F. Alvarez, A. Atkeson, and P. J. Kehoe, If Exchange Rates Are Random Walks, Then Almost Everything We Say About Monetary Policy Is Wrong, American Economic Review, vol.97, issue.2, pp.339-345, 2007.
DOI : 10.1257/aer.97.2.339

C. Amat, T. Michalski, and G. Stoltz, Data set associated with the article " Fundamentals and exchange rate forecastability with simple machine learning methods, 2018.

C. Amat, T. Michalski, and G. Stoltz, Fundamentals and exchange rate forecastability with simple machine learning methods. Supplementary material. URL https, 2018.
URL : https://hal.archives-ouvertes.fr/halshs-01003914

P. Auer, N. Cesa-bianchi, and C. Gentile, Adaptive and Self-Confident On-Line Learning Algorithms, Journal of Computer and System Sciences, vol.64, issue.1, pp.48-75, 2002.
DOI : 10.1006/jcss.2001.1795

URL : https://doi.org/10.1006/jcss.2001.1795

K. S. Azoury and M. Warmuth, Relative loss bounds for on-line density estimation with the exponential family of distributions, Machine Learning, vol.43, issue.3, pp.211-246, 2001.
DOI : 10.1023/A:1010896012157

P. Bacchetta and E. Van-wincoop, A Scapegoat Model of Exchange-Rate Fluctuations, American Economic Review, vol.94, issue.2, pp.114-118, 2004.
DOI : 10.1257/0002828041301849

URL : https://www.econstor.eu/bitstream/10419/128024/1/wp-0401.pdf

P. Bacchetta, E. Van-wincoop, and T. Beutler, Can Parameter Instability Explain the Meese???Rogoff Puzzle?, NBER International Seminar on Macroeconomics, vol.6, issue.1, pp.125-173, 2009.
DOI : 10.1086/648702

URL : http://www.nber.org/%7Econfer/2009/ISOM09/wincoop.pdf

P. Bajari, D. Nekipelov, S. P. Ryan, and M. Yang, Demand estimation with machine learning and model combination, 2015.
DOI : 10.3386/w20955

URL : https://doi.org/10.3386/w20955

V. Cerra and S. C. Saxena, The monetary model strikes back: Evidence from the world, Journal of International Economics, vol.81, issue.2, pp.184-196, 2010.
DOI : 10.1016/j.jinteco.2010.03.003

URL : http://www.aeaweb.org/annual_mtg_papers/2008/2008_238.pdf

N. Cesa-bianchi, Analysis of Two Gradient-Based Algorithms for On-Line Regression, Journal of Computer and System Sciences, vol.59, issue.3, pp.392-411, 1999.
DOI : 10.1006/jcss.1999.1635

URL : http://homes.dsi.unimi.it/~cesabian/Pubblicazioni/jcss-99.pdf

N. Cesa-bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. Schapire et al., How to use expert advice, Journal of the ACM, vol.44, issue.3, pp.427-485, 1997.
DOI : 10.1145/258128.258179

Y. Cheung, M. D. Chinn, G. Pascual, and A. , Empirical exchange rate models of the nineties: Are any fit to survive?, Journal of International Money and Finance, vol.24, issue.7, pp.1150-1175, 2005.
DOI : 10.1016/j.jimonfin.2005.08.002

URL : http://econ.ucsc.edu/faculty/cheung/fxforecast.pdf

R. H. Clarida, L. Sarno, M. P. Taylor, and G. Valente, The out-of-sample success of term structure models as exchange rate predictors: a step beyond, Journal of International Economics, vol.60, issue.1, pp.61-83, 2003.
DOI : 10.1016/S0022-1996(02)00059-4

T. E. Clark and K. D. West, Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis, Journal of Econometrics, vol.135, issue.1-2, pp.155-186, 2006.
DOI : 10.1016/j.jeconom.2005.07.014

URL : http://www.ssc.wisc.edu/~kwest/workingpapers/west.kd.using.out.of.sample.mspes.to.test.the.md.hypothesis.pdf

