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Abstract

This article reconsiders the theory of existence of e�cient allocations and

equilibria when consumption sets are unbounded below under the assump-

tion that agents have incomplete preferences. It is motivated by an ex-

ample in the theory of assets with short-selling where there is risk and

ambiguity. Agents have Bewley’s incomplete preferences. As an inertia

principle is assumed in markets, equilibria are individually rational. It

is shown that a necessary and su�cient condition for the existence of an

individually rational e�cient allocation or of an equilibrium is that the

relative interiors of the risk adjusted sets of probabilities intersect. The

more risk averse, the more ambiguity averse the agents, the more likely is

an equilibrium to exist. The paper then turns to incomplete preferences

represented by a family of concave utility functions. Several definitions of

e�ciency and of equilibrium with inertia are considered. Su�cient condi-

tions and necessary and su�cient conditions are given for the existence of

e�cient allocations and equilibria with inertia.
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1 Introduction

The issue of existence of an equilibrium for finite markets with short-selling is

an old problem first considered in the early seventies by Grandmont [8], Hart

[11] and Green [9] and reconsidered later by Hammond [10] and Page [13], [14].

In these early papers, investors were assumed to hold a single probabilistic belief

(homogeneous or heterogeneous) and be risk averse von Neumann-Morgenstern

(vNM) utility maximizers. Two su�cient conditions for the existence of an

equilibrium were given:

1. a condition which expresses that investors are su�ciently similar in their

beliefs and risk aversions so that there exists a non empty set of prices

(the no-arbitrage prices) for which no agent can make costless unbounded

utility nondecreasing purchases,

2. a collective absence of arbitrage condition, which requires that investors

do not engage in mutually compatible, utility nondecreasing trades.

These conditions have been generalized to abstract economies and are known

as the existence of no-arbitrage prices condition (see Werner [17]) and the no

unbounded utility arbitrage condition (NUBA) ( see Page [14]). They were

shown to be equivalent under adequate hypotheses. Other su�cient conditions

were given. For a review of the subject in finite dimension, see Allouch et al

[1], Dana et al [5], Page [13],[14]. All this trend of literature assumes complete

preferences.

This paper extends the previous theory to incomplete preferences repre-

sented by families of concave utility functions. Such incomplete preferences

include Bewley’s [2] and Rigotti and Shannon [15] incomplete preferences. Un-

der this representation assumption, it is easy to define and characterize the

concepts of no-arbitrage prices and no unbounded utility arbitrage. Weak and

strong concepts of e�ciency and equilibria are defined. As in the case of com-

plete preferences, existence of a no-arbitrage price is shown to be equivalent to

NUBA and to be a su�cient condition for the existence of weakly e�cient allo-

cations and weak equilibria. Under further adequate assumptions (for example

strict concavity and monotonicity of utilities), it is shown to be necessary and

su�cient for the existence of e�cient allocations and equilibria.

As Page [14] and Werner [17], the paper is motivated by an example in the

theory of assets with short-selling. Agents are assumed not to have enough

information to quantify uncertainty by a single probability, hence each agent

has a set of priors. Agents are further assumed to have risk averse Bewley’s [2]
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(or Rigotti and Shannon [15] ) incomplete preferences. Under standard condi-

tions on utility indices (strict concavity and increasingness) and sets of priors

(convexity and compactness), it is shown that a necessary and su�cient for the

existence of an individually rational e�cient allocation or equilibrium is that

the relative interiors of the agents’ sets of risk adjusted probabilities intersect or

that agents do not engage in mutually compatible trades that have non negative

expectations with respect to their risk adjusted probabilities. The first condi-

tion generalizes the overlapping expectations given by Grandmont [8], Green

[9] and Hammond [10] for the case of single belief. The second generalizes the

NUBA type of condition given by Hart [11]. In a vNM framework, Hart [11]

further shows that the more risk averse the agents, the more likely is an equi-

librium to exist. In the Bewley’s setting, it is shown that the more risk averse,

the more ambiguity averse the agents, the more likely is an equilibrium to exist.

