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1 Introduction

The main goal of financial markets is to guarantee an optimal transfer of resources from supply
to demand. This aim can be attained only if exchanges do actually occur in a considered period, i.e.
the market is liquid. Amihud et al. (2005) write that "liquidity is a complex concept. Stated simply,
liquidity is the ease of trading a security ". Hence liquidity is a property of the system, which cannot be
attained by just one agent with not enough influence on the market to create a context of easy trade.
It is, however, an important feature which assures the functioning of the financial market through the
behavior of the agents. It impacts the price, the volatility, and the amount of quoted orders.

During the last crisis, there was no way analysts could anticipate the liquidity and price falls that
took place. And, to the best of our knowledge, there is no known mean to impact on the market
liquidity and we are just faced with ex post observations and attempts to understand the data. As
an example: Air France -KLM was valued under 5e on the CAC40, even if a consensus of analysts
estimates that the book value was at least 6 times higher. However, nobody wanted to hold this asset
so it was undervalued from the start! This is neither predictable nor rational. Actually, it has been
shown that agent’s behavior is drastically driven by asset exposure to liquidity risk (Amihud, 2002).
For example, a fly to quality is observed, traders prefer to hold less risky and more liquid assets even
if their returns is lower. Liquidity is studied by micro structure theory, but it is usually taken as an
exogenous parameter which influences the agents’ behaviors. However, it has been little studied in
agent-based computational economics, where it could be endogeneized as the emerging result of actual
transactions, then taken into account by the agents.

The contribution of agent based economics is to produce models that integrate agents’ bounded
rationality, as well as their heterogeneity in terms of information and cognition. Several authors have
already proven that this assumption of heterogeneity is necessary to reproduce, with models, dynamics
of actual behaviors (like experimental data) (Bao et al., 2012).

The main goal of this paper is to focus on heterogeneous knowledge about fundamentals and it
impact on liquidity dynamics in a financial market. We build an agent-based model, for which we
make choices to produce the modeling structure and the rationality of agents. The comparison among
different simulations show that the information that is available to different agents has an impact
on price dynamics and market liquidity. Different stylized facts are thus produced. The introduction
of an idiosyncratic perceived fundamental value enables to identify different bubble types: some that
can be attributed to anchoring (Lord et al., 1979; Westerhoff, 2004), and some that are generated by
chartists behavior, based on trend extrapolation (Hommes, 2006). As seen in other models (Giardina
and Bouchaud, 2003; Hommes et al., 2005; Lux and Marchesi, 1998), we observe a destabilization
power of chartists. We also witness the stabilization impact of the anchor on the price variance, since
the trading price evolves more slowly than in the case of perfect knowledge of fundamentals. Finally,
we test the agent’s aggressiveness (Parlour, 1998) on the price efficiency. As expected, if agents take
into account the market liquidity as a parameter of price valuation, we observe a rise in liquidity and a
fall in efficiency. It would be possible to evaluate, with this mean, the price of liquidity in the system,
but at this stage, we do not perform econometric tests, just observe stylized facts.

This paper is organized as follows : Section 2 reports our model assumptions and their literature,
describes the functioning of the model in English. Section 3 discusses results and Section 4 concludes.

2 Model and results

2.1 Choosing a suitable model to study liquidity

The field of microstructure focuses on the concept of liquidity, impact of traders type or information
revealed. Without doubt, one of the most studied is the Kyle model (Kyle, 1985) where the author
focuses on the optimal behavior of discretionary traders and their effect on patterns of trade. An
other example is Grossman and Miller (1988), who point out the importance of liquidity for behavior,
prices and the viability of the market. In their paper, they study how agents submit orders in more
or less liquid market so as to avoid disclosing their private information. Chu et al. (2009) highlight a
strong preference of investors for liquid assets amid heightened price volatility during the last financial
crisis. In their study, extended asset guarantee is a way to improve asset liquidity. The liquidity theory
predicts that the level of liquidity and liquidity risk are priced (Amihud et al., 2005; Karolyi et al.,
2012). Empirical studies find the effect of liquidity on asset prices to be statistically significant and
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economically important, controlling for traditional risk measures and asset characteristics. This result
could be generated by high transaction cost, demand pressure and inventory risk or private information.

The branch of finance in ABM aims at replicating some market stylized facts. The most famous
example is the Santa Fe Institute (SFI) market (LeBaron, 2002), the first agent-based financial market
platform, which was used to study the impact of agent interactions and group learning dynamics
in a financial setting. It is made of learning agents who trade two assets, a risky and a non risky
one. The asset price is defined under a simple market clearing mechanism. Indeed, starting from
the evidence that agents are boundly rational, Chiarella et al. (2013) point out the importance of
learning (which they model using genetic algorithms) to capture many realistic features of limit order
markets. In an other context, Lux and Marchesi (1998) model the agent’s mood (optimist or pessimist
feeling) to reproduce bubbles. An interesting stylized fact of this paper is that bubbles grow and burst
exogeneously and cyclically. Hommes et al. (2005) highlight that with adaptive agents, the fundamental
steady state becomes unstable and multiple steady states may arise. Pouget (2000), in her paper
on market efficiency, highlights that agents type, investor’s market power and motivation drive the
main market price oscillations. For her, the time horizon of each investor is the main explanation to
inefficiency in markets.

These already quite complex results rely on market dynamics where agents are assumed to have
perfect knowledge of the fundamental and a special agent, the market maker, deals with market liq-
uidity; most of the time there are only two assets, one risky and one non risky. We build our model
relaxing these three assumptions, which are usually not abandoned all at once.

First, we relax the strong assumption of perfect knowledge of the fundamentals. According to the
works of Tversky and Kahneman (1974) on agent’s decision in unexpected context, traders are reluctant
to change their beliefs and keep an influence of original belief for long. They process information with
misunderstanding and update their expectation very slowly, while using the market as a source of new
information. Fundamental value, hence, is neither unique nor exogenous to the market (Orléan, 2011).
We use this idea to build a learning model that is adapted to heterogeneous initial beliefs of agents.

For practical advantage and mathematical simplicity, the market maker is usually used as market
structure. Lux (1995), Iori (2002), Hommes et al. (2005) or Harras and Sornette (2011) have developed
the same kind of market maker to provide liquidity. Hommes et al. (2005) argue "an advantage of
the simple price adjustment rule is that the model remains analytically tractable". Beja and Goldman
(1980) invoke a market maker mechanism in order to justify sluggish Walrassian price adjustment.
Howewer, Foucault et al. (2005) has written that "a trader who monitors the market and occasionally
competes with the patient traders by submitting limit orders, can significantly alter the equilibrium.
His intervention forces patient traders to submit aggressive limit orders and hence narrows the spreads.
This feature may provide important guidance for market design". LeBaron (2006) writes in his survey
that the most realistic mechanism to replicate a financial market in ABM would be to use an order
book. In this market structure, there is no counter part as market maker who impacts on the market
price or provides liquidity. The liquidity is endogenous to the model, generated only by the execution of
quoted orders. While working on liquidity, we decided to produce a more demanding model structure,
and hence run an order book.

