Fundamentals and exchange rate forecastability with simple machine learning methods

Abstract : Using methods from machine learning we show that fundamentals from simple exchange rate models (PPP or UIRP) or Taylor-rule based models lead to improved exchange rate forecasts for major currencies over the floating period era 1973--2014 at a 1-month forecast horizon which beat the no-change forecast. Fundamentals thus contain useful information and exchange rates are forecastable even for short horizons. Such conclusions cannot be obtained when using rolling or recursive OLS regressions as used in the literature. The methods we use -- sequential ridge regression and the exponentially weighted average strategy, both with discount factors -- do not estimate an underlying model but combine the fundamentals to directly output forecasts.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [61 références]  Voir  Masquer  Télécharger

https://halshs.archives-ouvertes.fr/halshs-01003914
Contributeur : Gilles Stoltz <>
Soumis le : lundi 28 mai 2018 - 21:30:26
Dernière modification le : jeudi 31 mai 2018 - 01:11:41
Document(s) archivé(s) le : mercredi 29 août 2018 - 15:37:37

Fichier

JIMF-D-17-000207_R2_v9 (1).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : halshs-01003914, version 6

Collections

Citation

Christophe Amat, Tomasz Michalski, Gilles Stoltz. Fundamentals and exchange rate forecastability with simple machine learning methods. 2018. 〈halshs-01003914v6〉

Partager

Métriques

Consultations de la notice

92

Téléchargements de fichiers

265