The example is also shown to have an interesting feature: the arbitrage

concepts coincide with those of a Gilboa-Schmeidler’s agent with same sets of

priors and utility indices. Hence the condition that the relative interiors of the

sets of risk adjusted probabilities intersect is also necessary and su�cient for

the existence of an equilibrium in a model with Gilboa-Schmeidler’s preferences

(with same sets of priors and utility indices). This may seem at odds with the

literature on e�ciency or equilibria with Bewley’s incomplete preferences (see

Bewley’s [2], Rigotti and Shannon [15] or Dana and Riedel [6]) which highlights

the di↵erences with using maxmin complete preferences. However it is not as a

di↵erent issue is addressed, that of existence of equilibrium with short selling.

The paper is organized as follows: section 2 deals with the example and

provides an existence theorem while section 3 deals with its generalization.

2 An example

2.1 Bewley preferences

We consider a standard Arrow-Debreu model of complete contingent security

markets with short selling. There are two dates, 0 and 1. At date 0, there is

uncertainty about which state s from a state space ⌦= {1, ..., k} will occur at

date 1. At date 0, agents who are uncertain about their future endowments

trade contingent claims for date 1. The space of contingent claims is the set

of random variables from⌦ ! R. The random variable X which equals x1

in state 1, x2 in state 2 and xk in state k, is identified with the vector in

X 2 Rk
, X = (x1, . . . , xk). Let4 = {⇡ 2 Rk

+ :
Pk

s=1 ⇡s = 1} be the probability
simplex in Rk. Let int4 = {⇡ 2 4, ⇡s > 0, 8 s}. For A ✓ 4, intA = {p 2 A |
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9 a ball B(p," ) s.t. B(p," ) \ int 4 ✓ A}. For a given ⇡ 2 4, we denote by

E⇡(X) :=
Pk

l=1 ⇡lxl the expectation of X. Finally, for a given price p 2 Rk,

p ·X :=
Pk

l=1 plxl, the price of X.

There are m agents indexed by i = 1, . . . ,m. Agent i has an endowment

E

i 2 Rk of contingent claims. Let (Ei)mi=1 be the m-tuple of endowments and

E =
Pm

i=1E
i be the aggregate endowment. We assume that agent i has a

convex compact set of priors P

i ✓int4 and an incomplete Bewley preference

relation ⌫ over Rk defined by

X ⌫i
Y () E⇡(u

i(X)) � E⇡(u
i(Y )), 8 ⇡ 2 P

i (1)

where u

i : R ! R is a strictly concave, increasing di↵erentiable utility index

fulfilling u

i(0) = 0. The associated strict preference is X �i
Y if X ⌫i

Y and

E⇡(ui(X)) > E⇡(ui(Y )) for some ⇡ 2 P

i.

2.2 Individual and collective absence of arbitrage

In this subsection, we define and characterize the useful vectors of a Bewley

preference relation of type (1). They are the directions such that trading at

any positive scale makes the agent better o↵. Our main result is that they

coincide with those of a Gilboa-Schmeidler utility defined by (u, P ) ( see (2)

below) .

We then recall the concepts of no-arbitrage prices and of collective absence of

arbitrage (NUBA). As these concepts only depend on useful vectors, we obtain

that two economies with Bewley preferences or Gilboa-Schmeidler utilities with

same indices and sets of priors have same sets of no-arbitrage prices and same

NUBA condition.

2.2.1 Useful vectors

To simplify notations, in this subsection, the agent’s index is omitted. We

consider an agent described by a pair (u, P ) of a utility index and a set of

priors. For ⇡ 2 P , let

b
P⇡(X) = {Y 2 Rk | E⇡(u(Y )) � E⇡(u(X))}

be the set of contingent claims preferred to X for the utility E⇡(u(.)) and

R⇡(X) = {W 2 Rk | E⇡(u(X + �W )) � u(X), 8 � 2 IR+} be its asymptotic

cone. As E⇡(u(.)) is concave, R⇡(X) is independent of X and denoted R⇡.