The model we base our market upon is Yamamoto’s model (2011), which we extend by adding a
second risky asset. The reason to use two risky and one non-risky assets to deal with liquidity can
be explained : if one risky asset only is modeled, in case of a shock on this asset, all risk averse
traders leave the market to invest in the risk free one. In a multi-risky assets, traders reallocate their
portfolio without leaving the market, which as a result does not become illiquid. An other advantage of
multi-assets markets is the possibility to manage the risk. According to the portfolio theory, the mean-
variance criteria highlights that it is possible to minimize the portfolio risk in case of multi-risky assets
(if cov < 1, the correlation coefficient between the assets). As Chowdry and Nanda (1991) state, multi
assets enable to study liquidity that is essential for both viability and dynamics of market. Finally, a
two risky assets model seems more realistic than a unique risky asset and can be extended to a n-risky
one. To the best of our knowledge, the main Agent-based Computational Economics (ACE) in finance
are build with a unique risky asset and a risk free. We can mentioned a paper from Westerhoff (2004)
and one from Chiarella et al. (2007) in which two risky assets are traded but with the intervention of
a specialist (the market maker).

As a summary, the novelty of our model stays in the aggregation of an order book structure where
two risky assets are traded and where fundamentalists don’t have access to the true fundamental value.
In the following subsections we describe the models we use to build upon as well as the choices we
specifically added to the structure and rationality of our agents.
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2.2 Market structure

Gode and Sunder (1993) has proven with their Zero-Intelligence traders that computational market
structure plays an important role in the market efficiency and price convergence. They argue that it
is very important to fix a structure once, to be able to compare while testing different elements of
rationality.

Domowitz (1993) has shown that in the early 90’s over thirty important financial markets in the
world had some of order-driven market features in their design. Whereas some markets were driven by
prices in the recent past (the NASDAQ until 2002), today, most stock exchanges operate on an order
book. The more realistic modeling choice is thus an order driven market. As said before, this market
structure is the most difficult to compute, but necessary when focusing on liquidity (LeBaron, 2006).

Our model is based on an order driven market where two stocks are traded. At any time t, an
agent is randomly chosen to enter the market or not. She can invest her wealth in the two risky assets
(Stocks) and in a risk free one (Bond). An order driven market is characterized by an order book
which contains the list of interested buyers and sellers. For each entry it keeps the number of shares
and the price that the buyers (sellers) are bidding (asking) for each asset and its limit execution date.
The submitted prices are not continuous, they are defined as a multiple of a "tick" size. Orders are
executed according to time submission and quoted price.

The market price is defined by a matching process between buy and sell orders quoted in the book.
When the best quoted buy order meets a counter part, an exchange occurs. The market price of the
asset is defined by the price at which this exchange is realized. If the best bid (or ask) meets no counter
part, no trade occurs. A mid point (bbestt +abestt )/2 is defined as market price. If (at least) a part of the
order book is empty, we assume that the new market price is equal to the previous one (pt = pt−1).
For order book examples, see the papers of Chiarella et al. (2009), Foucault et al. (2005), Tedeschi
et al. (2012) or Yamamoto (2011).

Note that bid, ask and market price need to be positive. Agents are heterogeneous in their initial
endowment. Traders’ portfolios differ by their weight affected to each component, the assets and bond.
In this model, agents are not allowed to engage in short selling and are not monetary constrained. For
simplicity no quoted orders can be modify or cancelled. Indeed, the trader who has submitted orders
has to wait for its execution or for its limit execution date before submit a new one. Finally, the risky
assets are assumed to be independent (cov = 0), and this fact is common knowledge.

In this context, the order type is decided according to the submission price and the bid-ask spread.
Agents face two types of orders : the market order (MO) and the limit order (LO). The first one enables
to exchange a defined quantity of assets very quickly, since agents agree to deal at any price. On the
opposite, the second one is characterized by an amount of assets and a limit execution price. The limit
order insures the trading price but not its execution. Here, a market order is chosen when the agent’s
bid (ask) is higher (lower) than the best quoted ask (bid). Otherwise, the agent submits at a limit
price. The type of order is a parameter that defines a simulation: it is set at the beginning and is used
as a functioning rule at each time-step.

When the length of the market order is larger than the best counter part, the remaining volume is
executed against other quoted limit orders. If there is not enough quoted counter part, the remaining
volume is executed as new orders are submitted. Hence, the order type influences greatly the market
liquidity. As an example, in the case of two limit orders, if the best bid is lower than the best ask,
no change occurs. The market stays illiquid until either a higher bid (lower ask) than the quoted ask
(bid) or a market order is submitted.

2.3 Trader’s model

We make several assumptions about our agents in the system, some that are very usual in ACE
financial models, and others that are related to our present issue regarding the impact of information
on liquidity and prices. Within a typology of agents that is rather usual, fundamentalists and chartists
who have different risk aversion, we add several features of bounded rationality that are relevant to
this type of modeling.
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2.3.1 Agents with types and risk-aversion

In 1980, Beja and Goldman highlight that agents types affect the quality of the price signal. In
general, modelers distinguish two (Chiarella et al., 2007; Jacob-Leal, 2012) or three (Chiarella et al.,
2009; Hommes, 2006) types of agents that are fundamentalists, chartists and noise traders.

Following the financial theory, the first ones trade in order to make the market converge to its
fundamental value and are considered as informed traders. They trade in order to minimize the gap
between the fundamental value and the trading price. Their goal is to bring money to the liquidity
demander and guarantee an optimal allocation of resources. They are assumed to be the most risk
averse agents and have long term investment horizons. According to this features, a pure fundamentalist
market should be efficient in the sense of Fama (trading price close to fundamental price - Fama, 1970).
Graphically, the trading price should oscillate strongly in a small path around its fundamental value. It
should look like a with noise. However, this market should be relatively less liquid than an heterogeneous
one (fundamentalists and chartists). Indeed, an efficient market populated by pure fundamentalists is
illiquid until a new information arise. In this paper the liquidity is measured by the volume of exchange.

At the opposite, chartists are describe as speculators and have a destabilizing impact. They try
to predict price evolution so as to surf on the bubbles and hence exploit the market trends to make
profit. As a consequence they revise their expectation frequently and prefer short time investments.
Chartists don’t care about fundamental changes. They increase the market depth thanks to their
short term horizon. A pure chartists market or an heterogeneous one should be more liquid but less
efficient. Graphically, the market price should oscillate around short trends that are independent of
the fundamental value. We also expect that the spread between fundamental price and trading price
is wider in the case of chartists (or heterogeneous) market than in the case of fundamentalists one.

The more a trader is risk averse, the less she trades. The longer the investment horizon, the longer
the agent holds her assets and hence the less she trades as well. Amihud and Mendelson (1986) dis-
tinguish different types of traders for each liquidity degree. At the equilibrium, in a market populated
by risk neutral agents, the long term investors – fundamentalists – buy assets relatively illiquid and
with a high trading cost because they expect to hold it for a long time. Whereas short term investors
– chartists – prefer liquid asset with less trading cost in order to surf on the trend.

We choose here to model each individual agent as a mix of the two most usual components: fun-
damentalists and chartists, as can be found in Yamamoto (2011). This formulation is motivated by
Harras and Sornette (2011) who mention that "agent forms her opinion based on a combination of
different sources". The fundamentalist’s source of an agent expects that the forward price converges to
its fundamental, while the chartist’s one assumes that the future price follows the past trend (Hommes,
2006). The key parameters of this agent model are g1 and g2, which are generated at initialization, for
each trader, following an exponential law of variance σ2

1 and σ2
2 , respectively. A pure fundamentalist

strategy has gi2 = 0, whereas a pure chartist strategy has gi1 = 0. When both values are higher than 0,
the agent is a mixed of both, which implies that she takes into account the chartist and fundamentalist
expectations and make an average according to the g1 and g2 weight (following Eq. (5) in appendix
5.1). From the two parameters values, the time horizon of investment and the risk aversion of each
agent is also calculated (Eq. (11) and (12)). The more the agent tends to be fundamentalist, the more
risk averse and long term investor she is. The converse is true : the higher the tendency to be chartist,
the lower risk aversion and the longer the investment horizon.

