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Stochastic dominance, risk and disappointment:
a synthesis.

July 2015*

Thierry Chauveau**

ABSTRACT: The theory of disappointment of Loomes and Sugden [1986] has never
been given an axiomatics. This article, where a theory of disappointment is derived
from a simple axiomatics, makes up for this omission. The new theory is close to that
of Loomes and Sugden although the functional representing the preferences of the
decision-maker is now lottery-dependent. Actually, preferences exhibit four properties
of interest : (a) risk-averse and risk prone investors actually behave differently; (b)
risk is defined in a consistent way with risk aversion; (c) the functional is nothing but
the opposite to a convex measure of risk (Föllmer and Schied [2002]) when constant
marginal utility is assumed and (d) violations of the second-order stochastic dominance
property are allowed for when monetary values are taken into account (but not when
when "utils" are substituted for them). Moreover, the preorder induced by stochastic
dominance over utils is as "close" to the preorder of preferences as possible and utility
functions may be elicited through experimental testing.

JEL classification: D81. KEY-WORDS: disappointment, risk-aversion, expected utility,
risk premium, stochastic dominance, subjective risk.

RESUME: La théorie de la déception proposée par Loomes et Sugden [1986] n’a
jamais été pourvue d’une axiomatisation. Ce document de travail comble cette lacune.
On y présente une théorie très proche de celle de Loomes et Sugden où la fonctionnelle
représentant les préférences est "loterie-dépendante". Cette théorie possède quatre
propriétés très intéressantes : (a) les investisseurs ayant de l’aversion pour le risque se
comportent vraiment différemment de ceux qui sont neutres vis-à-vis du risque (b) le
risque est défini de façon cohérente avec l’aversion pour le risque (c) la fonctionnelle
représentant les préférences n’est autre que l’opposé d’une mesure convexe de rique à
la Föllmer et Schied [2002], si l’utilité marginale de la richesse est constante et (d) la
dominance stochastique de second ordre est respectée non pour les valeurs monétaires
mais pour les seules utilités. De plus, le préodre induit par la dominance stochastique
est alors aussi proche que possible du préordre des préférences et l’on peut déterminer
la fonction d’utilité élémentaire à partir de tests empiriques.

JEL classification: D81. MOTS-CLES: déception, aversion pour le risque, risque subjectif,
prime de risque, utilité espérée.

* This paper is a revised version of the paper which was presented at the 2014 FUR
conference in Rotterdam (1st July). It will be presented at the 2015 SAET conference
in Cambridge (UK, July 27-31).

** Université Paris-I-Panthéon-Sorbonne. e-mail: thchauveaudevallat@gmail.com
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1 Introduction

It is often emphasized, in psychological literature, that (a) disappointment
(elation) is experimented, once a decision has been taken, when the chosen
option turns out to be worse (better) than expected (see e.g. Mellers [2000]), (b)
that it is the most frequently experimented emotion (see Weiner et alii [1979])
and (c) that disappointment is the most powerful among the negative emotions
which are experimented (see Schimmack and Diener [1997]).1 Moreover, as
Frijda [1994] points out, “actual emotion, affective response, anticipation of
future emotion can be regarded as the primary source of decisions”. To sum up,
it is most likely that expected elation/disappointment plays an important role
in decision-making.
This role was first formalized independently by Bell [1985] and Loomes and

Sugden [1986]. Despite its earliness, their approach has revealed surprisingly
close to the analyses mentioned above. Indeed, consider a random outcome
whose possible values are monetary prizes. Then, according to Loomes and
Sugden, winning a prize gives rise to a satisfaction which can be split into
two elements: (i) the utility from winning the prize with certainty and (ii)
elation (or disappointment) which depends on the difference between this utility
and a reference level which is often viewed as a "prior expectation" of the
utility from the random outcome. As a corollary, the utility from the random
outcome is an average of the utilities of the prizes —namely the expected utility
of the investor’s wealth—plus an average of elations or disappointments —namely
expected elation/disappointment—. This additional term is positive (negative)
when the investor experiments elation (disappointment).
Despite their psychological relevance, the models of Bell [1985] and of Loomes

and Sugden [1986] have been somewhat neglected in the economic literature,
probably because they lack an axiomatic framework. In the meantime, other
disappointment models have been developed. However, they also lack an ax-
iomatic basis. An exception is Gul [1991].2

Our theory of disappointment is a fully choice-based decision-making under
risk. It is derived from a set of testable axioms. It corresponds to a set of models
which will be called LS-models, because they are close to the disappointment
model of Loomes and Sugden [1986]. The new theory is endowed with four
important properties: (i) it allows for an attitude towards risk which does not
require any assumption about marginal utility, (ii) it yields coherent definitions
of risk and risk aversion, (iii) it is compatible with Artzner’s et alii [1997]
approach of measures of risk and (iv) it allows for many behavioural anomalies.
To understand what property (i) actually means, recall that an investor is

generally assumed to be sensitive to the utility of his wealth. For instance, when
the expected utility theory (henceforth EU theory) is valid, the investor’s wel-
fare is a probability weighted average of the utilities of the possible outcomes.
As a consequence, he is risk-averse (prone) if his elementary utility function is

1There is a lot of empirical evidence which supports this view (see Van Dijk and Van der
Pligt [1996], Zeelenberg et alii [2002], Van Dijk et alii [2003]).

2See below.
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concave (convex). Anyway, in any case, the investor takes into account nothing
but an average of the results of a gamble to the results of which he is sensi-
tive. Hence, whatever his attitude towards risk (risk-aversion, risk-proneness or
neutrality), he actually behaves in the same way. This is a well-known paradox.
By contrast, according to Loomes and Sugden, an investor will be disappoint-

ment-averse (prone) if and only if (henceforth iff ) his welfare includes expected
disappointment (elation) in addition to the expected utility of his terminal
wealth.3 In particular, when marginal utility is constant, he is risk-averse
(prone) iff his welfare includes expected disappointment (elation) in addition
to his expected wealth, and, consequently, the paradox vanishes.
Little attention has been paid, up to now, to properties (ii) and (iii) in

the litterature. Property (ii) means that risk may be defined in a consistent
way with risk aversion. This occurs in Loomes and Sugden’s approach4 since
any risk premium may be split into elementary risk premia, each of which may
be identified to the product of a quantity of risk by a specific risk-aversion.
Property (iii) is met when constant marginal utility is assumed: the certainty
equivalent of a lottery is then the opposite to a convex measure of risk à la
Föllmer and Schied [2002]. Property (iv) consists in allowing for violations of
the independence and/or second-order stochastic dominance properties since
both types of violations are commonly observed in experimental tests.
Finally the four above properties constitute a strong incentive for favouring

the use of LS-models. To our knowledge, they are not met simultaneously in
any other fully-axiomatized model of decision-making under risk.
An important additional reason is that this approach makes possible the

elicitation of the utility function of an investor. Indeed, it will soon be-
come apparent that, among the normalized convex or concave elementary utility
functions, there exists one of them which is the most likely to be that of the
decision-maker5 and, what is more, which may be elicited from a sequence of
binary choices.
The rest of this article is organized as follows: Section 2 is devoted to the

study of a particular case: that of constant marginal utility. In Section 3,
stochastic dominances are revisited and the definition of a rational investor is
clarified. In Section 4, the axiomatization of a general theory of disappoint-
ment is developed. Section 5 deals with the elicitation property and Section 6
concludes.

3A disappoinment premium is but a component of a global risk premium. The two premia
coincide when constant marginal utility is assumed. Similarly, global risk aversion includes
disappointment aversion (See below).

4When the reference level in the functional coincides with the expected utility of the in-
vestor’s wealth.

5Since it makes the preorder induced by second order "subjective" stochastic dominance
as "close" as possible to that of the investor’s preferences. See Section 3.
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2 The case of constant marginal utility.

In this section, we focus on the particular case of constant marginal utility.
Some technical definitions will be first recalled. Next the definitions of stochastic
dominances and that of risk will be reexamined. A simplified axiomatics will
then be set, leading to a representation theorem, where the functional is lottery
dependent. Finally, the functional will be particularized so as to characterize
the behaviour of risk-averse investors with constant marginal utility, which will
be endowed with some interesting properties.

2.1 Preliminary definitions

In this article, the decision-maker faces a problem of risky choice over a set
X ={X,Y ,Z,...} of random variables mapping a set of "states of nature" Ω on
to a set C of outcomes. By assumption, the set C is bounded and, consequently,
may be identified, without loss of generality, to an interval [a, b] of R. The
outcomes, i.e. the elements of [a, b] are identified to monetary prizes.
Let F be a set of "events" (i.e. a σ-algebra on Ω) and P (.) a probability

measure over F , which, by assumption, is known with certainty. Any random
variable X ∈ X is then endowed with a probability distribution6 . The subset
of the probability distributions will be labelled L. A probability distribution
will be identified to its cumulative distribution function (henceforth c.d.f.). The
c.d.f. of X is labelled FX (x) and its expected value E [X]. Hence, we get that:

FX (x) = P (ω ∈ Ω | X (ω) ≤ x)

When the set of events is finite, a random variableX ∈ X has a finite support
{x1, x2, ..., xN} where x1 < x2 < ... < xN ; it will be labelled

X = [x1, p1;x2, p2; ...;xN , pN ]

where pn = P (X = xn) ≥ 0 and
∑N
n=1pn = 1. The subset of random vari-

ables with finite support will be denominated Xf . It is a subset of X. The
corresponding subset of probability distributions will be labelled Lf .
A decision-maker has a preference relation on X. His preferences will be

denoted %, with � (strict preference) and ∼ (indifference). For instance it
is equivalent to state that X is weakly (strongly) preferred to Y or to write
X % Y (X � Y ). Actually, one may consider the set of the corresponding
probability distributions (or c.d.f.’s) and write instead FX % FY (FX � FY ).
Indeed, as usually done in models dealing with decision under risk, it will be
implicitly assumed that all the random variables generating the same probability
distribution are indifferent.7 Because of this assumption, the same symbol (%)
will be used, throughout this paper, to denote the preference relations on X and
those on L

6Which is defined by the following formula where B[a,b] is the Borel algebra of the bounded
interval [a, b] : for all A ∈ B[a,b], PX (A) = P (ω ∈ Ω | X (ω) ∈ A)

7 i.e.: FX = FY =⇒ X ∼ Y
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The random variable whose outcome is x with certainty, will be denominated
δx. The certainty equivalent of X ∈ X is the certain outcome which is indifferent
to X. It is labelled c (X) (i.e. X ∼ δc(X)).
Let λ ∈ [0, 1]. One may define the (λ, 1− λ)-probability mixture of two

random variables, Y and Z, as a random variable X whose c.d.f. FX is the
(λ, 1− λ)-convex combination of FY and FZ .8 It is labelled: X = λY ⊕
(1− λ)Z.
More generally let λ= (λ1, λ2, ...λN ) where λi > 0 and

∑N
i=1λi = 1. One

may define the λ-probability mixture of {Xi} where Xi ∈ X for i = 1, ..., N ,
as a random variable X ∈ X whose probability distribution FX is such that
FX =

∑N
i=1λiFXi , i.e. for any x ∈ [a, b], FX (x) =

∑N
i=1λiFXi (x). It will be

labelled: X = λ1X1 ⊕ λ2X2⊕ ... ⊕λNXN . As a consequence, the set X (L)
constitutes a mixture set, i.e. a convex subset with respect to ⊕ (+).
Finally, in the rest of this article, the word "lottery" (the phrase "sim-

ple lottery") will refer indifferently to a random variable belonging
to X (Xf ) or to its probability distribution belonging to L (Lf ).

2.2 Definitions of stochastic dominance and risk aversion.

Stochastic dominances are partial pre-ordering relations over X. They in-
clude first-order stochastic (henceforth FOS) and second-order stochastic (hence-
forth SOS) dominances. The partial pre-order induced by FOS (SOS) domi-
nance will be labelled D1,(D2) —with D1 (D2) for strict dominance—. Stochastic
dominances may be characterized by the following equivalences:

X D1 Y ⇐⇒ FX(x) ≤ FY (x) for any x ∈ [a, b]

and
X D2 Y ⇐⇒

∫ x
a

(FX(t)− FY (t)) dt ≤ 0 for any x ∈ [a, b]

According to Rothschild and Stiglitz [1970], a decision-maker is strongly
risk-averse if he prefers X to any mean preserving spread of X.9 However, the
definition of risk aversion which is used in this article is more restrictive than
that of Rothschild and Stiglitz. Indeed, we set the following definition
Definition 1 (strict risk aversion). A decision-maker is strictly risk-

averse iff he prefers X to Y whenever X SOS dominates Y , what formally
reads:

X D2 Y =⇒ X % Y (1)

Clearly strict risk aversion implies strong risk aversion which in its turn
implies weak risk aversion.10 Finally, it is equivalent to say: (i) no violations of
the SOS dominance property may occur or (ii) the decision-maker is strictly
risk-averse.