Taking X = 0, we obtain:

R⇡ = {W 2 Rk | E⇡(u(�W )) � u(0) = 0, 8 � 2 IR+}

Let
b
P (X) = {Y 2 Rk | E⇡(u(Y )) � E⇡(u(X)), 8 ⇡ 2 P}
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be the set of contingent claims preferred toX for the Bewley’s preference defined

by (1) and R(X) be its asymptotic cone. From Rockafellar’s [16] corollary 8.3.3,

R(X) = \⇡2PR⇡(X) = \⇡2PR⇡. Hence it is independent of X and denoted R.

R = {W 2 Rk | E⇡(u(�W )) � 0, 8 � 2 IR+, ⇡ 2 P}

and is called the set of useful vectors for ⌫. For a given pair (u, P ), let

V (X) = min
⇡2P

E⇡(u(X)) (2)

be the Gilboa-Schmeidler’s utility.

{W 2 Rk | V (�W ) � 0, 8 � 2 IR+} = {W 2 Rk | E⇡(u(�W )) � 0, 8 � 2 IR+,⇡ 2 P}

Hence it coincides with R. Furthermore given C 2 IRk a reference point, the

C-reference dependent ambiguity averse (RAA) utility, axiomatized by Mihm

[12] is defined by

VC(X) = min
⇡2P

[E⇡(u(X))� E⇡(u(C))] (3)

This is a concave variational utility, hence the set of useful vectors is indepen-

dent of X. As VC(C) = 0, RVC = {W 2 Rk | VC(C + �W ) � 0, 8 � 2 IR+}.
Equivalently

RVC = {W 2 Rk| E⇡(u(C + �W )) � E⇡(u(C)), 8 � 2 IR+,⇡ 2 P} = R

The previous discussion is summarized in the following lemma:

Lemma 1 The set of useful vectors for a Bewley preference of type (1) coin-

cides with the set of useful vectors for a Gilboa-Schmeidler preference (2) or of

an RAA utility (3) for any reference point C 2 IRk.

Let us recall a characterization of useful vectors proven in Dana and Le Van

[4]. To this end, let

e
P =

⇢
p 2 4 | 9 ⇡ 2 P, Z 2 Rk s. t. ps =

⇡su
0(zs)

E⇡(u0(Z))
, 8 s = 1, . . . , k

�
(4)

be the set of risk adjusted probabilities. We have (see Dana and Le Van [4]) :

Lemma 2 R = {W 2 Rk | Ep(W ) � 0, for all p 2 P̃}.

In the next two subsections, we introduce two concepts of absence of arbi-

trage, a concept of individual no-arbitrage and a concept of collective absence

arbitrage. These concepts only depend on agents’ useful vectors.

We first define the concept of no-arbitrage price (see Werner [17]).
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Definition 1 A price vector p 2 Rk is a ” no-arbitrage price” for agent i if

p ·W > 0, for all W 2 R

i\{0}. A price vector p 2 Rk is a ” no-arbitrage price”

for the economy if it is a no-arbitrage price for each agent.

Let S

i denote the set of no-arbitrage prices for i. Using Lemma 2, Dana

and Le Van [4] characterize S

i in terms of risk adjusted probabilities.

Lemma 3 1. The set of no-arbitrage prices for agent i is Si = cone int eP i

where p 2 int e
P

i if and only if 9 ⇡ 2 P

i \ int 4, Z 2 Rk
, 8s, a <

u

0(zs) < b and ps =
⇡su0(zs)
E⇡(u0(Z)) . The more risk averse, the more ambiguity

averse the agent, the larger is S

i.

2. The set of no-arbitrage prices for the economy is \
i
S

i = cone \
i
int e

P

i.

The more risk averse, the more ambiguity averse the agents, the larger is

the set of no-arbitrage prices for the economy.