2.3.2 Bounded rationality and market depth as information

The choice we make is to define our agents as boundedly rational. We try to replicate some real-
life choices rather than optimal decision. Lord and al. (1979) focus on the belief perseverance of
traders: when an agent has formed an opinion, it is hard for her to change her mind. People are
reluctant to search for evidences contradicting their beliefs. Even if they find such an evidence, they
treat it with excessive skepticism. Sometimes, people miss-interpret evidence that goes against their
hypothesis as actually being in their favor. As example, belief perseverance predicts that when people
formulate expectation on fundamental value, they may continue to believe in it long time after the
proof of fundamentals misunderstanding has emerged. In our paper, we distinguish two cases : a perfect
knowledge of the true fundamental value and a belief perseverance one. We treat in more details this
point in section 2.4.

According to their preferences, traders try to maximize their utility function under Constant Abso-
lute Risk Aversion (CARA). The parameter of aversion toward risk is function of the trader components
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(Eq. (12)) and has a direct impact on the optimal demand of assets (Eq. (8) and (9)). The order size
(si,jt ) an agent is willing to trade is assumed to be equal to the absolute difference in the optimal de-
mand for asset j at time t and t−1. The sign of this difference gives us the agent’s position (Eq. (13)).
When the difference is positive, the trader buys, if it’s null, she doesn’t enter the market, otherwise she
sells. Remark that this type of utility is independent of wealth, as Chiarella et al. (2009) mentioned.
This is not consistent with the intuition and some empirical results about aversion toward risk. Usually
wealthier people bear more easily risk than poorer ones (Prospect theory - Kahneman and Tversky,
1979). The risk premium is decreasing with wealth. A possible evolution is to rewrite the model with
an Harmonic Absolute Risk Aversion (HARA) function or at least a Decreasing Absolute Risk Aversion
(DARA).

The submitted bid (or ask) is different of the expected forward price (p̂) according to the agent’s
mood. In an optimistic mood (Mt > 0), the agent accepts to buy (bt > p̂t) or sell (at > p̂t) at higher
price. She believes that the market will continue to raise. The buyer expects to make profit on the
future sell and the seller expects to perceive an additional premium (at − p̂t). On the contrary, if
Mt < 0, the trader is in a pessimist way, she expects a fall. Sellers and buyers accept to exchange but
at a lower price than they predicted. They try to diminish their loss in case of a fall.

After defining the price (at or bt) and the quantity (st) at which the agent is willing to trade,
she adapts her order according to the market depth. With an order book – where at least a part of
the book is observable – Parlour (1998) shows how the order placement decision is influenced by the
state of the book. Particularly the depth available at the inside quotes. Empirical researches point
out that investors place more aggressive orders when the same side of the order book is thicker, and
less aggressive orders when it is thinner (Handa et al., 2003). In concrete terms, with a probability
Probit, the trader adapt her behavior according to the order imbalance (xobt ) which is defined by the
log difference between the depth of the five best bids and asks (as Yamamoto, 2011).

Probit = tanh(βi ∗ abs(xobt )) (1)

xbidt = log(
depth of the 5 best bids

depth of the 5 best asks
) or xaskt = log(

depth of the 5 best asks

depth of the 5 best bids
) (2)

where ob = bid or ask respectively for a buy order or a sell order. βi reflects the sensitivity of the
probability of switching in response to the depth of the order book. The β parameter follows a uniform
law on the interval [0;βmax]. It is constant over time but differs for each asset and agent. According
to the order imbalance, the agent submits more or less aggressive orders. She faces five specific cases :

1. Submit a bid knowing that the depth of the buy side is thicker than the other (xbidt > 0). In this
context, the risk of non execution of the order is high. There is a bigger demand of asset than
supply, therefore, only the more expensive orders have a chance to be executed. With a probability
Probit – which is function of market depth and the sensitivity of agent to adapt, Eq. (1) – the agent
submits at a more aggressive price. If she had decided to submit a limit order out of the bid-ask
spread, then she would have changed it for an order at the best bid price plus a tick size. The order
would have taken the first place in the order book. If she had decided to submit a limit order in
the bid-ask spread, then she would have preferred to submit a market order. She takes more risk
on price fluctuation but she is confidant in her probability of execution.

2. Submit an ask knowing that the depth of the buy side is thicker than the other (xaskt < 0). The
demand is strong and the consider agent is a supplier. The probability of execution is high. With a
probability Probit, she submits a less aggressive order. She expects to earn more. If she had chosen
to submit a market order, then she would have preferred to submit a limit order at the best bid
plus a tick size. If she had decided to submit a limit order in the bid-ask spread, then she would
have decreases her price submission to the best ask.

3. Submit a bid knowing that the depth of the buy side is thinner than the other (xbidt < 0). The
buyer faces the same advantage as the seller in the previous case. With a probability Probit, the
agent submits a less aggressive order, to buy at a lower price. If she had previously decided to
submit a market order, then she would have preferred to trade at the ask minus a tick size. If her
limit order had been in the bid-ask spread, then she would have submitted at the best bid.

4. Submit a sell knowing that the depth of the buy side is thinner than the other (xaskt > 0). With a
probability Probit, the agent trades more aggressively. She prefers to loose a bit (the bid-ask spread)
than to take a non-execution risk! If her original choice had been to submit a limit order in the
spread, then she would have preferred to submit a market order. No control on the order price, but
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she knows that she would have been the first in the order priority. If she had decided to submit out
of the bid-ask spread, then she would have submitted at the best ask minus a tick size to be sure
to be the first in the ask book.

5. In any other cases, the agent doesn’t update her order, she submits at the normal price (at or bt)
defined by the Eq. (14) for a buy order and (15) for a sell order.

To sum up, the traders are heterogeneous in their fundamentalist and chartist components, their
investment horizon and their risk aversion. Moreover, they are bounded rational. Their mood and their
aggressiveness influence the price at which they are willing to trade. In the case of belief perseverance,
we also assume that traders are reluctant to change their minds about fundamental value estimation,
even if they have evidence of misunderstanding (Fischoff, Slovic and Lichtenstein, 1977 and Lord, Ross
and Lepper, 1979 mentioned by Barberis and Thaler, 2003). Concerning the submission process, at
each period one agent is randomly chosen and follows the four next steps:

1. for each asset available on the market, she formulates expectations on the forward price according
to her features (gi1 and gi2).

2. she defines the amount of assets she wants to trade according to a CARA utility function.
3. she adapts her expectation according to her personal mood (simple rule of thumb). It is assumed

to be time and asset dependent.
4. after having formulated an order, she corrects it according to the market depth and submits.

Her order is quoted in the order book and can’t be modified or removed. The complete mathematical
model is developed in the appendix (see appendix 5.1).

2.4 Fundamental value

The fundamental value is usually defined as: the expected dividend of the firm (Et[yt+k]) corrected
by the risk premium required for risky asset (ασ2Z) divided by the actualization rate (R). This value
is assumed to be unique and equal to:

f =

∞∑
k=1

Et(yt+k)− ασ2Z

Rk

There are lots of criticism about the definition of the fundamental value. The first problem comes
from the heterogeneity of actualization rates, which one to select? A constant or a time evolutive?
How to fixe it? The second problem is in the forward dividend. On which economic variable do we
base our dividend expectation? Moreover the dividend expectations come from the market, and so,
the fundamental value becomes intrinsic to the market whereas it must be intrinsic to the firm but
exogenous to the market! With heterogeneous bounded rational agents and unpredictable future, the
fundamental value becomes idiosyncratic.