8 In other words, for any x ∈ [a, b], we get: FX (x) = λFY (x) + (1− λ)FZ (x), where
λ ∈ [0, 1].

9Recall that Y is a mean preserving spread of X iff (a) E [Y ] = E [X] and (b) X D2 Y.
10Recall that a decision-maker is weakly risk-averse if he prefers δE[X] to X.
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Now let Xx be the subset of lotteries exhibiting the same expected value
x ∈ [a, b], what formally reads:

Xx
def
= {X ∈ X | E [X] = x}

The degenerate lottery δx belongs to Xx and so does the following binary
lottery:

Xx
def
= [a, 1− π (x) ; b, π (x)]

where π (x)
def
= (x − a)/(b − a). Clearly δx dominates any lottery X by SOS

dominance belonging to Xx and any lottery X belonging to Xx dominates Xx

by SOS dominance. Hence, when a decision-maker is assumed to be strictly
risk-averse, any lottery X ∈ Xx is such that:

δx�X�Xx (2)

In other words, the following proposition holds:
Proposition 1. When a decision-maker is strictly risk-averse, then δx (Xx)

is a maximal (minimal) element in the subset Xx.
Proof. For any X ∈ Xx we have δx D2 X and X D2 Xx.�

2.3 The axiomatics of a simplified theory of disappoint-
ment

We now develop a simplified theory of disappointment which will be gener-
alized later (See Section 4).The first two axioms of our simplified theory are but
those of EU theory.
Axiom 1. (ordering of %). The binary relation % is a total preorder over

X.
Axiom 2. (continuity of %). For any lottery X ∈ X the sets {Z ∈ X p

Z % X} and {Z ∈ X p X % Z} are closed in the topology of weak convergence.
The above axioms need no special comment. Simply recall that they imply

the Archimedean property.11 As a consequence, given any lottery X ∈ Xx,
there exists one real number λ ∈ [0, 1] such that X is indifferent to the following
simple lottery:

Xλ
x
def
= λδx ⊕ (1− λ)Xx = [a, (1− λ) (1− π(x)) ;x, λ; b, (1− λ)π(x)]

which is the (λ, 1− λ)-mixing of δx and Xx. Note that X
0
x = Xx and X

1
x = δx.

Next, as first shown by Debreu [1954] , Axioms 1 and 2 imply that there
exists a continuous utility functional mapping X on to an interval of R which
represents the investor’s preferences. It is defined up to a strictly continuous
and increasing transformation.

11 i.e. if X,Y, Z ∈ X and X % Y % Z, then there exists λ ∈ [0, 1] such that λX⊕(1− λ)Z ∼
Y .
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To get stronger results one (or more) additional axiom(s) must be set. In EU
theory, a third axiom, namely the independence axiom, is set. Unfortunately, it
is well known that the EU theory is not capable of predicting some empirically
observed patterns such as the Allais paradox. However, the independence axiom
may still hold on rather large subsets of X. This is likely to be the case if the
investor is sensitive to elation/disappointment.
To see this, consider a decision-maker with constant marginal utility.12 As

a consequence he cares for monetary outcomes. Elation (disappointment) will
then occur when the realized outcome x is higher (lower) than a reference level
x. The reference level may be viewed as a "prior expectation" of the value of
the lottery, which is likely to be an average of ex-post outcomes, for instance
their expected value (x = E [X]). Elation or disappointment will then de-
pend on the spread x − E [X], i.e. the value of a lottery will be the algebraic
sum of its expected value and of the expectation of a function of the spread,
E [E(x−E [X])].13 As a consequence, the value of the (λ, 1− λ)-mixing of two
lotteries exhibiting the same expected value x, will be the (λ, 1− λ)-convex com-
bination of the values of the two considered lotteries. In other words, certainty
equivalents will combine linearly for lotteries exhibiting the same expected value.
Hence, the following axiom will be set.
Axiom 3. (linearity of certainty equivalents over Xx) The certainty

equivalent of the (λ, 1− λ)-mixing of two lotteries exhibiting the same expected
value is the (λ, 1− λ)-convex combination of their certainty equivalents, what
formally reads:

∀X,Y ∈ Xx, ∀λ ∈ [0, 1] , c (λX ⊕ (1− λ)Y ) = λc (X) + (1− λ) c (Y )

The axiom clearly implies that the independence property is met over any
subset of lotteries exhibiting the same expected value. It also implies the fol-
lowing result:
Proposition 2. Under Axioms 1 to 3, the total preorder of preferences of

a decision-maker % may be represented over Xx by a continuous real-valued
function Ux (.) which is linear, i.e.:

∀X,Y ∈ Xx, ∀λ ∈ [0, 1] , Ux (λX ⊕ (1− λ)Y ) =λUx (X) + (1− λ)Ux (Y ) (3)

Furthermore Ux (.) is defined up to an affi ne and positive transformation.
Proof. Since the subset Xx is a mixture set, the same proof as the one given

in Fishburn [1970] may be used.�
Actually, a stronger result is available, as shown in the next proposition:
Proposition 3 (representation theorem for � over Xx). Under Axioms

1 to 3, the functional Ux (.) may be defined as:

Ux (X)
def
=

∫ b

a

ux(x)dFX(x) (4)

12Note that this assumption will soon be relaxed.
13Which is generally negative.
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where ux (.) is a continuous and increasing function mapping [a, b] on to [ux(a),
ux(b)] which is defined up to an affi ne and positive transformation.
Proof. If only simple lotteries were considered (i.e. if the representation the-

orem were stated for lotteries belonging to the subset Xf ∩Xx), the three above
axioms would clearly be suffi cient for the above proposition to hold. However,
this result holds even when the whole set Xx is taken into account. The proof is
given in Appendix 1. Note that neither a dominance axiom nor a monotonicity
axiom need then to be set.�
From now on, we set the following normalization conditions for Ux(.):

Ux(δx) = x
def
= c(δx) and Ux(Xx) = γx

def
= c(Xx) (5)

where γx
def
= c(Xx) and which imply the following ones for ux(.):

ux(x) = x and π (x)ux(b) + (1− π (x))ux(a) = γx (6)

and conversely.
Now let X ∈ Xx and λ be defined by:

X ∼Xλ
x
def
= λδx ⊕ (1− λ)Xx

As a consequence, we get that:

c (X) = c
(
Xλ
x

)
= c (λδx ⊕ (1− λ)Xx)

Then, from Axiom 3, we get that:

c (X) = λc (δx) + (1− λ) c (Xx)

and, from (5) that:

c (X) = λUx (δx) + (1− λ)Ux (Xx) .

Finally, from Proposition 2, we get that

c (X) = Ux (λδx ⊕ (1− λXx)) = Ux
(
Xλ
x

)
= Ux (X)

or more generally that:
UE[X] (X) = c (X) (7)

and the following proposition holds:
Proposition 4. (representation theorem for % over X) Under Axioms

1 to 3, the preorder of preferences % may be represented over X by the following
lottery-dependent functional:

U (X) = UE[X] (X)
def
=

∫ b

a

uE[X](x)dFX(x) (8)

8
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where uE[X](.) is a continuous and increasing function mapping [a, b] on to[
uE[X](0), uE[X](1)

]
which satisfies the normalization conditions (6).

Proof. It is a direct consequence of (7).�
One may consider uz(x) as a function of z and x and set f (z, x)

def
= uz(x).

The functional (8) then reads:

U (X)
def
=

∫ b

a

f(E [X] , x)dFX(x) (9)

where f (z, x) is is strictly increasing with respect to x and meets the following
normalizing conditions:

f (z, z) = z ; π (z) f (z, b) + (1− π (z)) f (z, a) = c (Xz)

where π (z)
def
= (z − a) / (b− a) and z ∈ [a, b].

Finally, we shall say, from now on, that strictly risk-averse investors obeying
Axioms 1 to 3 are rational risk-averse decision-makers with constant marginal
utility.
Unfortunately the above functional remains still far general. Hence, in the

next subsection we particularize f (z, x) to provide an operational specification.
This will be done through assessing an additional condition to preferences: the
translation invariance of risk premia.

2.4 Translation invariance of risk premia

Consider the risk premium RP(X)
def
= E[X]− c (X) of an arbitrary lottery

X ∈ X. It is commonly assumed that risk premia are translation-invariant, i.e.,

RP(X + x) = RP(X)

or, equivalently:

U (X + x) = c (X + x) = c (X) + x = U (X) + x

The following lemma gives a necessary and suffi cient condition for RP(.) to
exhibit the invariance property.
Lemma 1. Let f(., .) be a derivable function with respect to any of its two

variables. Then f(., .) is endowed with the translation invariance property iff:

f(z, x) = x+ E (x− z)

where E (.) is strictly increasing and meets the requirement: E (0) = 0.
Proof. It is given in Appendix 1.�
Now, since we focus on strictly risk-averse investors, any non-degenerate

lottery X ∈ X, will exhibit a strict negative risk premium, i.e. we shall have, if
X is not degenerate:

E [E (X −E [X])] < 0 (10)

9
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A function E (.) meeting the above requirement will be called a regular
function. Strictly concave functions are regular functions since a suffi cient
condition for (10) to hold is to assume that E (.) is strictly concave. This is a
direct consequence of Jensen’s inequality.
Finally, the preferences of a risk-averse rational decision-maker with constant

marginal utility and translation-invariant risk premia may be represented by the
following functional:

U(X) = E[X] +

∫ b

a

E(x−E[X])dFX(x) (11)

where E (.) is a strictly increasing regular function. If E (.) is concave, it may be
viewed as the opposite to a convex measure of risk (in the sense of Föllmer
and Schied [2002]), since one may set:

r(X) = −U(X) = −E[X]−
∫ b

a

E(x−E[X])dFX(x)

where r(X) is the measure of risk of X.14

The interest of the above result is that it allows for grounding a convex
measure of risk on a theory of the behaviour of economic agents towards risk.
The risk controller is then assumed to be a risk-averse rational decision-maker
with constant marginal utility and translation-invariant risk premia, which is
commonly admitted. Moreover, (11) may also be rewritten as:

RP(X)
def
= E[X]− c (X) = E[X]− U(X) = −

∫ b

a

E(x−E[X])dFX(x)) (12)

where RP(X) is the risk premium of X. Hence, the risk premium may be split
into into elementary premia, which can be viewed as the contributions of the
variance, the skewness, the kurtosis ... of a lottery to the total risk premium
which is demanded by an investor. Indeed, if E(.) is "smooth enough", one may
write:

RP (X) = −
∑+∞
p=2E [(X −E [X])

p
] E(p) (E [X]) /p! (13)

The total risk premium is now an infinite sum of elementary premia, each
of which is proportional to the product of two terms: the pth order centered
moment of the random variable X, i.e. E [(X −E [X])

p
], and the pth order

derivative of E (.) taken at point z = E [X]. Any even moment is nothing but a
quantity of a "symmetric" risk and its coeffi cient must be negative if the investor
is risk-averse, whatever the considered definition of risk. An odd moment may
be viewed as a quantity of an "asymmetric" risk and its coeffi cient must be
positive if the investor is risk-averse. Finally, Equation (13) may be viewed as
a theoretical grounding of the multimoment approach of the Capital
Asset Pricing Model.
14The proof of this statement may be found in Chauveau and Thomas [2014]: Valuing

non-quoted CDS with consistent default probabilities, unpublished manuscript.
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To sum up we have developed a fully choice-based theory of disappointment
which clearly may give rise to many applications in Finance. However, the
assumption of constant marginal utility is somewhat too restrictive and, con-
sequently, we now turn to the general case of variable marginal utility. The
corresponding theory will be developped in Section 4, including a new axiomat-
ics which is but a slightly modified version of the present one.