2.2.2 Collective absence of arbitrage

From now on, a feasible trade is an m�tuple W

1
, . . . ,W

m with W

i 2 Rk for

all i and
P

iW
i = 0. We recall the no-unbounded-arbitrage condition (NUBA)

introduced by Page [13] which requires inexistence of unbounded utility nonde-

creasing feasible trades.

Definition 2 The economy satisfies the NUBA condition if
P

iW
i = 0 and

W

i 2 R

i for all i, implies W

i = 0 for all i.

From Lemma 2, we may characterize the NUBA condition .

Corollary 1 NUBA is equivalent to: there exists no feasible trade W 1
, . . . ,W

m

with W

i 6= 0 for some i that fulfills E⇡(W i) � 0 for all i and ⇡ 2 e
P

i.

2.3 Existence of e�cient allocations and equilibria

2.3.1 Concepts in equilibrium theory

We next recall standard concepts in equilibrium theory.

Given the allocation of initial endowments (Ei)mi=1, an allocation (Xi)mi=1 2
(Rk)m is attainable (or feasible) if

Pm
i=1X

i = E. The set of B-individually

rational attainable allocations A((Ei)mi=1) is defined by

A((Ei)mi=1) =

(
(Xi)mi=1 2 (Rk)m |

mX

i=1

X

i = E and X

i ⌫i
E

i
, 8 i

)
.

6
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Definition 3 Given (Ei)mi=1, an attainable allocation (X i)mi=1 is B-e�cient if

there does not exist (X 0i)mi=1 attainable such that X 0
i ⌫i

Xi for all i with a strict

inequality for some i. It is weakly B-e�cient if there does not exist (X 0i)mi=1

attainable such that E⇡(ui(X 0i)) > E⇡(ui(Xi)), 8 ⇡ 2 P i
, 8 i. It is individually

rational (weakly) B-e�cient if it is (weakly) B-e�cient and X

i ⌫i
E

i for all i.

Since u

i is strictly concave and strictly increasing and P

i is compact for all i,

(X i)mi=1 is B-e�cient if and only if (Xi)mi=1 is weakly B-e�cient (see Lemma 4

and Remark 3 below).

Definition 4 A pair (X⇤
, p

⇤) 2 A((Ei)mi=1)⇥Rk\{0} is a (weak) B-equilibrium

with inertia if

1. for each agent i and X

i 2 Rk, Xi �i
X

i⇤ (E⇡(ui(Xi)) > E⇡(ui(Xi⇤)), 8 ⇡ 2
P i

, 8 i) implies p

⇤ ·Xi
> p

⇤ ·Xi⇤,

2. for each agent i, p⇤ ·Xi⇤ = p

⇤ · Ei.

Since u

i is strictly concave for all i, it may easily be verified that (X⇤
, p

⇤) is a

B-equilibrium with inertia if and only if it is a weak B-equilibrium with inertia.

Note that at an equilibrium with inertia, the allocation is individually rational.

2.3.2 Existence of e�cient allocations and equilibria

The following theorem fully characterizes existence of individually rational B-

e�cient allocations as well as B-equilibria with inertia.

Theorem 1 The following assertions are equivalent:

1. there exists a no-arbitrage price, equivalently \
i
int eP i 6= ;,

2. there exists no feasible trade W

1
, . . . ,W

m with W

i 6= 0 for some i and

E⇡(W i) � 0 for all ⇡ 2 e
P

i and for all i,

3. the set of B-individually rational attainable allocations is compact,

4. there exists a B-individually rational e�cient allocation,

5. there exists a B-equilibrium with inertia.

Furthermore any equilibrium price is a no-arbitrage price.

Proof : Since X

i ⌫i
E

i is equivalent to VEi(X) � VEi(Ei) = 0, the set of

individually rational attainable allocations for the economy with Bewley’s pref-

erences coincides with the set of individually rational attainable allocations for

the economy with RAA utilities with reference points (Ei)mi=1. Applying Dana
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and Le Van [4] to these utilities, we obtain the equivalence between 1, 2 and 3.