In this paper, we distinguish two cases: a perfect knowledge one and an imperfect knowledge one,
also namely "belief perseverance". In both settings, we assume that the true fundamental value (f)
follows a random walk and agents have access to the entire history of asset prices.

In the case of perfect knowledge of the fundamental value, all fundamentalists have access to
the good information. Because everybody has the same information and processes it correctly, the
estimation of the fundamental value (f̂) is assumed to be unique and right. For each fundamentalist i,
it is mathematically expressed as:

f̂ it = f̂t = ft ,∀i (3)

In the case of belief perseverance (imperfect knowledge of the fundamental value with adaptive
learning), the forward fundamental value becomes idiosyncratic. It is a well known fact that traders
make errors in their expectations and are overconfident (Barberis and Thaler, 2003). Tversky and
Kahneman (1974) highlight that people make estimation of prices by starting from an initial value
that is insufficiently adjusted across time. This is why we produce heterogeneity in our agents by
giving them different initial believes: even if they get the same piece of information in time, they do
not necessarily deduce the same fundamental value for the asset. Our formulation of the estimated
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fundamental value is inspired by Westerhoff (2004), so as to fit the anchoring assumption that is one
aspect of bounded rationality. The fundamental value (f̂ it ) of agent (i) in the case of belief perseverance
is designed as:

f̂ it = γ1 pt−1 + γ2 f̂
i
t−1 + γ3 f̂

i
origin

+ Nt + a(f̂ it−1 − f̂ it−2 −Nt)
+ b (ft−1 − f̂ it−1) (4)

f̂ it 6= f̂ jt ,∀i 6= j

The first line represents the anchor. It is defined by the last observed price (pt−1), her previous (f̂ it−1)
and her original (f̂ i0) estimation of the fundamental value. γ1, γ2 and γ3 represent the weight given to
each component and add up to 1. The second line describes the anchor correction. The first component
reflects the arrival of new information (Nt), common knowledge. The second component highlights
the faith related to it. As an example, if the recent update of the estimated fundamental value has
been above the news impact (f̂ it−1 − f̂ it−2 > Nt), the fundamentalist tends to overreact to news. The
a parameter is the degree of misperception, which represents the time needed to process information.
The third line (ft−1 − f̂ it−1) – which is the spread between the last true fundamental value and the
estimated one – is the one that represents learning. The b parameter affected to this learning is assumed
to be close to zero, agents are reluctant to change their mind. All parameters (a, b, γ1, γ2, γ3) are fixed
and equal among traders.

3 Simulations analysis

This section describes the dynamics of two types of market that can be produced within our frame:
in the first sub-section the market is made of traders that are pure fundamentalists ("one-type model")
than in the second one is made of traders that are a mix of fundamentalist and chartist components
("two-type model"). It has to be remembered that even agents who are all 100% fundamentalists are
not necessarily homogenous, since they differ in time horizon and aversion to risk. Within these two
sub-frames, we study specifically the influence of the type of information agents get on the market
dynamics – more precisely we study volatility and liquidity when agents have perfect knowledge of the
fundamental value of the assets, and when the agents have limited information. We hence face four
different cases: OTP (One-Type model – Perfect knowledge), OTB (One-Type model – Belief persever-
ance), TTP (Two-Types model – Perfect knowledge) TTB (Two-Types model – Belief perseverance).
We change diverse parameters within each set of simulations to be able to establish 1/ the relevance
of our model which produces certain stylized facts which are usually recognized as relevant 2/ the
influence of our main assumption: the disparition of perfect knowledge and the idiosyncratic learning
of agents.

We ran 200 simulations for each trading round, each simulation being a succession of 8,000 time-
steps, which we observe after 1000 steps have already been run (so that agents have time to learn and
in order to exclude impacts of computer initialization). The model setup is summarized in the table 3
of appendix 5.2.

3.1 Dynamics in one-type markets

3.1.1 Benchmark: perfect information

As said before, fundamentalists trade according the fundamental value of assets, of which they
are here perfectly aware: they submit orders to make the market efficient – current price equals the
fundamental price. Even when all agents follow this rule, strong market efficiency is never verified, and
we observe an oscillation of the trading price around its fundamental. This inefficiency is linked to the
heterogeneity of our population, which directly impacts the market dynamics. Thus, to model agents
heterogeneity, we focus on the the variance distribution of the fundamentalist component (σ2

g1), which
is the key parameter of our one-type markets. Increasing σ2

g1 makes the traders "more fundamentalists"
in the sense that on average they become more risk averse and more long time investors (see Eq. (11)
and Eq. (12)). We simulated trading rounds for increasing value of σ2

g1 , and identified a decreasing
volume of exchange (table 1). This is consistent with what can be expected from the variation of
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(a) Asset 1: Trading price (b) Asset 2: Trading price

(c) Asset 1 : Spread between trading price and fundamental
price on a shorter period, 0-2000

(d) Asset 2 : Spread between trading price and fundamental
price on a shorter period, 0-2000

Fig. 1: Price dynamics in OTP case (σ2
g1 = 0.6, σ2

f1
= 0.2, σ2

f2
= 1)

Asset 1 σ2
g1

= 0.1 σ2
g1

= 0.6 σ2
g1

= 1 σ2
g1

= 10

Mean Std. Dev Mean Std. Dev Mean Std. Dev Mean Std. Dev
vol. per simu. 710 56 592 92 554 70 359 46
max. vol./time step 11.3604 6.23 11.02806 9.17 10.94757 6.25 9.628196 6.98
price variance 669 205 695 227 710 245 754 245

Table 1: Market liquidity in OTP case, σ2
f = 0.2

risk aversion: the more risk averse the agents, the less they trade. The average trading volume per
simulation falls from 710 to 359. This values are similar for each traded asset. Surprisingly, on average
the most liquid time-step is not strongly affected by the variance distribution of the fundamentalist
component. For σ2

g1 = 0.1, the most liquid time-step is 11.36. It decreases slowly until 9.63 for σ2
g1 = 10.

When considering Eq. (8) and (9), one could assume that the volume of exchange is correlated to price
oscillations rather than agents expectations. Indeed the amount an agent agrees to deal is defined by
the absolute difference of assets demand between time t and t− 1.

According to empirical data (Elyasiani et al. 2000), a decreasing trading volume implies an increase
in the volatility of the market price: less assets are quoted and traded on the market, so the price
movements are larger. In our model, a 50% liquidity fall implies an increasing price variance of 15%.
The probability not to find any counter part (no quoted bid or ask) increases also from 2.6% to
4%. When fundamentalists’ investment horizon is larger and their risk-aversion increases, the market
liquidity falls. So, this model is able to replicate the finding of Beja and Goldman (1980): increasing
the fundamentalist power in a previous stable system makes it less stable.