As a preliminary to the presentation of the generalized theory, the concept
of stochastic dominance will first be revisited in the next Section (Section 3).
Indeed, since a rational investor is likely to be sensitive to nothing but to the
utilities of outcomes15 , the consistency of his behaviour should be checked for
with a test of stochastic dominance over utils rather than over monetary out-
comes. Hence we shall focus on subjective stochastic dominances where
utils are substituted for monetary values.

3 Subjective stochastic dominances and utility
functions

As indicated in the next definition, the subjective first order (second order)
stochastic (henceforth SFOS (SSOS)) dominance property is just the same
as the usual FOS (SOS) dominance property except that the utility of any
outcome, namely u (x), is substituted for its monetary value, namely x, in the
corresponding tests.

3.1 Subjective stochastic dominances

Definition 2. (Subjective first-order and second-order stochastic dom-
inance). Let (X

1
, X

2
) ∈X× X, let u (.) be an elementary utility function and

let Yi = u (Xi) for i = 1, 2. It is equivalent to state that X
1
SFOS (SSOS))

dominates X2 or that Y1 dominates Y2 by FOS (SOS) stochastic dominance,
i.e.:

X
1
Du1 X

2

def⇔ Y
1
D1 Y2 (X

1
Du2 X

2

def⇔ Y
1
D2 Y2),

where SFOS (SSOS) dominance is denominated Du1 (Du2).
Clearly the definition of subjective stochastic dominance depends on the con-

sidered elementary utility function u (.). However, looking at levels of outcomes
may sometimes be equivalent to looking at utilities. This happens to be the
case when FOS dominance is considered. Indeed, FOS dominance is a prop-
erty which is conservative through the change of random variable: Y = u (X).16

By contrast, this result is no longer valid, when SOS dominance is considered.
Actually, the following characterization of SSOS dominance holds:
15See above Section 2.
16The proof of this statement is trivial.
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Proposition 5. (characterization of subjective second-order sto-
chastic dominance). Let (X1 , X2) ∈X× X. Let u (.) be a n.u. function and
let Yi = u (Xi) for i = 1, 2. It is equivalent to state:

(a) X
1
Du2 X

2
or

(b)
∫ z
a
u′ (x) (FX1

(x)− FX2
(x))dx ≤ 0 for any z ∈ [a, b]

Proof. It is given in Appendix 1.�
Finally, the relations between subjective and standard stochastic dominances

may be summed up as follows:
(a) if the utility function is strictly increasing, then the SFOS dominance

property is met iff the (standard) FOS dominance property is met.
(b) the SSOS dominance property may be met with u (.) and violated with

v (.) where u (.) and v (.) are two elementary utility functions. In particular, the
SOS and the SSOS dominance properties are not necessarily met simultane-
ously.

(c) if constant marginal utility is assumed, (i.e. if u (x) = x), then subjective
and standard stochastic dominances coincide.

3.2 Consistent utility functions

We now turn to a new concept: that of consistent utility functions and we set
the following definitions:
Definition 3. (normalized utility functions).
A normalized utility function (henceforth n.u. function) is a continuously

derivable and strictly increasing function u (.) mapping [a, b] on to [0, 1]. The
set of n.u. functions will be denoted U.
Definition 4. (consistency/inconsistency).
A n.u. function u (.) is consistent if the preorder induced by SSOS domi-

nance is consistent with the total preorder induced by preferences iff the follow-
ing implication is met:

X
1
Du2X2

=⇒ X
1
% X

2

where (X1 , X2) ∈ X× X.
A n.u. function u (.) is inconsistent, if the preorder induced by SSOS dom-

inance contradicts the total preorder induced by preferences, i.e. if there exists
at least one pair of lotteries (X

1
, X

2
) ∈X× X such that simultaneously:

X
1
Du2X2

and X2 � X1

The above definition implies that a n.u. function is either consistent or
inconsistent and that the preorder induced by SSOS dominance is partial. From
now on, the subset of inconsistent (consistent) n.u. functions will be labelled
UI (UC).
We now give an example of a consistent n.u. function: the utility function

of an investor obeying EU theory. Indeed, we have:

E [u (X)] =
∫ b
a
u (x)FX (x) dx = 1−

∫ b
a
u′ (x)FX (x) dx

12
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and, consequently:

E [u (X
1
)]−E [u (X

2
)] =

∫ b
a
u′ (x)

(
FX

2
(x)− FX

1
(x)
)
dx

or, equivalently:
X

1
% X

2
⇐⇒ X

1
Du2 X

2

Other examples of consistent n.u. functions will be given in Appendix 2.17

Now, as a preliminary to the definition the canonical utility function of an in-
vestor, we show that there exists a link between the concavity of a n.u. function
utility and the occurence of violations of the SSOS dominance property.

3.3 Concavity of n.u. functions and violations of the sub-
jective second-order stochastic dominance property.

Let Xu+
2 (Xu−2 ) consist in the subset of pairs of lotteries (X1, X2) over

which the two preorders, Du2 and %, coincide (disagree). A n.u. function u (.)
is all the more a good candidate for characterizing the tastes of the considered
investor, that Xu+

2 is larger and Xu−2 smaller. Actually, one may define a binary
relation over the preorders induced by SSOS dominance as indicated in the
next definition.
Definition 5. The preorder Du2 is closer to the total preorder % than the

preorder Dv2 iff either:
(a) Xu−2 ⊂ Xv−2 or:
(b) Xu−2 = Xv−2 and Xv+

2 ⊆ Xu+
2

From now on, the binary relation " Du2 is closer to % than Dv2 " will be
denominated " Du2 Cl Dv2 ". It is obviously a preorder. It is partial since there
may exist two n.u. functions u (.) and v (.) such that neither Xu−2 ⊂ Xv−2 nor
Xv−2 ⊂ Xu−2 . Since we assume that investors are rational — i.e. we rule out
violations of SSOS dominance—, we focus on consistent n.u. functions. If two
n.u. functions, u (.) and v (.), are consistent, then, by definition,

Xu−2 = Xv−2 = ∅

Now consider a pair (u (.) , v (.)) of consistent n.u. functions. The preorder
Du2 induced by u (.) will be "closer" to the total preoder of preferences than
the preorder Dv2 induced by v (.) iff Xv+

2 ⊆ Xu+
2 . In other words, we have the

following equivalence for u (.) , v (.) ∈ UC:

Du2 Cl Dv2 ⇐⇒ Xv+
2 ⊆ Xu+

2

Actually, we are looking for a n.u. function u (.) ∈ U∗C, such that, among the
consistent n.u. functions inducing preorders by SSOS dominance, Du2 would be
the closest to �, i.e. such that:

∀u (.) ∈ UC, Du2 Cl Du2 (14)

17They will include the functionals of LS models.
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Clearly, if Du2 meets the above condition, it will meet the following one:

∀u (.) ∈ U, Du2 Cl Du2

since a preorder Du2 induced by a consistent n.u. function u (.) is closer to % than
any preorder Dv2 induced by an inconsistent n.u. function v (.). Unfortunately,
no function u (.) will satisfy (14), unless some additional restrictions are put to
the subset of n.u. functions which is taken into account.
Let U∗ be the subset of concave or convex n.u. functions whereas U∗I (U∗C)

will denominate the subset of inconsistent (consistent) concave or convex n.u.
functions. We now show that if u (.) and v (.) are two n.u. functions such that
u (.) is more concave than v (.) then Du2 is closer to % than Dv2 .
Proposition 6. Let u (.) and v (.) be two n.u. functions such that u (.) is

more concave (i.e. less convex) than v (.). Then, the following implication will
hold:

X1 Dv2 X2 ⇒ X1 Du2 X2

and so will the following inclusions:

Xv+
2 ⊆ Xu+

2 ; Xv−2 ⊆ Xu−2
Proof. It is given in Appendix 1.�
Clearly the above proposition means that concavifying utility functions in-

creases the number of comparable pairs of lotteries, given that two lotteries X1

and X2 are comparable iff either X1 Du2 X2 or X2 Du2 X1 .
. Actually, it increases both the size of the subset of the pairs of comparable

lotteries which do not violate (standard) SOS dominance and that of the subset
of the pairs of comparable lotteries which do violate (standard) SOS dominance.
We are thus led to focus on concave or convex n.u. functions.

3.4 Canonical utility functions.

We may now show that there exists a concave or convex n.u. function which
dominates the others in that it makes the two preorders Du2 and % never disagree
and coincide on a maximum number of pairs of lotteries.
Proposition 7. (canonical utility function). There exists a unique n.u.

function u (.) such that any concave or convex n.u. function u (.) which is more
concave than u (.) is inconsistent. Function u (.) is concave or convex and it will
be called, from now on, the investor’s canonical utility function. The preorder
Du2 is the closest to the preorder of preferences % among the preorders Du2 where
u (.) is a concave or convex n.u. function.
Proof. The proof is given in Appendix 1.�
Proposition 7 means that among the consistent concave/convex n.u. func-

tions there exists a function which is more concave than the others and which
is as close to % as possible.
Finally, if the n.u. function of an investor is his canonical utility function,

no SSOS dominance violations may occur. The investor is well rational. Con-
versely, if he is rational, then the canonical utility function is the most likely to

14
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be the actual investor’s n.u. function. We shall later show how to elicit the
canonical utility function of a decision-maker from binary choices over
simple lotteries (See Section 5).

4 The axiomatics

A fully choice-based theory of decision-making under risk is now presented.
Recall that a rational decision-maker should be sensitive to the utility of an
outcome rather than to its monetary value. Hence, he may be viewed as making
a risky choice among random variables whose consequences are valued in
utils rather than in dollars, i.e. among random variables mapping Ω on to
a set Γ which may now be identified to [0, 1]. The set of these random variables
will be labelled U and that of their probability distributions D. Preferences are
now defined over U (or D) and the corresponding binary relation is labelled D.
Since the canonical utility function u (.) is a one-to-one mapping of [a, b] on

to [0, 1], it may also be viewed as a one-to-one mapping of the set X on to U.
For any element Y ∈ U there exists a unique random variable X ∈ X, such
that X = u−1 (Y ) or, equivalently, such that Y = u (X).18 When Y is valued
in utils, X is valued in monetary units. Similarly, there exists a one-to-one
mapping of L on to D which is defined according to the below equalities:

GY = FX ◦ u−1 ⇐⇒ Y = u (X)

where GY (.) (FX (.)) is the c.d.f. of Y (X).19 To make things clearer, we shall
say that:
(a) an element of U is a u-lottery whose certainty equivalent is c (Y ) and

whose expected value is E [Y ] =
∫ 1

0
ydGY (y)

(b) an element of X is a m-lottery whose certainty equivalent is c (X)) and
whose expected value is E [X] =

∫ b
a
xdFX (x).

The preference relation % over X induces a preference relation D over U
which is defined by the following equivalence:

Y1 D Y2 ⇐⇒ u−1 (Y1) % u−1 (Y2) (15)

for any Y1 ,Y2 ∈ U. Conversely, let D be a preference relation over U, when
consequences are valued in utils. Then it induces a preference relation % over
X which is defined by the following equivalence:

X1 % X2 ⇐⇒ u (X1) D u (X2) (16)

for any (X1 , X2) ∈ X× X. The two binary relations % and D are consistent if
any of the above equivalences holds, which is now assumed. When it is endowed
with the binary relation D, the subset U exhibits the same properties as those
of the set X when it is endowed with the binary relation %.
18The denomination Y = u (X) will mean that, for any s ∈ F , Y (s) = u (X (s)).
19Recall that FY = FX ◦ u−1 means FY (y) = FX

(
u−1 (y)

)
for any y ∈ [0, 1] .
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4.1 The general axiomatics.

The problem which is now addressed is that of setting a general axiomatics.
As a preliminary, we focus on preferences over u-lotteries.

4.1.1 Preferences over u-lotteries

A strictly risk-averse decision-maker is now characterized by the following im-
plication:

∀Y1, Y2 ∈ U, Y1 D2 Y2 =⇒ Y1 D Y2 (17)

Let Uy
def
= {Y ∈ U| E [Y ] = y}. Proposition 1 may then be restated as indi-

cated below:
Proposition 8. When a decision-maker is strictly risk-averse, then δy (Yy)

is a maximal (minimal) element in the subset Uy, i.e.