T. E. Clark and K. D. West, Approximately normal tests for equal predictive accuracy in nested models, Journal of Econometrics, vol.138, issue.1, pp.291-311, 2007.
DOI : 10.1016/j.jeconom.2006.05.023

D. Bianco, M. Camacho, M. Perez-quiros, and G. , Short-run forecasting of the euro-dollar exchange rate with economic fundamentals, Journal of International Money and Finance, vol.31, issue.2, pp.377-396, 2012.
DOI : 10.1016/j.jimonfin.2011.11.018

E. Debry and V. Mallet, Ensemble forecasting with machine learning algorithms for ozone, nitrogen??dioxide and PM10 on the Prev'Air platform, Atmospheric Environment, vol.91, pp.71-84, 2014.
DOI : 10.1016/j.atmosenv.2014.03.049

URL : https://hal.archives-ouvertes.fr/hal-01066960

D. Corte, P. Sarno, L. Sestieri, and G. , The Predictive Information Content of External Imbalances for Exchange Rate Returns: How Much Is It Worth?, Review of Economics and Statistics, vol.85, issue.1, pp.100-115, 2012.
DOI : 10.1016/0022-1996(93)90003-G

D. Corte, P. Sarno, L. Tsiakas, and I. , An Economic Evaluation of Empirical Exchange Rate Models, Review of Financial Studies, vol.85, issue.9, pp.3491-3530, 2009.
DOI : 10.1016/0022-1996(93)90003-G

D. Corte, P. Sarno, L. Tsiakas, and I. , Spot and forward volatility in foreign exchange, Journal of Financial Economics, vol.100, issue.3, pp.496-513, 2011.
DOI : 10.1016/j.jfineco.2011.01.007

D. Corte, P. Tsiakas, and I. , Statistical and economic methods for evaluating exchange rate predictability, Handbook of Exchange Rates. Wiley, pp.221-263, 2012.

M. Devaine, P. Gaillard, Y. Goude, and G. Stoltz, Forecasting electricity consumption by aggregating specialized experts, Machine Learning, vol.59, issue.5, pp.231-260, 2013.
DOI : 10.1007/s10994-005-0465-4

URL : https://hal.archives-ouvertes.fr/hal-00484940

F. X. Diebold, Comparing predictive accuracy, twenty years later: a personal perspective on the use and abuse of Diebold-Mariano tests, 2012.

F. X. Diebold and R. S. Mariano, Comparing predictive accuracy, Journal of Business and Economic Statistics, vol.13, issue.3, pp.253-263, 1995.
DOI : 10.3386/t0169

URL : http://www.ssc.upenn.edu/~fdiebold/papers/paper68/pa.dm.pdf

C. Engel, Can the Markov switching model forecast exchange rates?, Journal of International Economics, vol.36, issue.1-2, pp.151-165, 1994.
DOI : 10.1016/0022-1996(94)90062-0

URL : https://doi.org/10.3386/w4210

C. Engel and K. D. West, Exchange Rates and Fundamentals, Journal of Political Economy, vol.113, issue.3, pp.485-517, 2005.
DOI : 10.1086/429137

C. Engel and K. D. West, Taylor Rules and the Deutschmark-Dollar Real Exchange Rate, Journal of Money, Credit, and Banking, vol.38, issue.5, pp.1175-1194, 2006.
DOI : 10.1353/mcb.2006.0070

URL : https://doi.org/10.3386/w10995

M. Fratzscher, D. Rime, L. Sarno, and G. Zinna, The scapegoat theory of exchange rates: the first tests, Journal of Monetary Economics, vol.70, pp.1-21, 2015.
DOI : 10.1016/j.jmoneco.2014.09.001

URL : http://www.ecb.int/pub/pdf/scpwps/ecbwp1418.pdf

P. Gaillard and Y. Goude, Forecasting Electricity Consumption by Aggregating Experts; How to Design a Good Set of Experts, Modeling and Stochastic Learning for Forecasting in High Dimension. Lecture Notes in Statistics, 2015.
DOI : 10.1007/978-3-319-18732-7_6