The variance of the trading price is high and linked to the variance of the fundamental value.
When the true fundamental value changes, the fundamentalists perceive this movement and update
their expectations according to news. In our simulations, whatever the original fundamental value is,
the trading price oscillates of ±26%. This value falls to ±20% and to ±13% if we exclude respectively
the 10% and the 20% extreme data. So, usually the price oscillates strongly in a small path and
sometimes, peaks appear and destabilize the market for a short period. As an example, for an initial
true fundamental value of 300 ECU and σ2

g1 = 0.6, all prices are contained in the interval [−80; +80]
around its fundamental, which is a wide trading price fluctuation around the fundamental, already
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σ2
f1

= 0.2 & σ2
f2

= 0.2 Benchmak Belief perseverance
Asset 1 Mean Std. Dev Mean Std. Dev
price 308.1574 12.32511 306.6011 3.695452
mean spread 7.789 4.584102 6.931 11.74591
variance 698 216 552 113
Asset 2 Mean Std. Dev Mean Std. Dev
price 310.4384 14.41455 308.0654 4.270272
mean spread 9.645 6.012068 7.979 11.80833
variance 723 240 546 142

Table 2: Perfect vs. imperfect knowledge of the fundamentals in one-type market

pointed out by Iori and Porter (2012). In a 95% confidence interval, the trading prices are contained
in [−38; +58]. The spread asymmetry seems to mean that the market is overvalued, which is the case
63% of the time. The mean spread – difference between the trading price and the true fundamental
value – is such that asset 1 is overvalued by 8 ECU, and asset 2 by 10 ECU. The average trading prices
are 308.157 and 310.438 ECU.

In addition, fundamentalists submit on average 20% of market orders so as to buy and 26% so as
to sell: they are more impatient to sell than to buy, which is consistent with the literature.

Fig. 1 is a typical example of the OTP case. The trading price oscillates in a large spread around its
fundamental value, and never diverges. The executed orders are above as much as below the fundamen-
tal price. If we focus on a smallest time interval, we distinguish two main dynamics that seem cyclical.
Fig. 1c and Fig. 1d reflect them. We distinguish a short period of high price variation and a longer
period of low variation. The periods of low variation appear mainly in the interval [-30;+30] around
the fundamental. This spread is equivalent to the one in which the 20% extreme data are excluded. In
this interval, fundamentalist seems to estimate that the market is relatively efficient – which explain
the low variance of the trading price – until a bullish or bearish shock appears and destabilizes the
market – which becomes very volatile. After a short time, the price variance goes back to a low level,
and the trading price converges to its true fundamental value. This is consistent with Eq. (8). The less
the price varies, the more fundamentalists exchange and the faster the price converges.

Even in OTP case, we highlights that trading prices may differ from their fundamental value.

3.1.2 Belief perseverance

In this sub-section, we focus on changes in the dynamics of a one-type market where the assumption
of perfect knowledge of the fundamental value is relaxed : OTB case. Traders base their own predictions
on their previous expectations (anchor) and a learning element (see Eq. (5)), and each agent is given
a personal initial anchor.

If the original anchor is chosen close to the initial true fundamental value, the introduction of
personal believes about fundamental value will not change the market dynamics significantly. All values
being the same, we found trading prices around 306 ECU for asset 1 and 308 ECU for asset 2, which
are respectively 0.858 ECU and 1.666 ECU less overvalued than in the OTP case (see Table 2). The
trading price oscillates about ±26%. The 95% confidence interval makes the path thinner [-14%;+18%].
And the market is overvalued 60% of the time, which means that the price seems to have a smoother
oscillation and a lower variance. Moreover, when the variance of the true fundamental increases, the
variance of the market price is not really affected. The true fundamental value is perceived by the
fundamentalists as being more stable than it really is.

The trading price is directly impacted, becoming more stable and the market liquidity is weakly
decreasing. All these results are what was expected. Fundamentalists thus integrate the news they
perceive in the trading price. If the fundamental value is perceived as stable, there will be no "non-
integrated" news, and so no more trade. Finally, the belief perseverance makes runs more similar, the
standard deviation of the average price is at least twice lower compare to the OTP case.

If the anchor is not consistent with the fundamental value, the market price will not reflect the
fundamental at all. Indeed, agents have a tendency to give less importance to news than to the original
fundamental expectation (f̂ i0) because of the anchor. In this case, the trading price is stable and evolves
around the original fundamental expectation. This is due to the fact that the anchoring is strong and
learning is slow, hence re-ajustment is slow. The result is an inefficient market: the market price never
reflects its fundamental.
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(a) Asset 1: Trading price (b) Asset 2: Trading price

(c) Asset 1: Spread between the perceived fundamental
value and the true one

(d) Asset 2: Spread between the perceived fundamental
value and the true one

Fig. 2: Price dynamics in OTB case (σ2
g1 = 0.6, σ2

f1
= 0.2, σ2

f2
= 1)

Fig.2 illustrates the OTB case in which the original anchor is generated close to the initial true fun-
damental value. When the true fundamental value varies slightly (σ2

f1
= 0.2), the trading price seems

to follow it (Fig. 2a). The market is relatively efficient, but Fig. 2c highlights some misunderstanding
in the fundamental changes. When the true fundamental value has a high variance (σ2

f2
= 1), the

market is inefficient (Fig. 2b). It doesn’t integrate the fundamental changes. Indeed, fundamentalists
submit orders following their estimation of the fundamental value, but they misestimate it which is
due to belief perseverance (Fig. 2d). The anchor makes agents minimize or misunderstand the changes
in the fundamental price. The variance of the traded asset is relatively low but the spread between the
true fundamental value and the trading price is high. The market efficiency is so dependent of agents
beliefs and the variance of the true fundamental value (σ2

f ).

When the agents have their own believes about fundamental value (their own anchor), the trading
price doesn’t reflect the evolution of the true fundamental value (Fig. 3a). A way to correct this is
to give more importance to the learning process, defined in Eq. (5), by increasing parameter b. This
enables traders to update their expectations quickly, and makes the price more informative in the case
of high fundamental variance (σ2

f2
= 1). The effect of the anchor is weaker, but still exists (Fig. 3b).

When the true fundamental value falls, the trading price also decreases, but with a lag.

*
* *

Fundamentalists are by definition risk averse. Increasing their risk aversion and their investment
horizon (with σ2

g1 parameter) make the market less liquid and more volatile. Moreover, the exchanging
volume is strongly affected by the price oscillation. The more the price fluctuates, the less agents
exchange, the more the bid-ask spread rises.

Our model is able to generate endogenous bubbles, even with a pure fundamentalists-market. In the
OTP case, bubbles burst quite fast and their occurrence probabilities are low. The price is overestimated
by 3% on average. We can consider the price as informative at each time step – even if the market price
is not equal to the fundamental price, it replicates its trend– whatever the degree of heterogeneity of
fundamentalists.
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(a) Asset 1: Low learning process (b=0.005) (b) Asset 1: Fast learning process (b=1)

Fig. 3: Impact of learning speed in OTB case (σ2
g1 = 0.6, σ2

f1
= 1, σ2

f2
= 1)

In the OTB case, when the fundamental price varies slightly (σ2
f1

= 0.2), the dynamics of the trading
price is close to the OTP case. However, we observed a more stable price just as a more stable volume
of exchange across the simulations. The standard deviation of the market price falls from 12 to 4. The
price variance also decreases from 700 to 550. Relaxing the perfect knowledge assumption enables to
model some perseverance beliefs and persistent bubbles in a pure fundamentalist market. We assume
that the market is on average informative, the mean trading price is close to the mean fundamental
value. With different values of the b parameter, the market is able to follow the fundamental changes.
We don’t adapt this learning parameter in order to respect the works of Tversky and Kahneman: people
begin with a starting value, one supplied to them or generated by them, and insufficiently adjust their
estimates around this anchor. In the following sub-section, we choose to give individual anchors in
which the original estimation of the fundamental value (f̂ i0) is close to the original true fundamental
value (f0). Two motivations for this choice: 1/ we assumed that traders are fundamentalist, they so
have a correct information about past fundamental 2/ if f̂ i0 is generated far from the true fundamental,
then the market will be never efficient.