Y ∈ Uy, =⇒ δy D Y D Yy

Proof. It is analogous to that of Proposition 1.�
Since SSOS dominance with monetary units is equivalent to SOS domi-

nance with utils (See Section 3), (17) is equivalent to the following implication:

∀Y1, Y2 ∈ U, u−1 (Y1) Du
2 u
−1 (Y2) =⇒ Y1 D Y2 (18)

From Proposition 8 and from (16) ((15)) we get that δu−1(y) (Xu−1(y)) is a

maximal (minimal) element in the subset Xy
def
= {X ∈ X | E [u (X)] = y} i.e.:

X ∈ Xy =⇒ δu−1(y) % X % Xu−1(y)

We may now substitute for Axioms 1 to 3 the following axioms:
Axiom 1’(ordering of D). The binary relation D is a total preorder over

U.
Axiom 2’(continuity of D). For any lottery Y ∈ U the sets {Z ∈ U p

Z D Y } and {Z ∈ U p Y D Z} are closed in the topology of weak convergence.
Axiom 3’. (linearity of certainty equivalents over Uy)
The certainty equivalent of the (λ, 1− λ)-mixing of two u-lotteries which

exhibit the same expected value is the (λ, 1− λ)-convex combination of their
certainty equivalents, what formally reads:

∀Y1, Y2 ∈ Uy, ∀λ ∈ [0, 1] , c (λY1 ⊕ (1− λ)Y2) = λc (Y1) + (1− λ) c (Y2)

Finally, setting Axioms 1’to 3’implies the following results, which are anal-
ogous to those already presented in Section 2.
Proposition 9. (representation theorem for D over U). Under Axioms

1’to 3’, the preorder of preferences of a strictly averse decision-maker —labelled
D—may be represented over U by the following lottery-dependent functional:

V (Y )
def
=

∫ 1

0

vE[Y ](z)dGY (z) (19)
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where vE[Y ] (.) is a continuous and increasing function mapping [0, 1] on to itself
which satisfies the following normalization conditions:

vE[Y ](E [Y ]) = E [Y ] and E [Y ] vE[Y ](1) + (1− E [Y ]) vE[Y ](0) = c
(
YE[Y ]

)
Proof. It is the same as the proof given in Section 2 for Proposition 4.�
Finally, one can use the one-to-one correspondance u : [a, b] → [0, 1] to get

the next result:
Proposition 10. (representation theorem for % over X). Under

Axioms 1’ to 3”, the preorder of preferences % of a strictly averse decision-
maker may be represented over the set X of m-lotteries by the following lottery-
dependent functional:

U (X)
def
=
∫ b
a
uE[u(X)](x)dFX (x)

where FX (x)
def
= GY (u (x)) and where uE[u(X)](x)

def
= vE[u(X)](u (x)) is a con-

tinuous and increasing function mapping [a, b] on to [0, 1] which meets the fol-
lowing normalization conditions:

uE[u(X)](u
−1 (E [u (X)])) = vE[u(X)](E [u (X)]) = E [u (X)] (20)

E [u (X)] uE[u(X)](a) + (1−E [u (X)]) uE[u(X)](b) = c
(
XE[u(X)]

)
(21)

Proof. Recall that E [u (X)] = E [Y ] that dFX (t) = u′ (x) dGY (u (x)),
that u′ (.) is strictly positive and that

∫ b
a
u′ (x) dt = u (b)− u (a) = 1.�

The above results (See propositions 9 and 10) have been obtained from a
set of axioms dealing with preferences over u-lotteries. They can be obtained
differently, from a set of axioms dealing with preferences over m-lotteries.

4.1.2 Back to preferences over m-lotteries

We now consider, as in Section 2, that consequences are valued in monetary
units and we have to set axioms for preferences over m-lotteries so as to get the
same results as those implied by Axioms 1’to 3’. Axioms 1’and 2’are clearly
equivalent to Axioms 1 and 2 which, as a consequence, will be maintained. By
contrast, Axioms 3 and 3’are not equivalent and, consequently, a new axiom
must now be substituted for Axiom 3:
Axiom 3”. The utility of the certainty equivalent of the (λ, 1− λ)-mixing

of two m-lotteries which exhibit the same expected utility is the (λ, 1− λ)-convex
combination of the utilities of their certainty equivalents, what formally reads:

∀X1, X2 ∈ Xy, ∀λ ∈ [0, 1] , u (c (λX1 ⊕ (1− λ)X2)) = λu (c (X1))+(1− λ)u (c (X2))

Axiom 3" is equivalent to Axiom 3’and we get the following result:
Proposition 11. (representation theorem for % over X). Under

Axioms 1, 2, and 3”, the preorder of preferences % of a strictly averse decision-
maker may be represented over X by the following lottery-dependent functional:

U (X)
def
=

∫ b

a

uE[u(X)](x)dFX (x) (22)
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where uE[u(X)](.) is a continuous and increasing function mapping [a, b] on to
[0, 1] which satisfies the normalization conditions (20).
Proof. Proposition 11 is clearly equivalent to Proposition 10.�
It will be convenient to set f (z, x)

def
= uz(x). The above functional then

reads:

U (X)
def
=

∫ b

a

f(E [u (X)] ,u (x))dFX(x) (23)

where u (.) is the canonical utility function and where f (z, x) is strictly in-
creasing with respect to x and and meets, as in Section 2, the two following
normalizing conditions which are derived from (20) and (21).

f (E [u (X)] ,E [u (X)]) = E [u (X)]

f (E [u (X)] ,u (γx)) = E [u (X)] f (E [u (X)] ,u (b))+(1−E [u (X)]) f (E [u (X)] ,u (a))

Finally, as in Section 2, we now particularize the functional (22) to get a
more operational specification.

4.2 LS-models

One may now assume that risk premia are translation-invariant when they
are expressed in utils, i.e. that the following property is met:

RP (u (X) + u) = RP (u (X))

or, equivalently:∫ b

a

f(E [u (X) + u] ,u (x) + u)dFX(x) =

∫ b

a

f(E [u (X)] ,u (x))dFX(x)

Recall that, under reasonable mathematical assumptions (See Section 2
above), a necessary and suffi cient condition for RP (.) to exhibit the invari-
ance property is that: f(z, x) = z + E(z − x) where function E(.) characterizes
the investor’s behaviour towards disappointment/elation. Hence the functional
now reads:

U(X) = E[u (X)] +

∫ b

a

E(u (x)−E[u (X)])dFX(x) (24)

where [a, b] is the support of lotteries, u (.) is an n.u. function and E (.) is a
continuous and strictly increasing function which fulfills the self explanatory
condition E (0) = 0.20

We, here again, focus on strictly risk-averse decision-makers. Any non
degenerate-lottery X ∈ X, will then exhibit a negative disappointment pre-
mium, i.e. we shall have, for X /∈ ∆:

E [E (u (X)−E [u (X)])] < 0

20No elation/disappointment is experimented if the actual outcome coincides with its ex-
pected value.
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As in Section 2, a function E (.) meeting the above requirement will be called
a regular function.21

Finally, the preferences of a strictly risk-averse decision-maker with translation-
invariant risk premia may be represented by a regular functional such as (24).
A strictly risk-averse decision-maker whose behaviour obeys Axioms 1’ to 3’
and whose risk premia are translation-invariant will be called a rational risk-
averse decision-maker. His behaviour is characterized by the functional (24)
where E (.) is a strictly increasing and regular function satisfying the require-
ment E (0) = 0. A functional such as U (.) which is defined by (24) and which
meets the above requirements will be called, from now on, a LS-functional and
will characterize LS-models. Note that the n.u. function of a LS-functional is
consistent.22

LS-models are very close to models à la Loomes and Sugden. Indeed the
original functional of Loomes and Sugden [1986] reads:23

U(X) = E[u (X)] +

∫ b

a

E(u (x)− u)dFX(x)

Now recall that EU theory is often violated by experiments and that no gen-
eral agreement has yet been found about the explaining power of its challengers,
i.e. Non-EU theories. Hence it is interesting to point out that, because of its
flexibility, the functional (24) is compatible with many of the anomalies
of financial theory. An example is given in Appendix 2.
Finally, we, here again, get a decomposition of the risk premium

RP (X)
def
= E[u (X)]− u (c (X))

into elementary premia, which can be viewed as the contributions of the vari-
ance, the skewness, the kurtosis ... of the utility of a lottery to the total risk
premium which is demanded by an investor. This was Allais’ [1979] original
intuition. If E(.) is smooth enough, one may now write:

RP (X) = −
∑+∞
p=2E [(u (X)−E [u (X)])

p
]
E(p) (E [u (X)])

p!

Anyway, the above results are of interest if u (.) can be elicited. Before
we address this question (See Section 5) we give a presentation of some links
existing between LS-models and some other disappointment models.

4.3 Overview of the related literature

In these models disappointment or elation are measured somewhat differently:
Delquie and Cillo [2006] use all the outcomes of the lottery; Grant and Kajii

21Recall that strictly concave functions are regular functions since a suffi cient condition for
(10) to hold is to assume that E (.) is strictly concave.
22A technical condition, namely sup E ′(z) ≤ 1, will be imposed to E (.). See Appendix 2.
23and our axiomatization can be viewed as grounding their approach when u = E [u (X)].
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[1998] adapt the setting of the rank-dependent expected utility model (Quiggin
[1982] among others) to highlight the dependence on the best possible outcome;
Jia et alii [2001] generalize Bell’s [1985] approach and advocate the use of its
expected value. Indeed, they consider the expected value of the lottery as the
reference point for measuring disappointment. Their preference functional can
be defined as:

UJDB (X) =

∫ b

a

(
1 + d1[x<E(X)] − e1[x>E(X)]

)
xdFX(x) (25)

where d and e are two positive parameters. The above functional is nothing but
a particular case of (23). To see this point, just set:

u (x) = x and f(z, x) =
(
1 + d1[x<z] − e1[x>z]

)
x

LS-models may also be viewed as particular case of lottery dependent util-
ity (henceforth LDU) models which were first developed by Becker and Sarin
[1987]. The preference functional of a LDU model is then:24

ULDU (X) =
∑K
k=1pkv (h(X), xk) (26)

where v [., .] is a function defined over [a, b]×R+ and whose values belong to
[0, 1] and where h(.) is a function defined over X and whose values belong to R.
The functional (26) may be derived from three axioms which have been provided
by Becker and Sarin [1987]: total ordering, continuity and monotonicity. Their
first two axioms are those of EU theory and the third one is nothing but the
SOS dominance principle. However, as pointed out by Starmer [2000] "the basic
model is conventional theory for minimalists as, without further restriction, it
has virtually no empirical content."25 Finally, almost any non-EU model can
be viewed as a LDU model, once an appropriate functional form of v (., .) has
been chosen.
Becker and Sarin then particularize their model assessing h (X) to be linear

with respect to the probabilities pk, that is they set h(X) =
∑K
k=1hkpk and

they define a function H (.) such that H (xk) = hk. To sum up, the authors set:

h(X) =
∑K
k=1H (xk) pk = E [H [X]] (27)

and the new model then belongs to a subset of LDU models called lottery-
dependent expected utility models (henceforth LDEU models). The functions
h(.), or H (.), may be chosen arbitrarily but they have to be specified before
testable implications of the model be derived. As a consequence, LDEU models
are not choice-based.
Schmidt [2001] considers somewhat more general models called “lottery-

dependent convex utility models”(henceforth LDCU models). A condition less
restrictive than (27) is fulfilled by LDCU models. It reads:

h(Xi) = λ and αi ≥ 0 and
∑N
i=1αi = 1⇒ h

(∑N
i=1αiXi

)
= λ (28)

24To make short only simple lotteries are taken into account.
25Starmer: Developments in Non Expected Utility Theory, JEL, p. 345.
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Four axioms are necessary to develop this class of models. The first two
axioms (total ordering and continuity) are, again, those of EU theory. The au-
thor then substitutes for the independence axiom two new axioms: the first one,
called the lottery dependent independence axiom, states that the independence
property is met over any subset Xλ of lotteries fulfilling (28). However, to derive
LDCU models, U (X) has to be linear in every subset Xλ for all λ. A linear U(.)
is obtained iff there exists a sequence of functions {ϕλ, λ ∈ [U(δ (0)),U(δ (1))]}
where ϕλ : R→R+ is continuous and strictly increasing so that:

∀λ ∈ [U(δ (0)),U(δ (1))] , U (X) = ϕλ [uλ (X)] if X ∈ Xλ

This result is guaranteed by an additional axiom which is called the linearity
axiom and which enables him to select one particular function U(.) from all the
candidates.
By contrast with LS-models, Schmidt’s approach is not choice-based since

using the axioms implies that we know, on a priori grounds, the function h(.).
One cannot characterize the subsets Xλ from experiments and the relation
h (X) = λ looks like an ad hoc condition whose meaning is not very clear.
Finally, it must be mentioned that Gul [1991] developed an implicit ex-

pected utility model of disappointment where the certainty equivalent of
the lottery plays the role of reference level. It is fully axiomatized but Gul’s
theory is not endowed with the four properties we are interested in.
An additional interesting property of LS-models is their elicitation property:

indeed the canonical utility function of a decision -maker may then be elicited
from the choices he makes when he faces a sequence of random outcomes. Hence,
the next section is devoted to a presentation of the elicitation propery of LS-
models.