S. Gerchinovitz, Prediction of individual sequences and prediction in the statistical framework: some links around sparse regression and aggregation techniques, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00653550

R. Giacomini and B. Rossi, Forecast comparisons in unstable environments, Journal of Applied Econometrics, vol.64, issue.1, pp.595-620, 2010.
DOI : 10.2307/2171956

URL : http://www.econ.duke.edu/~brossi/GiacominiRossi08.pdf

P. Gourinchas and H. Rey, International Financial Adjustment, Journal of Political Economy, vol.115, issue.4, pp.665-703, 2007.
DOI : 10.1086/521966

URL : http://www.gsb.stanford.edu/facseminars/pdfs/Rey_International_Financial.pdf

R. Greenaway-mcgrevy, N. C. Mark, D. Sul, and J. Wu, Exchange rates as exchange rate common factors, 2012.

A. E. Hoerl and R. W. Kennard, Ridge Regression: Biased Estimation for Nonorthogonal Problems, Technometrics, vol.24, issue.1, pp.55-67, 1970.
DOI : 10.2307/1909769

O. Ince, Forecasting exchange rates out-of-sample with panel methods and real-time data, Journal of International Money and Finance, vol.43, pp.1-18, 2014.
DOI : 10.1016/j.jimonfin.2013.12.004

J. Li, I. Tsiakas, and W. Wang, Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?, Journal of Financial Econometrics, vol.67, issue.4, pp.293-341, 2015.
DOI : 10.1111/j.1467-9868.2005.00503.x

URL : https://academic.oup.com/jfec/article-pdf/13/2/293/2833459/nbu007.pdf

N. Littlestone and M. Warmuth, The Weighted Majority Algorithm, Information and Computation, vol.108, issue.2, pp.212-261, 1994.
DOI : 10.1006/inco.1994.1009

V. Mallet, Ensemble forecast of analyses: Coupling data assimilation and sequential aggregation, Journal of Geophysical Research: Atmospheres, vol.113, issue.D22, p.24303, 2010.
DOI : 10.1029/2008JD009991

URL : https://hal.archives-ouvertes.fr/inria-00547903

V. Mallet, B. Mauricette, and G. Stoltz, Description of sequential aggregation methods and their performances for ozone ensemble forecasting, 2007.
DOI : 10.1002/jgrd.50751

URL : http://onlinelibrary.wiley.com/doi/10.1002/jgrd.50751/pdf

N. C. Mark, Exchange rates and fundamentals: Evidence on long-horizon predictability, American Economic Review, vol.85, pp.201-218, 1995.

N. C. Mark and D. Sul, Nominal Exchange Rates and Monetary Fundamentals: Evidence from a Small Post-Bretton Woods Panel, SSRN Electronic Journal, vol.53, pp.29-52, 2001.
DOI : 10.2139/ssrn.146188

URL : http://economics.sbs.ohio-state.edu/pdf/mark/coint.pdf

B. Mauricette, V. Mallet, and G. Stoltz, Ozone ensemble forecast with machine learning algorithms, Journal of Geophysical Research, vol.114, p.5307, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00565770

R. A. Meese and K. Rogoff, Empirical exchange rate models of the seventies, Journal of International Economics, vol.14, issue.1-2, pp.3-24, 1983.
DOI : 10.1016/0022-1996(83)90017-X

T. Molodtsova, A. Nikolsko-rzhevskyy, and D. H. Papell, Taylor rules with real-time data: A tale of two countries and one exchange rate, Journal of Monetary Economics, vol.55, pp.63-79, 2008.
DOI : 10.1016/j.jmoneco.2008.07.003

URL : http://www.uh.edu/~dpapell/Taylor Real Time.pdf

T. Molodtsova, A. Nikolsko-rzhevskyy, and D. H. Papell, Taylor Rules and the Euro, Journal of Money, Credit and Banking, vol.43, pp.2-3, 2011.