Let us prove that 1 implies 4. Applying Dana and Le Van [4] to RAA util-

ities with reference points (Ei)mi=1, we obtain the existence of an individually

rational e�cient allocation (X̄ 0i)mi=1 for RAA utilities. Let us show that it is B-

weakly e�cient. Suppose not. Then there exists (X 0i)mi=1 attainable such that

E⇡(ui(X 0i)) > E⇡(ui(X̄i)) for all i and ⇡ 2 P i but then VEi(X 0i) > VEi(X̄i) for

all i contradicting the e�ciency of (X̄ 0i)mi=1 for RAA utilities. Therefore (X̄ 0i)mi=1

is a B-individually rational weakly e�cient allocation, hence a B-individually

rational e�cient allocation.

Let us next show that 4 implies 2. Let (X̄i)mi=1 be a B-e�cient allocation.

Suppose that there exists a feasible trade W

1
, . . . ,W

m with W

i 2 R

i for all i

and W

i 6= 0 for some i. We then have E⇡(ui(X̄i + tW

i)) � E⇡(ui(X̄i)), for all

⇡ 2 P i for all i and as u

i is strictly concave, E⇡(ui(X̄i + tW

i)) > E⇡(ui(X̄i))

for all i such that W

i 6= 0 and ⇡ 2 P i. The allocation (X̄i + tW

i)i2I being

feasible, this contradicts the B-e�ciency of (X̄i)mi=1. Hence 1-4 are equivalent.

Finally let us show that 1 is equivalent to 5. Let us first remark that if (X⇤
, p

⇤)

is an equilibrium with inertia, then p

⇤ is a no arbitrage price. Indeed as u

i

is strictly concave, if W

i is useful and W

i 6= 0, then E⇡(ui(X⇤i + tW

i)) >

E⇡(ui(X⇤i)), 8 ⇡ 2 P i, hence p⇤ ·W i
> 0. Hence if there exists an equilibrium,

there exists a no-arbitrage price and 5 implies 1. Conversely if 1 holds true,

then from Dana and Le Van [4], the economy with variational utilities (VEi)i2I
has an equilibrium (X⇤

, p

⇤). Let us show that (X⇤
, p

⇤) is a weak B-equilibrium

with inertia. Indeed if E⇡(ui(Xi)) > E⇡(ui(X⇤i)), 8 ⇡ 2 P i, then VEi(X) >

VEi(X⇤i), hence p

⇤ · X i
> p

⇤ · X⇤i. Furthermore as the family of utilities

(VEi)i2I is strictly concave, if X

⇤i 6= E

i, then VEi(X⇤i) > VEi(Ei), hence

X

⇤i �i
E

i proving that (X⇤
, p

⇤) is a weak Bewley equilibrium with inertia,

hence a Bewley equilibrium with inertia.

Remark 1 When stating theorem 1, we have assumed that all agents had Be-

wley’s incomplete preferences. From Dana and Le Van [4], we could have as-

sumed that all agents had Gilboa-Schmeidler’s utilities. A more general result

is true : agent i may either have a Bewley’s incomplete preference or a Gilboa-

Schmeidler’s utility or an RAA utility with any reference point with utility index

u

i and sets of priors P i or any utility with useful vectors R

i. Indeed if agent i

has a Bewley’s incomplete preference, one can consider the fictitious agent with

an RAA utility with reference point Ei, utility index u

i and priors P i. From

Dana and Le Van [4], we obtain the existence of an equilibrium for the ficti-

8
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tious economy. As in the proof of 1 implies 4, any equilibrium of the fictitious

economy is an equilibrium of the original economy.

Remark 2 The strict concavity of the utility functions plays an important

and subtle role. First, for most purposes, when X � Y , we may assume

that E⇡(u(X)) > E⇡(u(Y )), 8 ⇡ 2 P. Second, strict concavity is used to

prove the equivalence between weak B-equilibrium and B-equilibrium and weak

B-e�ciency and B-e�ciency. Third, as u is strictly concave, for any useful

vector W 6= 0 and any ⇡ 2 P , the map t ! E⇡(u(X + tW )) is strictly in-

creasing. In theorem 1, this is used in 4 implies 2 and in the assertion that an

equilibrium price is a no-arbitrage price.