5 The elicitation property.26

Some preliminary definitions and results will be first given.

5.1 Preliminary definitions and results.

Recall that, unlike EUmodels, LS-models are not endowed with a global inde-
pendence property. In particular, some couples of indifferent lotteries ((X1, X2)
∈ X×X with X1 ∼ X2) are such that λX1⊕ (1− λ)X2 � X1 for some values of
λ ∈ [0, 1]. However, there also exist, in these models, some couples of indifferent
lotteries which do exhibit the betweenness property: they will be called, from
now on, strongly indifferent lotteries.
Definition 6 (strong indifference). Two lotteries X1 and X2 are strongly

indifferent iff they meet the following requirement:

∀λ ∈ [0, 1] , λX1 ⊕ (1− λ)X2 ∼ X1 (29)

26This section is but a rewriting of: Chauveau Th., N. Nalpas [2010]. Disappointment
models: an axiomatic approach, CES workingpaper, 2010.102
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Strong indifference may be characterized in the following way:
Proposition 12. In LS-models, two lotteries X1 and X2 are strongly in-

different iff they exhibit the same certainty equivalent and the same expected
utility, what formally reads:

X1 ≈ X2 ⇐⇒ c (X1) = c (X2) and E [u (X1)] = E [u (X2)]

Proof. It is given in Appendix 1.�
The binary relation "X1 and X2 are strongly indifferent" will be labelled

"X1 ≈ X2". It is obviously reflexive and symmetric. From Proposition 12 we
get that it is also transitive and, consequently, it is an equivalence relation over
X. Finally, note that strong indifference implies indifference in the usual sense
which will be called, from now on, weak indifference. A related new concept
needs now to be introduced: that of strong equivalents.
Definition 7. (strong equivalents). Let X ∈ X be an arbitrary lottery

and let
Xx
p
def
= [a, 1− p;x, p] ; X

y

q
def
= [y, q; b, 1− q]

where x, y ∈ ]a, b[. Then, if X and Xx
p (X

y

q) are strongly indifferent, X
x
p (X

y

q)
is the left (right) strong equivalent of X.
The above definition will make sense only if any lottery is endowed with a

unique couple of strong equivalents. As indicated in the next proposition, this
happens to be the case.
Proposition 13. In LS-models, a lottery X ∈ X, has exactly one left and

one right strong equivalent.
Proof. It is given in Appendix 1.�

5.2 The elicitation property.

We now turn to the elicitation property. The first step of the argument is as
follows: let X

y

q be the right strong equivalent of X
x
p i.e. let:

X
y

q ≈ Xx
p

Then, the difference between the expected utility of Xx
p and that of X

y
q is

1− q.27 Indeed, we get that:

E
[
u(Xx

p)
]
−E

[
u(Xy

q)
]

= E
[
u(X

y

q)
]
−E

[
u(Xy

q)
]

= ((1− q) + qu (y))−qu (y) = 1−q

The second step consists in defining a sequence of binary lotteries, {Xxn
pn}n∈N

as indicated below:

x0 = w ; p0 = π and X
xn+1
pn+1 ≈ Xxn

pn (30)

Note that, if X
y

q is the right strong equivalent of X
x
p , then y < x. As a

consequence, {xn}n∈N is a decreasing sequence. Moreover, it is such that the

27Recall that Xy
q
def
= [a, b− q; y, q]
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difference between the expected utilities of two consecutive binary lotteries, Xxn
pn

andXxn+1
pn+1 , is equal to the second weight (1−pn+1) of the right strong equivalent

of Xxn
pn , what formally reads:

E
[
u(Xxn

pn )
]
−E

[
u(Xxn+1

pn+1 )
]

= 1− pn+1

and, consequently, the expected utility of the initial simple lottery is the sum
of the expected utility of any element of the sequence and of the accumulation
of the second weights of the right strong equivalents what formally reads:

πu (w)−E
[
u(Xxn

pn )
]

= E
[
u(Xx0

p0 )
]
−E

[
u(Xxn

pn )
]

=
∑n
i=1(1− pi)

Alternatively, one could consider the following sequence of binary lotteries:

y0 = w ; q0 = π ; Xyn+1
qn+1 ≈ X

yn
1−qn) (31)

The elements of the sequence {Xyn
1−qn}n∈N are endowed with the following

property:

E
[
u(Xyn+1

qn+1 )
]
−E

[
u(Xyn

qn )
]

= 1−qn+1 =⇒ πu (w) = E
[
u(Xyn

qn )
]
−
∑n
i=1 (1− qi)

From now on, the sequences {Xxn
pn}n∈N and {X

yn,1

1−qn}n∈N, will be called the
canonical sequences generated by (w, π). The first (second) one is the left
canonical sequence (right canonical sequence). As shown below, they respec-
tively converge, in LS-models, towards δ (0) or δ (1).
Proposition 14. Let (w, π) ∈ ]a, b[ × ]0, 1[. Consider the canonical se-

quences of binary lotteries generated by (w, π). Then, in LS-models where
investors are disappointment averse, the left (right) canonical sequence is de-
creasing28 (increasing29) and converges towards δ (a)30 (δ (b)31). Moreover we
have the following equalities:

u (w) = (
∑∞
i=1 (1− pi))/π = (1−

∑∞
i=0 (1− qi))/π (32)

Proof. It is given in Appendix 1.�
Finally, in LS-models, the set of lotteries X is well endowed with the elic-

itation property, i.e. the value of u (w) can be elicited with as much accuracy
as desired for any outcome w ∈ ]a, b[. Indeed, one may choose an arbitrary
probability π ∈ ]0, 1[ and build, from the answers of an investor facing lotteries
of the Xx

p type and/or of the X
y

q type, the two canonical sequences generated
by (w, π). An accurate ranging of u (w) may be obtained since we have the
inequalities:

0 <
∑n
i=1 (1− pi))/π ≤ u (w) ≤ (1−

∑n
i=0 (1− qi))/π (33)

28That isXxm
pm is preferred to X

xn
pn if n ≥ m

29That is X
yn
qn is preferred to X

yn,b
qn if n ≥ m

30Equivalently, one can say that {xn}n∈N is a decreasing sequence of real numbers converg-
ing towards a and that {pn}n∈N is a sequence of real numbers converging towards 1.
31Equivalently, one can say that {yn}n∈N is an increasing sequence of real numbers con-

verging towards b and that {qn}n∈N is a sequence of real numbers converging towards 1.
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6 Concluding remarks

In this paper, a fully choice-based theory of disappointment has been de-
veloped that can be viewed as an axiomatic foundation of models à la Loomes
and Sugden [1986]. LS-models are endowed with many interesting properties
which have been presented above. Note that the results do not depend on the
assumption that the set of possible outcomes is bounded. Indeed, extensions
to R itself are straightforward. Moreover, under the assumption of constant
relative risk aversion(s), one can easily implement the above approach to value
any financial asset.32 The results do not either depend on the assumption of
the concavity or the convexity of the canonical utility function over the support
[0, 1] of the lotteries. Such an assumption may be relaxed and an straightfor-
ward generalization of the above results consists in taking into account smooth
n.u. functions whose graph includes a concave and a convex section or, more
generally, N successive concave and convex sections.
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7 Appendix 1 (Proofs)

Proof.of Lemma 1.
Let f(z, x)

def
= g (x, z − x). Invariance by translation implies that:∫ b

a
g (x+ ∆x, z − x) dFX(x) =

∫ b
a
g (x, z − x) dFX(x) + ∆x

or: ∫ b
a

[g (x+ ∆x, z − x)− g (x, z − x)] dFX(x) = ∆x

or, equivalently:∫ b
a

[g (x+ ∆x, z − x)− g (x, z − x)−∆x] dFX(x) = 0

Since the above equality is valid for any c.d.f. FX(.) and any values of x, z
and ∆x, we get that:

g (x+ ∆x, z − x)− g (x, z − x)−∆x = 0

and that:

lim
∆x→0

g (x+ ∆x, z − x)− g (x, z − x)

∆x
=
∂g

∂x
(x, z − x) = 1

Finally, the following equality is checked:

g (x, z − x) = x+ E (z − x)

�
Proof of Proposition 3
We are looking for a utility function ux(.) over [a, b], satisfying the expected

utility representation, i.e. meeting the following requirement:33

E [ux(x)] = Ux (X) (34)

We shall successively, consider the case when X:
(I) a binary lottery Z belonging to any of two special subsets of Xx. whose

exact definition is given below.
(II) an arbitrary binary lottery Z belonging to Xx (i.e. Z = [y, x; 1− π, π]

with πx+ (1− π)y = x)
(III) an arbitrary simple lottery Z belonging to Xx (i.e. Z ∈ Xx ∩ Xf )
(IV) an arbitrary lottery belonging to Xx. (i.e. Z ∈ Xx)
I. The first step consists in considering two particular subsets of binary

lotteries which belong to Xx and include either the outcome a or the outcome b
among their outcomes. More formally, they are defined as indicated below:

33Recall that the degenerate lottery δz does not belong to Xx unless z = x. Hence we must
make up for this drawback and define a utility function from its expected utility representation
over non degenerate lotteries..
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Group A. The elements of this group are defined as indicated below:

Xx
p
def
= [a, 1− p;x, p] .

where x ∈ [x, b]. Since by assumption Xx
p ∈ Xx we get that:

px+ a (1− p) = x. (35)

Group B. The elements of this group are defined as indicated below:

X
y

q
def
= [y, q; b, 1− q] .

where y ∈ [a,x]. Since, by assumption X
y

q ∈ Xx we get that:

qy + b (1− q) = x. (36)

Now recall that, by definition,

Xx
def
= [a, 1− π (x) ; b, π (x)] ,

where x ∈ [x, 1] and

π (x)
def
= (x− a) / (b− a)

Moreover, let λ ∈ [0, 1] be defined by the following equivalence:

Xλ
x ∼ Xx

p

where:
Xλ
x
def
= λδx ⊕ (1− λ)Xx

Finally, we are looking for a utility function ux(.) satisfying the following
expected utility representation (34):

pux(x) + (1− p)ux (a) = λx+ (1− λ)ux(γx) (37)

where γx is the certainty equivalent of Xx = Xb
π(x). Let:

ux(x) =
x− a
x− a [λx+ (1− λ) γx]− x− x

x− aux (a) (38)

Then, for x = x, we get that p = 1, λ = 1, and

ux (x) = x (39)

Similarly, for x = b, we get that p = π (x), λ = 0, and that:

ux(b) =
b− a
x− aγx −

b− x
x− aux (a) (40)
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B. We now consider the second group of binary lotteries. From (36) we
get that:

qy + b (1− q) = x

or, equivalently:

q =
b− x
b− y ⇐⇒ 1− q =

x− y
b− y

Next, let µ ∈ [0, 1] be now defined as

Xµ
x ∼ X

y

q ;

we are now looking for a utility function meeting the following requirement:

E [ux(X)] = Ux(Xµ
x) (41)

or:
qux(y) + (1− q)ux (b) = µx+ (1− µ) γx (42)

or, equivalently:

b− x
b− y ux(y) +

x− y
b− y ux (b) = µx+ (1− µ) γx

or, finally:

ux (y) =
b− y
b− x [µx+ (1− µ) γx]− x− y

b− xux (b) (43)

Hence for y = x, we get that q = 1, µ = 1, and, again, equation (39). For
y = a, we get that q = 1− π (x), µ = 0, and:

ux(a) =
b− a
b− xγx −

x− a
b− xux (b) (44)

