 7.2661 -3651.24
(0.0035) (0.0064) (0.0086) (0.0273)

11 ς̃(BMUS10Y)+ς̃(UKDOLLR) 0.0623*** 0.9309*** 0.0067 0.0286 6.9881 -3512.69
(0.0055) (0.0024) (0.0041) (0.0222)

12 ς̃(BMUS10Y)+ς̃(UKDOLLR) 0.0221*** 0.9562*** 0.0080 0.1106*** 6.8681 -3452.72
(0.0123) (0.0425) (0.0061) (0.0163)

Note: Standard errors in parentheses below coefficient estimates. Statistical significance is indicated at the 1%(***), 5%(**), and 10%(*) levels. Lag 1 is noted (-1).
LogL is the log-likelihood value. SC is the Schwarz information criteria.

The ‘volatility surprise’ component is given by eq.(3): ς̃t =
(ǫ2t−σ2

t )
σ2
t

.

The ADCCX model is given by eq.(9): Qt =
(

Q− a2Q− b2Q− γ2N −Kξ
′

x
)

+ a2
(

et−1e
′

t−1

)

+ b2 (Qt−1) + γ2
(

ηt−1η
′

t−1

)

+Kξ
′

xt−1.

32



Table 7: ADCCX estimates for the Sub-Period #3 [2000-2009]
Parameters Spillover Origin Diagnostics

Volatility Surprise a2 b2 γ2 ξ ξ ξ ξ SC Log L
(ς̃(GSCI(−1))) (ς̃(SP500(−1))) (ς̃(BMUS10Y (−1))) (ς̃(UKDOLLR(−1)))

1 ς̃(GSCI)+ ς̃(SP500) 0.0593*** 0.9171*** 0.0078 0.0664*** 8.2621 -4149.22
(0.0081) (0.0077) (0.0043) (0.0210)

2 ς̃(GSCI)+ς̃(SP500) 0.0564*** 0.9087*** 0.0096 0.0839*** 8.4981 -4267.65
(0.0046) (0.0119) (0.0067) (0.0234)

3 ς̃(GSCI)+ς̃(BMUS10Y) 0.0281*** 0.9396*** 0.0075 0.2206*** 8.8781 -4457.81
(0.0081) (0.0079) (0.0059) (0.0195)

4 ς̃(GSCI)+ς̃(BMUS10Y) 0.0166*** 0.9272*** 0.0047 0.1136*** 8.3641 -4200.22
(0.0049) (0.0061) (0.0032) (0.0237)

5 ς̃(GSCI)+ς̃(UKDOLLR) 0.0120*** 0.9588*** 0.0062 0.0309* 9.8261 -4931.69
(0.0099) (0.0056) (0.0044) (0.0180)

6 ς̃(GSCI)+ς̃(UKDOLLR) 0.0119*** 0.9108*** 0.0082 0.0918*** 9.8081 -4922.88
(0.0065) (0.0088) (0.0028) (0.0192)

7 ς̃(SP500)+ς̃(BMUS10Y) 0.0221*** 0.9266*** 0.0193** 0.1118*** 8.0041 -4020.56
(0.0078) (0.0067) (0.0069) (0.0232)

8 ς̃(SP500)+ς̃(BMUS10Y) 0.0265*** 0.9272*** 0.0142** 0.0436* 9.1061 -4571.38
(0.0058) (0.0057) (0.0074) (0.0254)

9 ς̃(SP500)+ς̃(UKDOLLR) 0.0614*** 0.9071*** 0.0074 0.0702*** 9.1741 -4605.85
(0.0042) (0.0034) (0.0053) (0.0195)

10 ς̃(SP500)+ς̃(UKDOLLR) 0.0322*** 0.9204*** 0.0070 0.2158*** 9.1041 -4570.50
(0.0099) (0.0101) (0.0066) (0.0222)

11 ς̃(BMUS10Y)+ς̃(UKDOLLR) 0.0151*** 0.9610*** 0.0050 0.0686*** 8.4641 -4250.00
(0.0080) (0.0048) (0.0030) (0.0217)

12 ς̃(BMUS10Y)+ς̃(UKDOLLR) 0.0272*** 0.9286*** 0.0064 0.1002*** 9.1221 -4579.85
(0.0116) (0.0149) (0.0048) (0.0137)

Note: Standard errors in parentheses below coefficient estimates. Statistical significance is indicated at the 1%(***), 5%(**), and 10%(*) levels. Lag 1 is noted (-1).
LogL is the log-likelihood value. SC is the Schwarz information criteria.