Remark 3 In our model an e�cient allocation exists i↵ \
i
int e

P

i 6= ; while

a given attainable allocation (Xi)mi=1 is e�cient i↵ the sets of risk-adjusted

probabilities e
P

i(Xi) at X

i
, i = 1, . . . ,m intersect (see Rigotti and Shannon

[15]).

3 An abstract economy with incomplete preferences

3.1 The economy

Many agents in financial markets are not single individuals but groups of indi-

viduals. We learn from social choice that it is not possible to assign a complete

preference satisfying reasonable assumptions to a group of individuals. A nat-

ural way to resolve this paradox is to allow for the possibility of incomplete

preferences. In this section, we assume that each agent has a set of utilities,

one for each member of the group. Two goods may be compared by the agent

only if there is unanimity in the group on the choice.

More precisely, we consider an economy with m agents and d goods. Agent i

has consumption space IRd, endowment Ei 2 IRd and incomplete (or complete)

convex preferences over IRd, defined by a family U i : IRd ! IR of concave utility

functions : X

i 2 IRd is preferred to Y

i 2 IRd by agent i, denoted X

i ⌫i
Y

i if

ui(Xi) � ui(Y i) for every ui 2 U i. The associated strict preference is X �i
Y

if X ⌫i
Y and u

i(X) > u

i(Y ) for some u

i 2 U i. Let E =
Pm

i=1E
i be the

aggregate endowment.

We assume that for every i, the utilities in U i are everywhere finite, con-

cave, and there is a topology on U i which makes it compact and such that the

evaluation map u 2 U i 7! u(X) is continuous for every X 2 IRd. We assume

that u(0) = 0 for all u 2 U i and all i. Let us give two examples of such families.

9
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For notational simplicity, we drop the subscript i.

Example 1

Let T be a compact subset of IRp which can be interpreted as a subset of pa-

rameters and U = {u : IRd ⇥ IRp ! IR}, u continuous on IRd ⇥ T and u(., t)

concave for every t 2 T .

Example 2

U is a set of concave functions IRd ! IR, closed for the topology of uniform

convergence on compact subsets and uniformly bounded on each ball of IRd. U
is then kR Lipschitz on the ball of radius R for some constant kR which depends

on the radius. From Ascoli’s theorem, U is then compact for the topology of

uniform convergence on comp2act subsets.

An allocation (X i)i2I 2 IRdm is feasible if
P

iX
i = E. The set of individu-

ally rational attainable allocations A((Ei)mi=1) is defined as in 2.3

3.2 Arbitrage concepts

We briefly redefine for abstract incomplete preferences, the concepts which were

defined in section 2.2. Let

c
P

i(X) = {Y 2 Rk | u(Y ) � u(X), 8 u 2 U i} = \u2U i{Y 2 Rk | u(Y ) � u(X)}

be the preferred set at X by i and R

i(X) be its asymptotic cone. As the utilities

u 2 U i are concave, Ri(X)

is independent of X and denoted R

i. It is called the set of useful vectors

for ⌫i. From Rockafellar’s [16] corollary 8.3.3,

R

i = {W 2 IRd | u(�W ) � 0, 8 � 2 IR+, u 2 U i }.

As discussed in the previous section, for any C 2 IRd, R

i is also the set of

useful vectors for any complete preference represented by a utility of the form

VEi(X) = minu2U i [u(X) � u(Ei)]. Note that this utility is well defined under

our assumptions.

A price vector p 2 Rd is a ” no-arbitrage price” for agent i if p · W > 0,

for all W 2 R

i\{0}. Let S

i denote the set of no-arbitrage prices for i. Then

S

i = �int(Ri)0 (where (Ri)0 = {p 2 Rd | p · X  0, for all X 2 R

i}). A

price vector p 2 Rk is a ” no-arbitrage price” for the economy if it is a no-

arbitrage price for each agent. A price vector p 2 Rk is a no-arbitrage price for

the economy if and only if p 2 \iS
i = �\iint(Ri)0.
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An m�tuple (W 1
, . . . ,W

m) 2 Rdm is a feasible trade if
P

iW
i = 0.