Clearly equations (40) and (44) are the same and may be rewritten as:

E [ux(X)] = xux (b) + (1− x)ux(a) = γx (45)

The normalization conditions of the utility function are then reduced to (39)
and (45). Finally, note that we have the following relations:

Ux
(
Xx
p

)
=
x− a
x− aux (x) +

x− x
x− aux (a)

Ux
(
X
y

q

)
=
x− y
b− y ux (b) +

b− x
b− y ux (x)

Ux (Xx) = γx ; Ux (δx) = x

II We now show that the above result holds for all binary lotteries belong-
ing to Xx. Indeed, let Z = [y, x; 1− π, π] and assume that Z ∈ Xx. As a
consequence, we get that

πx+ (1− π) y = x (46)
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Consider the two following compound lotteries:

αXx
p ⊕ (1− α)X

y

q

and
βZ ⊕ (1− β)Xx

where α, β,∈ [0, 1]. The two lotteries have the same support {0, x, y, 1} and will
coincide34 iff they exhibit the same probabilities, i.e. iff :

α (1− p) = (1− β) (1− π (x))

(1− α) q = (1− π)β (47)

αp = πβ

(1− α) (1− q) = π (x) (1− β)

Actually there are only two independent equations among the four above
because (a) the probabilities sum to one —we may therefore leave aside the
last equation—and (b) since p and q both depend on x,35 , combining the three
remaining equations gives an equation which is nothing but (46).
From the linearity of Ux (.) we also get that:

Ux
(
αXx

p ⊕ (1− α)X
y

q

)
= αUx

(
Xx
p

)
+ (1− α)Ux

(
X
y

q

)
Ux (βZ ⊕ (1− β)Xx) = βUx (Z) + (1− β)Ux (Xx)

and, consequently:

Ux (Z) = β−1
[
αUx

(
Xx
p

)
+ (1− α)Ux

(
X
y

q

)
− (1− β)Ux (Xx)

]
=
α

β
Ux
(
Xx
p

)
+

(1− α)

β
Ux
(
X
y

q

)
− (1− β)

β
Ux (Xx)

and, substituting α and β for their values in (47) we get that:

Ux (Z) =
π

p
Ux
(
Xx
p

)
+

1− π
q
Ux
(
X
y

q

)
− (1− q) (1− π)

qπ (x)
Ux (Xx)

or equivalently:

Ux (Z) = πux (x) + (1− π)ux (y) + π
x− x
x− aux (a)

+ (1− π)
x− y
b− xux (b)− (1− q) (1− π)

qπ (x)
ux (γx)

34 i.e. we have:
αXd

p ⊕ (1− α)X
c
q = βZ ⊕ (1− β)Xx

35They are linked together by the following formula:

q =
d (1− p)
d− c
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and, finally:

Ux (Z) = E [ux (Z)] +
x− y
x− y

x− x
(b− x)

ux (a) +
x− x
b− x

x− y
b− xux (b)

− x− y
b− x

x− x
x− y

b− a
x− a [π (x)ux (b) + (1− π (x))ux (a)]

= E [ux (Z)] +
x− y
x− y

x− x
(b− x)

ux (a) +
x− x
b− x

x− y
b− xux (b)

−
[
x− y
b− x

x− x
x− y ux (b) +

x− y
x− y

x− x
x− aux (a)

]
= E [ux (Z)]

III Next, from a straightforward induction method, we can derive, for any
simple lottery whose expected value is x:

E [ux(Z)] =
∑
pZ (x)ux(x) = Ux (Z) if Z ∈ Xx ∩ Xf

Thus, the utility of a simple lottery equals the expected utility of its conse-
quences. However the induction argument is valid only if the number of possible
consequences is finite. Hence, It remains to be shown that Axiom 3 implies ex-
pected utility maximization on the set Xx.
IV To obtain the expected utility representation over the entire subset,36

one may proceed as indicated below. Any lottery X ∈ Xx whose c.d.f. FX (.)
is continuous may be viewed as the limit of two sequences of simple lotteries
whose expected value is x and which either SSOD dominate X or are SSOD
dominated by X. To see this, recall that we have:

δx % X % Xx

and consider the two sequences of simple lotteries {X∗n}n∈N and {X∗∗n }n∈N where
X∗n and X

∗∗
n both belong to Xx and which are defined as indicated below:

Step 1. Lotteries X∗1 and X
∗∗
1 are such that:

FX∗
1

(x) = FX
(
x2

1

)
if x ∈

[
x1

1, x
3
1

[
; FX∗

1
(x) = 1 if x = x3

1

FX∗∗
1

(x) = 0 if x ∈
[
x1

1, x
2
1

[
; FX∗∗

1
(x) = 1 if x ∈

[
x2

1, x
3
1

]
where:

x1
1 = a ; x2

1 = E [X] = x ; x3
1 = b

E [X] =
∫ b
a
xdFX (x)⇐⇒ FX (E [X]) =

b−E [X]

b− a
36Note that we do not need any additional axiom (dominance and/or monotonicity) since

these further axioms are are implied by the property of strict risk aversion.

30

 
Documents de travail du Centre d'Economie de la Sorbonne - 2014.54R (Version révisée)



Step 2. Lotteries X∗2 and X
∗∗
2 are defined as indicated below:

FX∗
2

(x) = FX
(
x2

2

)
if x ∈

[
x1

2, x
3
2

[
; FX∗

2
(x) = FX

(
x4

2

)
if x ∈

[
x3

2, x
5
2

[
; FX∗

2
(x) = 1 if x = x5

2

FX∗∗
2

(x) = 0 if x ∈
[
x1

2, x
2
2

[
; FX∗∗

2
(x) = FX

(
x3

2

)
if x ∈

[
x2

2, x
4
2

[
; FX∗∗

2
(x) = 1 if x ∈

[
x4

2, x
5
2

]
where:

x1
2
def
= x1

1 = a ; x3
2
def
= x2

1 = E [X] = x ; x5
2
def
= x3

1 = b

and where x2
2 and x

4
2 are defined by the following conditions:∫ x21

x11
xdFX (x) = x2

2FX
(
x3

2

)
= x2

2(FX
(
x2

1

)
− FX

(
x1

1

)
)∫ x31

x21
xdFX (x) = x4

2

(
1− FX

(
x2

1

))
= x4

2

(
FX
(
x3

1

)
− FX

(
x2

1

))
and so on...
....
Step n. Finally, {X∗n}n∈N and {X∗∗n }n∈N are defined recursively by the

following equations:

x2i−1
n+1 = xin if i = 1, (2)

n
+ 1 (48)

x2i
n+1 = (

∫ xi+1n

xin
xdFX (x))/(FX(xi+1

n )− FX(xin)) if i = 1, (2)
n (49)

FX∗
n+1

(x) = FX(x2i
n+1) if x ∈

[
x2i−1
n+1 , x

2i+1
n+1

[
and i = 1, (2)

n (50)

FX∗∗
n+1

(x) = FX(x2i+1
n+1 ) if x ∈

[
x2i
n+1, x

2i+2
n+1

[
and i = 1, (2)

n (51)

given that we have FX∗
n+1

(x
(2)n+1
n+1 ) = FX∗∗

n+1
(x

(2)n+1
n+1 ) = 1 and FX∗∗

n+1
(x) =

FX(x1
n) = 0 if x ∈

[
x1
n+1, x

2
n+1

[
.

Whatever the value of x, the two sequences of simple lotteries which we
have built converge towards X. To see this, first recall that the sequence whose
general term is

∣∣FX∗∗
n

(x)− FX∗
n

(x)
∣∣ converges towards a limit `x ≥ 0 since it

is a decreasing sequence of positive real numbers. Hence, for any ε > 0, there
exists N ∈ N such that:

n ≥ N ⇒ `x + ε ≤
∣∣FX∗

n
(x)− FX∗∗

n
(x)
∣∣ ≤ `x (52)

Actually `x must be zero otherwise a contradiction would appear. To see this,
assume that `x > 0 and consider the subdivision

{
xiN
}
i=1,(2)N−1+1

. Assume

provisionnally that x ∈
[
x2k
N , x

k+1
N−1

[
. From (50) and (51) we get that:

FX∗
N

(x) = FX(x2k
N ) and FX∗∗

N
(x) = FX(x2k+1

N ) = FX(xk+1
N−1)

From (52) we get that:

FX∗
N

(x)− FX∗∗
N

(x) = FX(x2k
N )− FX(x2k+1

N ) ≥ `x (53)
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Consider the next subdivision
{
xiN+1

}
i=1,(2)N+1+1

and assume, again for

instance, that x ∈
[
x2k
N , x

4k
N+1

[
. From (50) and (51) we get that:

FX∗
N+1

(x) = FX(x4k
N+1) and FX∗∗

N+1
(x) = FX(x4k+1

N+1 ) = FX(x2k
N )

From (52) we get that:

FX∗
N+1

(x)− FX∗∗
N+1

(x) = FX(x4k+1
N+1 )− FX(x2k

N ) ≥ `x

Let y ∈
[
x4k
N+1, x

2k+1
N

[
. From (50) and (51) we get that:

FX∗
N+1

(y) = FX(x4k
N+1) and FX∗∗

N+1
(y) = FX(x4k+1

N+1 ) = FX(x2k+1
N )

From (52) we get that:

FX∗
N+1

(y)− FX∗∗
N+1

(y) = FX(x4k
N+1)− FX(x2k+1

N ) ≥ `y

Now, since we have FX(x2k
N )−FX(x4k

N+1) ≥ 0 and FX(x4k
N+1)−FX(x2k+1

N ) ≥ 0
and using (53) we get that:∣∣FX (x)− FX∗

n
(x)
∣∣ =

∣∣FX(x2k
N )− FX(x2k+1

N )
∣∣

=
∣∣FX(x2k

N )− FX(x4k
N+1)

∣∣+
∣∣FX(x4k

N+1)− FX(x2k+1
N )

∣∣
≥ `x + `y

As a consequence we cannot have
∣∣FX (x)− FX∗

n
(x)
∣∣ ∈ [`x − ε, `x] for any

infinitesimal quantity ε unless `y = 0. Such a conclusion clearly does not depend
on the initial choice of x and y. Finally, the two sequences both converge
towards X i.e. we get that :

lim
n→∞

X∗∗n = lim
n→∞

X∗n = X (54)

Since Ux (.) is continuous we also get that:

lim
n→∞

Ux (X∗∗n ) = Ux (X) = lim
n→∞

Ux (X∗n) (55)

Now recall that, by definition, the two sequences of simple lotteries which
we have built are such that:
(a) X∗n (X

∗∗
n ) is a mean prserving spread (henceforth MPS) of X

∗
n−1 (X

∗∗
n+1),

and X∗∗n belong to Xx
(b) X∗n is a MPS of X which, in its turn, is a MPS of X∗∗n .
Hence, we get that:

δx % X∗∗1 % ... % X∗∗n % X % X∗n % ... % X∗1 % Xx

or, equivalently:

Ux (δx) ≥ Ux (X∗∗1 ) ≥ ... ≥ Ux (X∗∗n ) ≥ Ux (X) ≥ Ux (X∗n) ≥ ... ≥ Ux (X∗1 ) ≥ Ux (Xx)
(56)
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or, alternatively:

Ux (δx) ≥ E [ux (X∗∗1 )] ≥ ... ≥ E [ux (X∗∗n )] ≥ ...Ux (X) ... ≥ E [ux (X∗n)] ≥ ... ≥ E [ux (X∗1 )] ≥ Ux (Xx)
(57)

and, finally:
lim
n→∞

E [ux (X∗∗n )] = Ux (X) = lim
n→∞

E [ux (X∗n)] (58)

Now we have to show that Ux (X) = E [ux (X)]. To do so, just do as before
given that the subdivisions are now defined as indicated below:

u2i−1
n+1 = uin∫ ui+1n

uin
udGU (u)) = u2i

n ((GU (ui+1
n )−GU (uin)) for i = 1, (2)

n

where u = ux (x) uin = ux
(
xin
)
„GU (u) = GU (ux (x)) = FX (x) and

∫ 1

0
udGU (u) =∫ b

a
ux (x) dFX (x).