As expected, the amount of market order submission is the same in the OTP case as in the OTB
one – hence this number of submission is similar whatever the access to the real information about the
fundamental value. This result is consistent with the fact that the ratio of submitted market orders
is dependent of the informational advantage, not the information per se. There is no informational
advantage neither in belief perseverance nor in perfect knowledge. In the first case, nobody knows the
true fundamental value and in the second case, everybody knows it.

We do not develop the description of a pure chartists market here, since it generates very usual
results (a few data can be found in appendix 5.4): chartists have a pure destabilizing impact, they make
the price increase to infinity or drop to zero. Chartists are indeed known to produce quick reinforcement
dynamics: when they observe a small rise, they trade at a higher price, which makes the price rise again.
They are assumed to improve market liquidity, but this is not necessarily true for each time-step: the
maximum volume is at least twice higher than in a pure fundamentalists market (26 versus 11) but
not on average.

If their risk aversion and their investment horizon decrease (σ2
g2 increases), the market liquidity

increases from 278 (σ2
g2 = 0.1) to 908 (σ2

g2 = 10). A market populated by fundamentalists who are
strongly risk averse (σ2

g1 = 10) is as liquid as a market populated by chartists who are weakly risk
lover (σ2

g2 = 0.1). However, the standard deviation of exchanging volume is, at least, 3 times higher
for the chartists-market (due to the destabilizing effect of chartists).

3.2 Dynamics in two-types markets

In this sub-section, each agent is a mixed of fundamentalist (σ2
g1) and chartist (σ2

g2) components.
It has to be remembered that the weight of each component is generated according to an exponential
law, and the mean and the variance of this law are correlated. For easy understanding, we can write
that a market with σ2

g1 = 0.6 and σ2
g2 = 10 corresponds to a market where the "mean agent" is at

19% fundamentalist and 81% chartist in her expectations. For easy reading, we call this market as
19%/81%. In the same spirit, a 43%/57% market corresponds to σ2

g1 = 0.6 and σ2
g2 = 1.
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In addition of the belief perseverance, because traders are not myopic, they are able to adapt
their orders before submitting (see Eq. (1)). More specifically, according to the market depth, the
participants resolve the trade-off between accepting the non-execution risk and paying the bid-ask
spread. This choice, which is made according to the individual ability to adapt to the visible part of
the order book (βit), has a direct impact on the market efficiency.

Different parameters that drive the market dynamics are treated in the following sub-frames as the
ratios of agents types, the agents’ aggressiveness and the knowledge of fundamentals.

3.2.1 Benchmark: perfect information

As we can expect, even if chartists have a destabilizing impact on the market, when a fundamen-
talists trend exists, the market never diverges. In our simulations, the trading price never exceeds 100
times the fundamental value even if fundamentalists are in minority. Indeed, in a 19%/81% market,
the trading price evolves in a large spread around its fundamental value [−150; +250] but stays in this
path. Minimizing the chartist component (43%/57% market) doesn’t impact drastically the average
trading price but makes its volatility significantly lower (849 vs. 200). In the same way, the limits and
the variance of the spread between the trading price and the true fundamental value are lower. This
is coherent with the chartist destabilizing impact.

To compare this data to the previous case: in the OTP case, the market price is above the funda-
mental price 63% of time. The trend induces by the fundamentalists is a kind of white noise around the
fundamental. So the trading price tends to be as above as below the fundamental price, the positive and
negative spread counter-balance each other and the market is relatively efficient. Hence when chartists
trade, because of their backward looking, they just amplify fundamentalists’ trends: in the TTP case,
the trading price is above the fundamental value 62% of time in the 43%/57% market, and 57% of
time in the 19%/81%market. Increasing the weight of chartist’s component makes the trading price
above as much as below the fundamental value. However, it also makes the price more volatile, and
more overvalued on average. So, the market price is less frequently over the fundamental value, but it
is on average more overvalued! This result is justified by the positive spreads which are much bigger
than the negative one and the extreme cases which do not counter-balance each other. It is also worth
noticing that simulations display different qualitative emerging patterns, with much less predictability
than in case of one-type market. This is in accordance with the reinforcement dynamics of chartists.

Concerning the traders’ choice between market and limit order, in the 43%/57% market, traders use
MO to buy in 20.5% of cases and to sell in 24%. In the 19%/81% market – where agents are essentially
chartist in their behavior –, the ratios of submitted MO decrease and converge to 20% to buy and 22%
to sell. Thus "impatience" to sell is still present in our two-types markets. The decreasing amount of
submitted MO is consistent with O’Hara and Easley (1995) who points out that the chartists are the
liquidity suppliers, they submit LO and the fundamentalists because of their informational advantage
capture this liquidity by submitting MO. Our model is able to reproduce this stylized fact.

Unfortunately, the trading volumes of our two-types markets are unexpectedly low. In the chartists-
market (see appendix 5.4), the liquidity is around 300 for σ2

g2 = 0.6 and increases to 900 for σ2
g2 = 10.

In the OTP case (σ2
g1 = 0.6), it is around 600. In the TTP case (σ2

g1 = 0.6 and σ2
g2 = 1), it is as low

as 391. Chartists should at least couner-balance the decreasing part of fundamentalists submissions,
since we know they are liquidity suppliers! As an example, an increase in the ratio of chartist (from
57% to 81%) makes the price variance twice higher and the trading volume 10% lower. This result is
in opposition with empirical study and logically incoherent: adding chartists or noise traders permits
to increase the market liquidity usually.

However, the result can be explained by our structure: the asset demand defined by Eq. (14) and
Eq. (15). The first and second differentials in the case of two independent assets are :

∂πt
∂p̂t+τ

=
1

α pt p̂t+τV ar
> 0 and

∂πt
∂V ar

= −
ln

(
p̂t+τ
pt

)
α pt V ar2

< 0

∂πt
∂2p̂t+τ

=
−1

α p2t p̂t+τV ar
< 0 and

∂πt
∂2V ar

=

2 ln

(
p̂t+τ
pt

)
α ptV ar3

> 0

The positive impact of the expected price and the negative impact of the variance on the asset demand
are verified. The second differential enables to highlight a stronger effect of the price variance. So, due to
the increasing price variance, the fundamentalists trade less. However, the decrease of fundamentalist
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(a) Asset 1: σ2
f1

= 0.2 (b) Asset 2: σ2
f2

= 1

Fig. 4: Spread between the market price and its fundamental with myopic agents in TTP case (β = 0,
σ2
g1 = 0.6 and σ2

g2 = 1)

trading is not totally counter-balanced by the chartists’ trades. Indeed, the volume of exchange is
correlated to the price variance rather than to the price increase.

An other explantation is that indeed agents want to trade more and they submit higher volume,
but they do not meet counterpart. The trading price is defined by a mid point between bid and ask,
and no trade occurs. So, the price variance increases, but the liquidity volume stays small.

In Fig. 4, we plot the spread between the trading price and the true fundamental value. We dis-
tinguish two graphics in which the fundamental value has a low and high variance. In both graphics,
the average price of the trading round is relatively close to the fundamental. The price never diverges,
but its variance is huge. Thus, the price is less informative than in the OTP case. Indeed, the chartist
component makes the price oscillates strongly in a wider path around its fundamental value: destabi-
lization effect. The market prices follow cyclical process as in the OTP case, but bubbles have larger
amplitude and need more time to burst. Moreover, as expected, the bubbles are easily detected when
the variance of the fundamental value is high. Indeed, so that to have efficient market, fundamentalist
make numerous price adjustments and chartists easily observe more persistent trend, that they amplify.