The ‘volatility surprise’ component is given by eq.(3): ς̃t =
(ǫ2t−σ2

t )
σ2
t

.

The ADCCX model is given by eq.(9): Qt =
(

Q− a2Q− b2Q− γ2N −Kξ
′

x
)

+ a2
(

et−1e
′

t−1

)

+ b2 (Qt−1) + γ2
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+Kξ
′
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Table 8: ADCCX estimates for the Sub-Period #4 [2009-2013]
Parameters Spillover Origin Diagnostics

Volatility Surprise a2 b2 γ2 ξ ξ ξ ξ SC Log L
(ς̃(GSCI(−1))) (ς̃(SP500(−1))) (ς̃(BMUS10Y (−1))) (ς̃(UKDOLLR(−1)))

1 ς̃(GSCI)+ ς̃(SP500) 0.0610*** 0.9024*** 0.0126 0.1606*** 8.3701 -4203.82
(0.0034) (0.0087) (0.0073) (0.0346)

2 ς̃(GSCI)+ς̃(SP500) 0.0154*** 0.9339*** 0.0097 0.2348*** 8.6121 -4324.57
(0.0027) (0.0070) (0.0072) (0.0428)

3 ς̃(GSCI)+ς̃(BMUS10Y) 0.0270*** 0.9210*** 0.0058 0.3065*** 8.4041 -4220.10
(0.0054) (0.0071) (0.0033) (0.0307)

4 ς̃(GSCI)+ς̃(BMUS10Y) 0.0351*** 0.9116*** 0.0111 0.0858** 8.0412 -4039.11
(0.0025) (0.0137) (0.0090) (0.0388)

5 ς̃(GSCI)+ς̃(UKDOLLR) 0.0211*** 0.9586*** 0.0032 0.0715*** 9.0601 -4548.62
(0.0049) (0.0068) (0.0027) (0.0258)

6 ς̃(GSCI)+ς̃(UKDOLLR) 0.0273*** 0.9395*** 0.0200 0.0557** 9.8581 -4947.20
(0.0071) (0.0051) (0.0070) (0.0252)

7 ς̃(SP500)+ς̃(BMUS10Y) 0.0342*** 0.9123*** 0.0121** 0.2932*** 8.1901 -4113.36
(0.0047) (0.0046) (0.0062) (0.0258)

8 ς̃(SP500)+ς̃(BMUS10Y) 0.0576*** 0.9013*** 0.0166** 0.1047*** 9.7961 -4916.98
(0.0057) (0.0121) (0.0084) (0.0378)

9 ς̃(SP500)+ς̃(UKDOLLR) 0.0154*** 0.9582*** 0.0051 0.1224*** 8.2061 -4121.96
(0.0056) (0.0097) (0.0043) (0.0123)

10 ς̃(SP500)+ς̃(UKDOLLR) 0.0161*** 0.9708*** 0.0040 0.2913*** 8.2721 -4154.20
(0.0063) (0.0134) (0.0031) (0.0292)

11 ς̃(BMUS10Y)+ς̃(UKDOLLR) 0.0466*** 0.9019*** 0.0051 0.1290*** 8.8801 -4458.08
(0.0090) (0.0060) (0.0039) (0.0278)

12 ς̃(BMUS10Y)+ς̃(UKDOLLR) 0.0221*** 0.9324*** 0.0071 0.1276*** 8.9621 -4499.58
(0.0048) (0.0101) (0.0053) (0.0214)

Note: Standard errors in parentheses below coefficient estimates. Statistical significance is indicated at the 1%(***), 5%(**), and 10%(*) levels. Lag 1 is noted (-1).
LogL is the log-likelihood value. SC is the Schwarz information criteria.

The ‘volatility surprise’ component is given by eq.(3): ς̃t =
(ǫ2t−σ2

t )
σ2
t

.

The ADCCX model is given by eq.(9): Qt =
(

Q− a2Q− b2Q− γ2N −Kξ
′

x
)

+ a2
(
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