T. Molodtsova and D. H. Papell, Out-of-sample exchange rate predictability with Taylor rule fundamentals, Journal of International Economics, vol.77, issue.2, pp.167-180, 2009.
DOI : 10.1016/j.jinteco.2008.11.001

V. Plakandaras, T. Papadimitriou, and P. Gogas, Forecasting Daily and Monthly Exchange Rates with Machine Learning Techniques, Journal of Forecasting, vol.4, issue.38, pp.560-573, 2015.
DOI : 10.1073/pnas.0701020104

D. E. Rapach and M. E. Wohar, Testing the monetary model of exchange rate determination: new evidence from a century of data, Journal of International Economics, vol.58, issue.2, pp.359-385, 2002.
DOI : 10.1016/S0022-1996(01)00170-2

M. Ravn and H. Uhlig, On Adjusting the Hodrick-Prescott Filter for the Frequency of Observations, Review of Economics and Statistics, vol.14, issue.4, pp.371-375, 2002.
DOI : 10.1002/jae.3950090507

K. S. Rogoff and V. Stavrakeva, The continuing puzzle of short horizon exchange rate forecasting. Working Paper 14071, National Bureau of Economic Research, 2008.
DOI : 10.3386/w14071

URL : https://doi.org/10.3386/w14071

B. Rossi, ARE EXCHANGE RATES REALLY RANDOM WALKS? SOME EVIDENCE ROBUST TO PARAMETER INSTABILITY, Macroeconomic Dynamics, vol.84, issue.01, pp.20-38, 2006.
DOI : 10.1016/0022-1996(94)90062-0

B. Rossi, Exchange Rate Predictability, Journal of Economic Literature, vol.51, issue.4, pp.1063-1119, 2013.
DOI : 10.1257/jel.51.4.1063

B. Rossi and A. Inoue, Out-of-Sample Forecast Tests Robust to the Choice of Window Size, Journal of Business & Economic Statistics, vol.4, issue.1, pp.432-453, 2012.
DOI : 10.1017/S0266466600012032

G. J. Schinasi and P. A. Swamy, The out-of-sample forecasting performance of exchange rate models when coefficients are allowed to change, Journal of International Money and Finance, vol.8, issue.3, pp.375-390, 1989.
DOI : 10.1016/0261-5606(89)90004-1

G. Stoltz, Agrégation séquentielle de prédicteurs : méthodologie générale et applicationsàplicationsà la prévision de la qualité de l'air etàetà celle de la consommationélectriqueconsommationélectrique, Journal de la Société Française de Statistique, vol.151, issue.2, pp.66-106, 2010.

V. Vovk, AGGREGATING STRATEGIES, Proceedings of the Third Annual Workshop on Computational Learning Theory (COLT), pp.372-383, 1990.
DOI : 10.1016/B978-1-55860-146-8.50032-1

V. Vovk, Competitive On-line Statistics, International Statistical Review, vol.20, issue.2, pp.213-248, 2001.
DOI : 10.1093/comjnl/11.2.185

URL : http://www.vovk.net/df/cols.pdf

K. D. West, Asymptotic Inference about Predictive Ability, Econometrica, vol.64, issue.5, pp.1067-1084, 1996.
DOI : 10.2307/2171956

K. D. West, Forecast evaluation, Handbook of Economic Forecasting, pp.99-134, 2006.

K. D. West, H. J. Edison, and C. Dongchul, A utility-based comparison of some models of exchange rate volatility, Journal of International Economics, vol.35, issue.1-2, pp.23-45, 1993.
DOI : 10.1016/0022-1996(93)90003-G

J. H. Wright, Bayesian Model Averaging and exchange rate forecasts, Journal of Econometrics, vol.146, issue.2, pp.329-341, 2008.
DOI : 10.1016/j.jeconom.2008.08.012

URL : http://www.federalreserve.gov/pubs/ifdp/2003/779/ifdp779.pdf