A trade W 2 Rd\{0} is a half-line for a utility u : Rd ! R if there exists X 2 Rd

such that u(X + �W ) = u(X) for all � � 0. As u is concave, when it has no

half-line, then u(X + �W ) > u(X) for every X 2 Rd and � > 0 and W 6= 0.

3.3 E�ciency and equilibrium concepts

Definition 5 1. A feasible allocation (Xi)mi=1 is e�cient if there does not

exist (X 0i)mi=1 feasible such that X 0i ⌫i
X

i for all i with a strict inequality

for some i. It is weakly e�cient if there does not exist (X 0i)mi=1 feasible

such that u

i(X 0i) > u

i(Xi), 8 ui 2 U i
, 8 i. It is individually rational

(weakly) e�cient if it is (weakly) e�cient and X

i ⌫i
E

i for all i.

2. A pair (X⇤
, p

⇤) 2 A((Ei)mi=1) ⇥ IRd\{0} is an (weak) equilibrium with

inertia if

(a) for any i and X

i 2 IRd, X

i �i
X

⇤i (ui(Xi) > u

i(X⇤i) for every

u

i 2 U i) implies p

⇤ ·Xi
> p

⇤ ·X⇤i,

(b) for any i, p

⇤ ·X⇤i = p

⇤ · Ei.

A common increasing direction is a trade e 2 IRd such that e · p > 0 for every

(X,u) 2 IRd ⇥ U i
, p 2 @u(X) and every i. When e is a common increasing

direction, u(X�te) < u(X), u(X+te) > u(X) for every t � 0, X 2 IRd
, u 2 U i

and i.

Lemma 4 Let u be strictly concave for every u 2 U i and i.

1. A pair (X⇤
, p

⇤) 2 A((Ei)mi=1) ⇥ IRd\{0} is an equilibrium with inertia if

and only if it is a weak equilibrium with inertia

2. If agents have a common increasing direction, then an attainable alloca-

tion (X i)mi=1 is e�cient if and only if it is weakly e�cient.

Proof : The proof of the first assertion is omitted. To prove the second, clearly,

if (Xi)mi=1 is e�cient, it is weakly e�cient. Let us show that weak e�ciency

implies e�ciency. Assume that (Xi)mi=1 is a weakly e�cient allocation and that

it is not e�cient. W.l.o.g. assume that there exists a feasible allocation (Y i)mi=1

such that Y

1 �1
X

1 and Y

i ⌫i
X

i
, i 6= 1. By considering (Y 1+X1)

2 instead of

Y

1, we may assume that u(Y 1) > u(X1), 8 u 2 U1. For a given " > 0, let

V" =
�
u 2 U1 | u(Y 1 � e") > u(X1)

 

V" is open, since the evaluation maps are continuous. Let us show that ["V" =

U1. Let u 2 U1. Since u is continuous, there exists "u such that u(Y 1 � e") >

11
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u(X1) for every "  "u. Hence ["V" = U1. As U1 is compact, there exists a

finite subcovering of U1 by (V"i). Let " = mini "i and "

0 = "
m�1 . We then have

Y

1 � e" �1
X

1 and Y

i + e"

0 �i
X

i
, i 6= 1

contradicting the weak e�ciency of X.

Remark 4 It is easy to verify that if (X⇤
, p

⇤) is a weak equilibrium with iner-

tia, then X

⇤ is weakly e�cient and that, if agents have a common increasing

direction and (X⇤
, p

⇤) is an equilibrium with inertia, then X

⇤ is e�cient. In

other words, the first welfare theorem holds true and is straightforward. Carlier

and Dana [3] provide general conditions on the families of utilities under which

a weakly e�cient allocation is a weak equilibrium with transfer. Hence a weak

form of the second welfare theorem holds true. Under these conditions, when

the utilities are strictly concave and have a common increasing direction (as it

is the case in the Bewley model of section 2), weak equilibria with inertia co-

incide with equilibria with inertia, weakly e�cient allocations are e�cient and

any e�cient allocation is an equilibrium with transfer.