To go further, agents are non-myopic in real world (β 6= 0). They adapt their orders according to
market observations. Traders change their behaviors and become more or less aggressive according to
the market depth. With β = 2 (Fig .5), agents are strongly influenced by the order book depth. The
result is a deeper market. As an example, the liquidity is multiplied by 1.5 in the 43%/57% market.
The amount of assets exchanges in a time-step is also hugely impacted, because of traders adapting
their submissions in order to increase the probability of order execution. However, the market efficiency
is negatively impacted: the market price is on average overvalued by 14.761 ECU. The mean spread
increases by 5.544 ECU compared to the same market with a null β. The price stays far from the
fundamental value for a relative long period. The bubbles need twice more time to burst (around 3000
time-steps). This market price does not reflect the fundamentals, it reflects the "fear" of non execution1.
The β parameter has an impact on the "impatience" and the "fear" of traders which impact the market
efficiency. It also impacts negatively the ratio of submitted MO. Indeed, traders submit on average
16% of it so as to buy and 19% so as to sell – no matter what the weight of fundamentalist vs chartist
components is. This fall is explained by the agents who take into account the market depth, and
adapt their orders: the more liquid the market, the less risk they take and the less market orders are
submitted. Nonetheless, the "impatience" at the sell is still verify.

3.2.2 Belief perseverance

The switch from the TTP to the TTB case should give us the same main dynamics change as
from the OTP to the OTB case. With the anchoring phenomena, the news about fundamentals are
misunderstood or underestimated: the true fundamental value is perceived by the fundamentalists as
being more stable than it really is. The expected results are: a more stable price just as a more stable

1 In a market with myopic agents, traders don’t revise their expectations according to the market depth, the price
oscillates around its fundamental value (Fig. 4).
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(a) Asset 1: σ2
f1

= 0.2

(b) Asset 2: σ2
f2

= 0.2 (c) Asset 2: σ2
f2

= 1

Fig. 5: Spread between the market price and its fundamental with non-myopic agents in TTP case
(β = 2, σ2

g1 = 0.6 and σ2
g2 = 1)

volume of exchange across the simulations, a lower price variance and more persistent bubbles than in
TTP case. Compared to the OTB case, an increase in the chartists component should make the market
price less informative (increasing average market price and mean spread) and more volatile (increasing
variance).

With belief perseverance, the trading price evolves in a path around the anchor. When the funda-
mental value has a low variance (σ2

f = 0.2), the market price integrates the largest part of fundamental
news and it is less volatile than in the TTP case. Nonetheless, the destabilization power of chartist is
still present. Indeed, in a TTB case with 43%/57%, the spread between the trading price and the true
fundamental value is equal to 8.156 ECU. In the case of 19%/81%, the market price is less informative
of 1.597 ECU. The spread increases to 9.753 ECU and the market volatility is timed by 2.5.

When the variance of the fundamental price is high (σ2
f = 1), the trading price evolves far away

from its true fundamental value (as in OTB case), and "double bubbles" can appear (Fig. 6b and
Fig. 6d - for example between time-steps 250 and 1000). The first bubble – due to chartist component
– corresponds to the difference between the estimated fundamental value and the trading price. Because
our fundamentalists are belief perseverant, and according to our setup, they estimate the fundamental
value around 300 ECU (on average). The trading price is frequently over 325 ECU during this period,
so the market can be considered overvalued of 25 ECU by the fundamentalist. At the same time, we
observe that the estimated fundamental value is wrong (the true fundamental value being 80 ECU lower
than the estimated one) (Fig. 6d). A second bubble appears. The belief perseverance is responsible for
the error in estimation of fundamental - it takes for information to be integrated on the market , and
sometimes the process just fails.

As can be expected, this general result is dependent on the variance of the fundamental value.
Indeed, the "double bubbles" appear also when the fundamental value has a low variance (Fig. 6a
and Fig. 6c), but they are not as easy to observe (lower amplitude, faster bursting). The belief perse-
verance of fundamentalists is minimized by the low variance of the true fundamental value. A quick
look to Fig. 6a and Fig. 6b confirms our finding: when σ2

f1
= 0.2, the spread between the estimated

fundamental value and the true one evolve in the interval [−5; +30], while it is [+5; +145] when σf2 = 1.
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When agents are non-myopic (β 6= 0), and hence take into account the depth of the order book,
the price rises. The destabilization power of chartist in the case of belief perseverance and non-myopia
is less obvious. Indeed, the average market price are around 314.6 ECU for asset 1 and 325 for asset
2 – whatever the weight of fundamentalist vs chartist. The destabilization power of chartist stays in
the price volatility: an increase of chartist ratio from 57% to 81% makes the variances 3 times higher2.
Moreover, the standard error is also positively impacted (times by 3), noticing that simulations display
different emerging patterns. This is surely du to the impact of the market depth in the price valuation,
which evolve at each time-step, and which is increased by chartist behavior. So, the market price reflects
the "fear" of no order execution and the chartist’s herding. This is why the runs are less similar among
trading round. Finally and non surprisingly, the volume of exchange is hugely increase by non-myopic
agent. However, as mentioned previously, we observe a fall in liquidity when the weight of chartists
component is heavy. The amount of exchange decreases form 632 to 486 for the first asset and from 760
to 618 for the second one3. Our assumption – the price variance is mainly responsible of the liquidity
fall – seems to be confirmed.

In Fig. 7b and Fig.7d, we focus on the high variance case of the true fundamental value, that is the
most caricatural one. Between time-steps 800 and 2500, the market is clearly inefficient. The market
price seems to be driven by an excess of optimism, due to chartist behavior (Fig. 7b). But, Fig. 7d
highlights a fundamental value overvalued by 100 ECU. So the spread between the true fundamental
value and the trading price is driven by non-myopia, chartist behavior and belief perseverance of
fundamentalist. After that, between the time-steps 2500 and 4000, the trading price stays relatively
constant and the true fundamental value converges to the estimated one. The spread difference tends to
zero (Fig. 7d). The bubble bursts partially, even if fundamentalists don’t revise their expectations. The
true fundamental value rises and goes back to a value close to the anchor. Thus, this price convergence
is independent of agents expectations. After the time-step 4000, the trading price falls to the true
fundamental value. This part of the price convergence is due to agents’ trade and to their slow learning
process. The anchor has a strong impact on the market dynamics, when the variance of the fundamental
price increases, the trading price does not follow it, or with a delay.

*
* *

Fundamentalists and chartists are heterogeneous in their investment horizons, risk aversion, aggres-
siveness, moods and knowledge of the fundamentals. They also differ by their roles, liquidity suppliers
or demanders. A pur chartist strategy (σ2

g1 = 0) makes the market inefficient until it disappears.
Chartists base their forward expectations on the past trend. They submit essentially limit orders. A
fundamentalist strategy (σ2

g2 = 0) makes the trading price evolves around its fundamental value with
more or less fluctuations. So, in the OTP case, the marker is considered as relatively efficient. In our
two-types market, agents are an aggregation of fundamentalist and chartist components. The more
chartists are, the less market is efficient. Indeed, increasing chartist component makes the market
price overvalued on average. The market price oscillates more frequently and in a wide spread. In the
TTP case (43%/57%), we have observed at least an increase of the average price by 2 ECU and a
variance increase of 22% compared to the OTP case. The chartist component makes also decreasing
the amount of submitted market orders (relative low impact) and increasing the maximum amount
of asset exchange in a time-step. This is coherent with the chartist’s destabilization power. However,
an unexpected results, already mentioned is the market liquidity fall. The volume of exchange is more
correlated to the price variance than to the expectation of rising price, but the amount of exchange
becomes more stable across simulations (decreasing standard error).