GU∗
n+1

(u) = GU (u2i
n+1) for u ∈

[
u2i−1
n+1 , u

2i+1
n+1

[
and i = 1, (2)

n

GU∗∗
n+1

(u) = GU (u2i+1
n+1 ) for u ∈

[
u2i
n+1, u

2i+2
n+1

[
and i = 1, (2)

n

Finally, the two sequences {E [ux (X∗n)]}n∈N and {E [ux (X∗∗n )]}n∈N have the
same limit Ux (X) which is but E [ux (X)].�

Proof.of Proposition 5.
Let Yi = u (Xi) for i = 1, 2. Because of the definition of SSOS dominance,

it is equivalent to state:
(a) X

1
Du2 X

2
, or

(b) Y1 D2 Y2, or, equivalently,
(c)

∫ v
0

[FY1 (t)− FY2 (t)] dt ≤ 0 for v ∈ [0, 1].
Now, by assumption, u (.) is strictly increasing and, consequently u−1 (.) is

well defined (and also strictly increasing). Hence the following equality is met:∫ v
0

[
FY

1
(t)− FY2 (t)

]
dt =

∫ u−1(v)

a
(FX1

(x)− FX
2

(x))u′ (x) dx

and, consequently, condition (c) is equivalent to the following one:∫ z
0
u′ (x) (FX1 (x)− FX

2
(x))dx ≤ 0 for any z ∈ [0, 1] � (59)

Proof of Proposition 6.
As a preliminary, recall that u (.) is more concave than v (.) iff u ◦ v−1 (.) is

concave i.e. if there exists g (.) mapping [0, 1] on to itself and such that:u (x) =
g ◦ v (x) with g′ (.) > 0 and g′′ (.) < 0

The proof is grounded on the following calculations:
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Let ∆
def
=
∫ z
a
u′ (x) (FX1

(x)− FX2
(x)) dt, we get that:

∆ =

∫ z

a

g′ (v (x)) v′ (x) (FX1
(x)− FX2

(x))dx

=

[
g′ (v (x))

∫ x

a

v′ (t) (FX1
(t)− FX2

(t)) dt

]z
a

−
∫ z

a

g′′ (v (x)) v′ (x)

[∫ x

a

v′ (t) (FX1
(t)− FX2

(t))dt

]
dx

or:

∆ = g′ (v (z))

∫ z

a

v′ (t) (FX1
(t)− FX2

(t))dt

−
∫ z

a

g′′ (v (x)) v′ (x)

[∫ x

a

v′ (t) (FX1
(t)− FX2

(t))dt

]
dx

Finally, we get the following equivalences and/or implications which hold for
any z:∫ z

a

v′ (t) (FX1 (t)− FX2 (t))dt < 0⇒
∫ z

a

u′ (x) (FX1 (x)− FX2 (x))dx < 0

or:
X

1
-v2 X2

⇒ X
1
-u2 X2

⇔ Xv2 ⊂ Xu2
and, as a consequence:

Xv−2 ⊆ Xu−2 and Xv+
2 ⊆ Xu+

2

�

Proof of Proposition 7.
Let U∗ ⊂ U denote the subset of concave or convex n.u. functions and let U∗I

(U∗C) be the subset of inconsistent (consistent) concave or convex n.u. functions.
We have U∗ = U∗I ∪ U∗C and .U∗I ∩ U∗C = {f (.)} where f (.) is the n.u. affi ne
function defined by f (x) = (x− a) / (b− a). Two cases may occur, according
to the fact that the (standard) SOS dominance property is violated or not.

A. We first assume that the SOS dominance property is not violated, i.e.
U∗C 6= ∅. As a consequence, there exists at least one concave function which is
consistent. It is the n.u. affi ne function f (.).

1. A first subcase is when U∗C = {f (.)} ; Proposition 7 is then
clearly valid.

2. We now leave aside this trivial subcase and assume that U∗C
includes at least one strictly concave n.u. function.
Let H =

⋂
u∈U∗I

hypo(u). where hypo(u) is the strict hypograph of u ∈
U∗I .Since the hypographs are convex, so is H and so is its "northern" frontier

which may be defined from the following equality: hypo (u)
def
=
⋂
u∈U∗I

hypo(u).
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Clearly function u (.) is concave. Since the hypographs hypo(u) are open, we
do not know yet whether H is closed —i.e whether u (.) belongs to H and,
consequently is consistent—or not. Finally, we are going to prove directly that
Xu−2 = ∅. The proof is three-step.

(a)The first step consists in defining a consistent concave n.u. function u (.)
which is close to u (.). Now let u (.) be defined by the following equality:

u (x)
def
= u (x)− y (x)

where

y (x) = η

(
x− a
b− a

)
− η

(
x− a
b− a

)2

Clearly, y (x) ≥ 0 for x ∈ [a, b], y′ (x) ≥ 0 for x ∈ [a, a+ (b− a) /2], y′ (x) ≤ 0
for x ∈ [a+ (b− a) /2, ] b, y (a) = y (b) = 0, a+ (b− a) /2 = Argmax [y (x)] and
max [y (x)] = η/4. A suffi cient condition for u (.) to be concave is that:

η <
1

2
(b− a)

2
inf

x∈[a,b]
(−u′′ (x))

Moreover, u (.) will be strictly increasing if u′ (x) is strictly positive. A suffi cient
condition for this is that:

η < (b− a) inf
x∈[a,b]

(u′ (x))

and, finally, u (.) is concave and strictly increasing if the real number η satisfies
the below inequality:

η < min

[
1

2
(b− a)

2
inf

x∈[a,b]
(−u′′ (x)) , (b− a) inf

x∈[a,b]
(u′ (x))

]
(60)

Since u (a) = u (a) = 0 and u (b) = u (b) = 1, u (.) is normalized and since
η > 0, the hypograph of u (.) strictly includes that of u (.). As a consequence,
may not be inconsistent otherwise we would have hypo(u) ⊂ hypo (u) and simul-
taneously u (.) ∈ U∗IN. This would contradict the fact that H =

⋂
u∈U∗I

hypo(u).
Finallyu (.) is well consistent. Finally, the function u (.) is a concave n.u. func-
tion if (60) is met.

(b)The second step consists in looking for an upper bound for the following
difference:

∆ =
∣∣∫ z
a
u′ (x) (FX1 (x)− FX2 (x))dx−

∫ z
a
u′ (x) (FX1 (x)− FX2 (x))dx

∣∣
Integrating by parts yields:

∆ =
∣∣∫ z
a

(u′ (x)− u′ (x))(FX1
(x)− FX2

(x))dx
∣∣

=
∣∣(u (z)− u (z)) (FX1

(z)− FX2
(z)) +

∫ z
a

(u′ (x)− u′ (x)) (dFX1
(x)− dFX2

(x))
∣∣
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and, consequently:

∆ ≤ |(u (z)− u (z)) (FX1
(z)− FX2

(z))|+
∣∣∫ z
a

(u′ (x)− u′ (x)) (dFX1
(x)− dFX2

(x))
∣∣

(61)
The first term is bounded indicated as below:

|(u (z)− u (z)) (FX1 (z)− FX2 (z))| ≤ |(u (z)− u (z))| ≤ sup
z∈[a,b]

|u′ (z)− u′ (z)|

We now show that he second term may be bounded as indicated below∣∣∫ z
a

(u′ (x)− u′ (x)) (dFX1
(x)− dFX2

(x))
∣∣ ≤ 2 sup

z∈[a,b]

|u′ (z)− u′ (z)|

Indeed, we have∣∣∫ z
a

(u′ (x)− u′ (x)) (dFX1 (x)− dFX2 (x))
∣∣ ≤ ∣∣∫ z

a
(u′ (x)− u′ (x)) dFX1 (x)

∣∣
+
∣∣∫ z
a

(u′ (x)− u′ (x)) dFX2
(x)
∣∣

and, for i = 1, 2.:∣∣∫ z
a

(u′ (x)− u′ (x)) dFXi (x)
∣∣ ≤ sup

z∈[a,b]

|u′ (z)− u′ (z)|
∫ z
a
dFXi (x)

≤ sup
z∈[a,b]

|u′ (z)− u′ (z)|

Finally, an upper bound of is given by the following inequality:

∆ ≤ 3 sup
z∈[a,b]

|u′ (z)− u′ (z)|

Now, recall that sup
z∈[a,b]

|u′ (z)− u′ (z)| = sup
z∈[a,b]

∣∣∣∣η ( z−ab−a

)
− η

(
z−a
b−a

)2
∣∣∣∣ = η/4.

As a consequence, we get that

∆ ≤ 3η/4

(c)The last step consists in showing that if u (.) were not consistent, then we
would get a contradiction. Indeed if u (.) were not consistent there would exist
two lotteries X1 and X2 such that X1 � X2 and, simultaneously, there would
exist z ∈ [a, b], such that

∫ z
a
u′ (x) (FX1 (x) − FX2 (x))dx > 0. In other words,

there would exist a strictly positive real number ε such that∫ z
a
u′ (x) (FX1

(x)− FX2
(x))dx ≥ ε > 0

Since u (.) is consistent, we must have
∫ z
a
u′ (x) (FX1

(x) − FX2
(x))dx < 0

and, consequently: we get that:

∆ =
∫ z
a
u′ (x) (FX1 (x)− FX2 (x))dx+

∣∣∫ z
a
u′ (x) (FX1 (x)− FX2 (x))dx

∣∣ ≥ ε
and, finally:

ε ≤ 3η/4
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Hence, if η is small enough, i.e. if η < 4ε/3, we get a contradiction and,
finally, u (.) is well consistent.

B. We now assume that the SOS dominance property is violated, i.e.
U∗C = ∅. No concave n.u. functions may be consistent. By contrast, the subset
of convex n.u. functions is never empty since it always includes the following
function: u (x) = 0 for x ∈ [a, b[ and u (b) = 1. The rest of the proof is analogous
to the above one.�

Proof of Proposition 12.
The first part of the proof consists in proving that, in LS-models, two lotter-

ies X1 and X2 which have the same expected utility u and the same certainty
equivalent c, are strongly equivalent.
Let X1 and X2 exhibit the same expected utility u and the same certainty

equivalent c. From (24) we get, for i = 1, 2:

u (c) = u+
∑N
n=1p

i
n (E (u (xn)− u))

where Xi =
[
x1, p

i
1; ...;xN , p

i
N

]
(i = 1, 2) and where u =

∑N
n=1p

i
nu (xn). As a

consequence, we have:∑N
n=1p

1
nE (u (xn)− u)−

∑N
n=1p

2
nE (u (xn)− u) = 0 (62)

Now, consider the compound lottery

Xλ
def
= λX1 ⊕ (1− λ)X2 =

[
x1, λp

1
1 + (1− λ) p2

1; ...;xN , λp
1
N + (1− λ) p2

N

]
Its expected utility is:

E [u (Xλ)] =
∑N
n=1(λp1

n + (1− λ) p2
n)u (xn) = u

From (24) we also get that:

u (c (Xλ)) = u+
∑N
n=1

(
λp1

n + (1− λ) p2
n

)
E (u (xn)− u)

where c (Xλ) is the certainty equivalent of Xλ and, finally:

u (c (Xλ))− u (c) = λ
(∑N

n=1p
1
nE (u (xn)− u)−

∑N
n=1p

2
nE (u (xn)− u)

)
= 0

The proof of the converse is as follows. We must show that if X1 and X2 are
strongly equivalent —i.e. if they have the same certainty equivalent and if they
exhibit the betweenness property—, then they exhibit the same expected utility.
To do so, we consider two discrete lotteries:

Xi =
[
x1, p

i
1; ...;xN , p

i
N

]
i = 1, 2

and their probability mixture:

λX1 ⊕ (1− λ)X2 =
[
x1, λp

1
1 + (1− λ) p2

1; ...;xN , λp
1
N + (1− λ) p2

N

]
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where λ ∈ [0, 1].
We assume that they have the same certainty equivalent. Hence, we have,

for i = 1, 2:
u (c) = u (c (Xi)) = ui +

∑N
n=1p

i
nE
(
uin
)

(63)

where:
ui =

∑N
n=1p

i
nu (xn) and uin = u (xn)− ui (64)

Now, recall that, by definition, we have:

u (c (λX1 ⊕ (1− λ)X2)) = λu1 + (1− λ)u2

+
∑N
n=1

[
λp1

n + (1− λ) p2
n

]
E
(
λu1

n + (1− λ)u2
n

)
and, from (63) and (64), we get that:

λu (c (X1)) + (1− λ)u (c (X2)) = λu1 + (1− λ)u2

+
∑N
n=1λp

1
nE
(
u1
n

)
+
∑N
n=1 (1− λ) p2

nE
(
u2
n

)
Now, from the betweenness property we get that: u (c (λX1 ⊕ (1− λ)X2))

= λu (c (X1)) + (1− λ)u (c (X2)), and, consequently:∑N
n=1p

1
nλE

(
u1
n

)
+
∑N
n=1p

2
n (1− λ) E

(
u2
n

) = λ

(∑N
n=1p

1
nE
(

λu1
n

+ (1− λ)u2
n

))
+(1− λ)

(∑N
n=1p

2
nE
(

λu1
n+

(1− λ)u2
n

))
or, equivalently:∑N

n=1p
1
nλE

(
u1
n

)
+
∑N
n=1p

2
n (1− λ) E

(
u1
n

)
+
∑N
n=1p

2
n (1− λ)

(
E
(
u2
n

)
− E

(
u1
n

)) =
∑N
n=1

[
λp1

n + (1− λ) p2
n

]
E
(
λu1

n + (1− λ)u2
n

)
and, finally:

∑N
n=1

[
λp1

n + (1− λ) p2
n

] [
E
(
u1
n

)
− E

(
λu1

n+
(1− λ)u2

n

)]
=
∑N
n=1p

2
n (1− λ)

(
E
(
u1
n

)
− E

(
u2
n

))
∑N
n=1

[
λp1

n+
(1− λ) p2

n

] [
E (u (xn)− u1)
−E (u (xn)− uλ)

]
(1− λ)

−1
=
∑N
n=1p

2
n

(
E (u (xn)− u1)
−E (u (xn)− u2)

)
∑N
n=1$n (λ)

(
u1
n − u2

n

)
E ′
(

u (xn)− u1

+θn (λ)
(
u1
n − u2

n

) ) =
∑N
n=1p

2
n

(
u1
n − u2

n

)
× E ′

(
u (xn)− u1

+ζn
(
u1
n − u2

n

) )
(u1 − u2)

{∑N
n=1$n (λ) E ′

(
u (xn)− u1

+θn (λ) (u1 − u2)

)}
= (u1 − u2)×

{∑N
n=1p

2
nE ′

(
u (xn)− u1

+ζn (u1 − u2)

)}
(u1 − u2)F (λ) = (u1 − u2) Λ

Since F (λ) cannot be equal to Λ for any value of λ, we must have u1−u2 =
0.�
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Proof of Proposition 13.
The lotteries Xx

p and X will be strongly indifferent iff :

pu (x) = π

pu (x) + pE (u(x)− pu (x)) + (1− p) E (−pu (x)) = γ

where:

π
def
= u (z (X)) = E [u (X)] ∈ [0, 1]

γ
def
= u (c (X)) = π +E [E (u (X)− π)] ∈ [uπ, π]

uπ = π + πE (1− π) + (1− π) E (−πu (x))

The above system may be rewritten as indicated below:

u (x) = π/p

π + pE ((π/p)− π) + (1− p) E (−π) = γ

the first equation is checked iff x = u−1 (π/p). The second equation has a
unique solution because the function

ϕ (p) = π + pE ((π/p)− π) + (1− p) E (−π)

is strictly increasing and maps[π, 1] over [uπ, π]. Indeed we have:

ϕ′ (p) = E ((π/p)− π)− E (−π)− π/pE ′ ((π/p)− π)

= (E (−π) + (π/p)E ′ (θ(π/p)− π))− E (−π)− π/pE ′ ((π/p)− π)

= (π/p) [E ′ (θ(π/p)− π)− E ′ ((π/p)− π)]

and ϕ′ (p) is well negative since E (.) is concave, and that, consequently, E ′ (.) is
decreasing.�

Proof of Proposition 14.
If xn+1 were greater than xn, X

xn+1
pn+1 would exhibit FOS dominance over

Xxn
pn . Hence, xn+1 is lower than xn and {xn}n∈N is a decreasing sequence. It

is also bounded below by a. Consequently, it converges towards a limit ` ≥ a.
Next, note that the two strongly indifferent simple lotteries Xxn

pn and X
xn+1
pn+1have

the same expected utility, i.e., we have:

pnu (xn) = pn+1u (xn+1) + (1− pn+1) for n = 0, 1, ... (65)

and, consequently:

πu (w) = pnu (xn) +
∑n
i=1 (1− pi) for n = 1, 2, ...

The above equality implies Sn
def
=
∑n
i=1 (1− pi) ≤ πu (w). Since{Sn}n∈N∗

is an increasing sequence, it converges towards a limit Σ ≤ πu (w). As a con-
sequence, Sn − Sn−1 = (1− pn.) → 0, i.e. pn. → 1. Moreover, since we have:
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Xxn+1
pn+1 ≺ X

xn+1
pn+1 ∼ Xxn

pn , the sequence of binary lotteries
{
Xxn
pn

}
n∈N is decreas-

ing and converges towards X`
1 = δ (`). Similarly, {Xxn

pn}n∈N∗ converges towards
X
`

1 = δ (b− `).
We now show that ` = a. The proof is by contradiction. Indeed assume

` > a. Then, since Xxn
pn � δ (`), there exists a binary lottery Xx∗n

pn such that

` < x∗n < xn, and X
x∗n
pn ∼ δ (`). Let x∗n+1 and p

∗
n+1 be defined by X

x∗n+1
p∗n+1
≈ Xx∗n

pn .

Since {Xxn
pn}n∈N∗ converges towards δ (`), there exists an integer N , such that

m ≥ N ⇒ ` ≤ xm < x∗n+1 and pm ≥ p∗n+1. This implies that X
x∗n+1
p∗n+1

should be

preferred to the X
xm
pm s and, consequently, that δ (`) should be preferred to the

X
xm
pm s, which contradicts the fact that {X

xn
pn}n∈N is decreasing and converges

towards δ (`). Hence ` = a and {Sn}n∈N converges towards Σ = πu (w). As a
consequence, equality (31) is checked.�
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8 Appendix 2.

8.1 About the common ratio effect.

As shown in Loomes and Sugden’s article [1986], several restrictions on the
shape of E (.) allow to predict both the common ratio effect and the isolation
effect together with the preservation of the FOS dominance principle. Indiffer-
ence curves in the Marschak-Machina triangle may also have a mixed fanning
shape37 which is considered as a desirable property (See e.g. Starmer [2000]).
As an example, consider the problems 3 and 4 from Kahneman and Tversky
[1979].
Problem 3: Choice between lottery A and lottery B where:
A=[0.2, 0.8; 0, 4000] and B=[1; 3000]
Problem 4: Choice between lottery C and lottery D where:
C=[0.8, 0.2; 0, 4000] and D=[0.75, 0.25; 0, 3000]
Most people choose lottery B in problem 3 and lottery C in problem 4. Hence,

to offer a good representation of their preferences the following inequalities must
hold:

U(a)/U(b) ≤ 1 and U(c)/U(d) ≥ 1 (66)

The paradox is as follows: consider an arbitrary utility function u(.) such
that u(0) = 0. Then "B preferred to A" implies that

u(3000) > 0.8u(4000) (67)

whereas "C preferred to D" implies that

0.2u(4000) > 0.25u(3000)

and, consequently:
0.8u(4000) > u(3000) (68)

Finally, (67) contradicts (68) and the pattern of preferences is not compatible
with EU theory. Now to make clearly apparent the potential of a LS functional
for management applications, we focus on a particular case where the functional
reads:

U (X) =

∫ b

a

u(x) [1− a (u(x)−E [u(X)])] dFX(x)

where u(.) is a n.u. function and a a positive parameter that controls for dis-
appointment aversion. Without loss of generality, we normalize u(.) as follows:

u(0) = 0 and u(4000) = 1

Using our axiomatics, we get that:
U(A) = 0.8(1− 0.2A [0.8])and U(B) = u(3000);
U(C) = 0.2(1−0.8A [0.2])and U(D) = 0.25(1−0.75u(3000)a [0.25u(3000)])u (3000)

37Namely, a fanning out shape in the lower right corner of the triangle diagram and a
fanning in shape in the upper left of the triangle diagram.
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We can rewrite the inequalities (66) above as follows:

0.8(1− 0.2a [0.8]) ≤ u(3000) ≤ 0.8
(1− 0.8a [0.2])

(1− 0.75u(3000)a [0.25u(3000)])

or, alternatively as the two following conditions:

a [0.8] ≥ 0.8− u(3000)

0.16

1.25u(3000)− 1 ≤ 0.9375u2(3000)a [0.25u(3000)]− 0.8a [0.2]

By assumption, a [.]is positive and it is a decreasing function of E [u (X)].
Hence the first condition is automatically reached, whereas the second condition
can always be achieved if a(.)is decreasing enough. For instance, with a linear
utility function (u(3000) = 0.75), the Allais paradox is solved with the follow-
ing choice of parameters which fully satisfy the suffi cient condition for FOS
dominance consistency :
a(0.8) = 0.3125; a(0.2) = 0.35
and
a(0.25u(3000)) = a(0.1875) = 0.5425

8.2 Consistency of the n.u. function of a LS functional.

In the proof, X1 is assumed to SSOS dominate to the second-order X2 i.e.

λ1 − λ2 = −
∫ b

a

u′ (t) (FX1
(t)− FX2

(t))dt ≥ 0

where

λi
def
= E [Xi] =

∫ b

a

u (x) dFXi = 1−
∫ b

a

u′ (t)FXi (t) dt

Now let:
∆U def

= U (X1)− U (X2) ≥ 0

The difference between the two functionals is:

∆U =

∫ b

a

(u (x) + E (u (x)− λ1))dFX1 (x)−
∫ b

a

(u (x) + E (u (x)− λ2))dFX2 (x)

= (λ1 − λ2) +

∫ b

a

E (u (x)− λ1) dFX1
(x)−

∫ b

a

E (u (x)− λ2) dFX2
(x)

or, equivalently as:
∆U = T1 + T2

where:

T1
def
= (λ1 − λ2) +

∫ b

a

(E (u (x)− λ1)− E (u (x)− λ2)) dFX2 (x)
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and:

T2
def
=

∫ b

a

E (u (x)− λ1) (dFX1
(x)− dFX2

(x))

Using a Taylor development in T1 yields:

T1 = (λ1 − λ2)−
∫ b

a

(λ1 − λ2) E ′ (u (x)− λ1 + θ1 (λ1 − λ2)) dFX2
(x)

with θ1 ∈ [0, 1] and integrating T2 by parts yields:

T2 = [E (u (x)− λ1) (FX1
(x)− FX2

(x))]
b
a−
∫ b

a

E ′ (u (x)− λ1)u′ (x) (FX1
(x)−FX2

(x))dx

or, equivalently:

T2 = E (−λ1) (FX1
(a)−FX2

(a))−
∫ b

a

E ′ (u (x)− λ1)u′ (x) (FX1
(x)−FX2

(x))dx

and, finally:

T2 = E (−λ1) (FX1 (a)− FX2 (a))− E ′ (1− λ1)

∫ b

a

u′ (t) (FX1 (t)− FX2 (t)) dt

+

∫ b

a

E ′′ (u (x)− λ1)u′ (x)

[∫ x

a

u′ (t) (FX1
(t)− FX2

(t))dt

]
dx

Clearly, the condition [1− sup E ′(z)] ≥ 0 implies that sign (T1) = sign (λ1 − λ2)
and that T1 is positive. The second term T2 is also positive, since it is the sum
of three positive terms: indeed the first term, which reads E (−λ1) (FX1

(a) −
FX2

(a)), is positive because E (−λ1) is negative (since E (0) = 0 and that
E ′ (.) > 0) and that (FX1

(a) − FX2
(a)) is also negative (from SSOS domi-

nance). The second term is positive because E ′ (1− λ1) is positive, and that
the integral

∫ b
a
u′ (t) (FX1

(t)− FX2
(t)) dt is negative (again from SSOS dom-

inance). The last term is positive because E ′′ (u (x)− λ1) is negative, u′ (x) is
positive and

∫ x
a
u′ (t) (FX1

(t)− FX2
(t)) dt is negative (from SSOS dominance).

Finally, ∆U def
= U (X1) − U (X2) is positive and, consequently X1 is well pre-

ferred to X2.�
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