3.4 Existence results

Proposition 1 The following assertions are equivalent:

1. there exists a no-arbitrage price for the economy (\
i
int (Ri)0 6= ;),

2. NUBA:
P

iW
i = 0 and W

i 2 R

i for all i implies W

i = 0 for all i,

3. the set of individually rational attainable allocations is compact.

Proof : As the set of useful vectors of ⌫i and VEi coincide and the set of

individually rational attainable allocations for the economy with utilities (VEi)i
coincides with the set of individually rational attainable allocations for the

economy with preferences (⌫i)i2I , the equivalence between 1, 2 and 3 follows

from standard results on arbitrage with complete preferences.

Theorem 2 Let any assertion of Proposition 1 hold true.Then

1. there exists an individually rational weakly e�cient allocation,

2. there exists a weak equilibrium with inertia.

Proof : It is also standard that any assertion of Proposition 1 implies the exis-

tence of an individually rational e�cient allocation (X̄ i)mi=1 or of an equilibrium

12
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(X⇤
, p

⇤) for the economy with utilities (VEi)i. By the same proofs as in theorem

1, (X̄i)mi=1 is an individually rational weakly e�cient allocation for the economy

with preferences (⌫i)i and (X⇤
, p

⇤) is a weak equilibrium with inertia.

Theorem 3 1. If u has no half-line for every u 2 U i and i, then the as-

sertions of Proposition 1 and Theorem 2 are equivalent and any weak

equilibrium price is a no-arbitrage price.

2. If u is strictly concave for every u 2 U i and i, then

(a) the assertions of Proposition 1 and Theorem 2 are equivalent to the

existence of an equilibrium

(b) If furthermore, agents have a common increasing direction, then the

assertions of Proposition 1 and of Theorem 2 are equivalent to the

existence of an individually rational e�cient allocation.

Proof : Let us first remark that if u has no half-line for every u 2 U i and i, any

weak equilibrium price is a no-arbitrage price. Indeed let (X⇤
, p

⇤) be a weak

equilibrium with inertia. Then for any useful vector W i 6= 0, u(X⇤i + tW

i) >

u(X⇤i), 8 u 2 U i, for any t > 0. Hence p

⇤ ·W i
> 0 which proves that p

⇤ is a

no-arbitrage price for the economy. This shows that assertion 2 of Theorem 2

implies assertion 1 of Proposition 1.

As mentioned in remark 4, it is easy to verify that a weak equilibrium with

inertia is weakly e�cient. Hence assertion 2 of Theorem 2 implies assertion 1

of 2. To complete the proof that the assertions of Proposition 1 and Theorem 2

are equivalent, let us show that assertion 1 of Theorem 2 implies assertion 2 of

Proposition 1. Let (X̄ i)mi=1 be an individually rational weakly e�cient alloca-

tion and suppose that there exists a feasible trade W

1
, . . . ,W

m with W

i 2 R

i

for all i and W

i 6= 0 for some i. We have u(X̄ i+tW

i) � u(X̄i), 8 u 2 U i, for all

i, and u(X̄ i + tW

i) > u(X̄i), 8u 2 U i, for any i such that W i 6= 0. The alloca-

tion (X̄ i+tW

i)i2I being feasible, this contradicts the weak e�ciency of (X̄i)mi=1.

Finally, if u is strictly concave, then u has no half-line, hence the assertions of

Proposition 1 and Theorem 2 are equivalent. From lemma 4, any weak equilib-

rium with inertia is an equilibrium with inertia. If furthermore, agents have a

common increasing direction, from lemma 4, any weakly e�cient allocation is

e�cient .

13
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