In the spirit of the bounded rationality, we have tried to relax the strong assumption of perfect
knowledge of the fundamentals. To do that, we propose an adaptive learning of the fundamental value
with belief perseverance. The main results of this essay are a decreasing price variance, smallest extreme
values and the market efficiency function of the fundamental variance and the anchor. Indeed, if the
fundamental value has a high variance, the market will be inefficient because of the belief perseverance.
But, if the anchor is closed to the true fundamental value and that fundamental value has a low
variance, the TTB case is more efficient than the TTP one – in the sense that the market price is on
average closed to the true fundamental value. However, the spread between the trading price and the

2 It has to be remembered that the market volatility was multiplied by 2.5 with myopic agents.
3 As point of comparaison, the trading volume in a 43%/57% market with myopic agents is 392 for the first asset and

420 for the other one.
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true fundamental value has a higher mean and variance. The market price does not integrate all the
fundamental changes in the case of belief perseverance.

Finally, this model deals with agents’ behavior according to market depth. The β parameter, because
of arbitrage between higher price and no execution risk, makes long term trend easily identified by
chartists, and more persistent bubbles (higher amplitude and duration). The result is a non efficient
market in any way. However, the β parameter permits also to improve the market liquidity. A quick
comparison between Fig. 6 and Fig. 7 permits to understand the main dynamics imply by the β
parameter. When agents are myopic (β = 0), the trading price oscillates frequently around its true
fundamental value. Some trends appear but they have low amplitude and the duration is short (between
time-steps 250 and 1000 as an example). As previously mentioned, the price evolves in an horizontal
wide path. In the TTB case with myopic agent, the main reason of bubbles is a non perceived change in
the fundamental (belief perseverance). When agents are receptive to the order book statement (β 6= 0),
the market price can stay over- or under-valued for a longer period. Long periods of rise (or fall) are
observable and the market liquidity increases by 35% at least. In addition of unperceived change in the
fundamental, the bubbles are self-sustained by a "fear" of order non execution. Traders care less about
fundamentals, the market efficiency is negatively impact. The amount of submitted market orders
decreases. It falls from 20% to 16% for the buy and from 23% to 19% for the sell. The market is
deeper, traders can be more patient. They don’t need to take too much risk and so prefer to submit
limit orders. From a certain point of view the difference between β = 0 and β 6= 0 is the liquidity
pricing. This idea will be quantitatively investigating in a future work.
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(a) Asset 1: Trading price (σ2
f1

= 0.2) (b) Asset 2: Trading price (σ2
f1

= 1)

(c) Asset 1: Spread between the perceived fundamental
value and the true one

(d) Asset 2: Spread between the perceived fundamental
value and the true one

Fig. 6: Price dynamics with myopic agent in TTB case (β = 0, σ2
g1 = 0.6 and σ2

g2 = 1)

(a) Asset 1: Trading price (σ2
f1

= 0.2) (b) Asset 2: Trading price (σ2
f1

= 1)

(c) Asset 1: Spread between the perceived fundamental
value and the true one

(d) Asset 2: Spread between the perceived fundamental
value and the true one

Fig. 7: Price dynamics with non-myopic agent in TTB case (β = 2, σ2
g1 = 0.6 and σ2

g2 = 1)
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4 Conclusion

In this paper we present an order driven market, where two assets are traded, in order to study the
liquidity dynamics. We show that agent types influence the market dynamics. Indeed, fundamentalists
make the market oscillates around its fundamental price, while chartists make it diverge. Moreover,
according to Beja et Goldman (1980), increasing the fundamentalist power in a previous stable system
or adding chartists make the price oscillates in a higher spread and varies more but never diverges.
In fact, chartists – due to their reinforcement dynamics – amplify fundamentalists trend and market
inefficiency. They also impact negatively the amount of submitted market order per run, but traders
are still more impatient at the sell than at the buy.

In any cases, this model is able to generate endogenous bubbles bloom and burst, which is the basic
qualitative feature that is interesting in an artificial market. As usual in financial ABM, our model is
also able to reproduce long term memory.

Concerning the liquidity, as we can expect, chartists increase the maximum amount of assets ex-
change in a time-step. Unexpectedly, they make the market less liquid on average than fundamentalists.
This is counter-intuitive when comparing to Shiller (2000) and Odeon et Barber (2000), but has a strong
explanation within the logic of our model. Nonetheless, with this liquidity fall due to chartist compo-
nent, we observe an increasing price variance as an increasing bid-ask spread. That is consistent with
the literature.

Relaxing the assumption of perfect knowledge of the fundamentals permit to identify interesting
change in price dynamics. Our model is able to generate bubbles in a pur fundamentalist market.
Indeed, when agents do not have perfect knowledge of fundamentals (belief perseverance), the trading
prices may evolve independently of the true fundamental values. This is due to the fact that the
anchoring is strong and learning is slow, hence re-adjustment is slow. A possible way to correct this
misunderstanding is to give more importance to the learning process. Notice that our model is not
calibrated on real world, thus we have to improve this parameter. However, we know that a high value
is not consistent with the behavioral research.

The belief perseverance permits to identify to main components in a bubble. The bubbles can be
due to chartist following trend and (/or) to the misunderstanding of the fundamental’s change.

Finally, it also may have positive impacts. Indeed, when the fundamental value has a low variance,
the fact that agents do not know it perfectly has a stabilizing impact on the market dynamics. The
small shocks in the fundamental value are unperceived, so the trading price oscillates less and in a
smaller spread. In fact, the trading price reflects the main fundamental trends.

About the myopia, the fact that traders’ choices are influenced by the quoted order book makes
the market inefficient on long periods. The arbitrage between bid-ask spread and risk of no-execution
makes bubbles take more time to burst. Trends are identified easily by chartists, and fundamentalists
care less about fundamentals. In this case, the market price is driven by the "fear" of non execution.
Because of this strategy of order submission, we observe, as with increasing chartists’ power, a de-
creasing amount of submitting market orders. The result is a huge improve of the market liquidity and
a loss in market efficiency. From a certain point of view, this inefficiency corresponds to the liquidity
cost that is not taking into account in our definition of the fundamental value.

Hence, our model realizes many interesting features that allow us to explore liquidity in an artificial
market, although we have added several complex elements to the usually used framework. The influence
of a bad perception of the fundamental value, in particular, seems to produce rather expected dynamics,
which means that we can carry on using this framework.

We still have one problem that is not consistent with the literature : there is a large liquidity fall
when chartists are more present, the liquidity can fall on average of one third, because of the rise in the
price variance. This is due to the asset demand equation, which is based on price and asset variation
during the two last time-steps, see Eq. (13). We will have to explore a way to minimize this fall by
adding noise traders agents (NTA), think about the asset demand equation and permits to more than
one agent to submit at each time step.

From now, we wish to explore the importance of belief and its impact on self-fulfilling prophecy.
As example, how two independent assets in their fundamentals may have a correlation in their price



20 Vivien LESPAGNOL, Juliette ROUCHIER

fluctuation. We also wish to explore new ways of getting information for the agents, and in particular
to see the impact of a spread of information through diverse shapes of social network.

An other project, more econometric, is to focus on the co-movement in moments of assets re-
turns. When fundamentals are correlated, we search the long run common dynamics between the asset
volatility



Trading volume and market efficiency 21

5 Appendix

5.1 Mathematical Model

In this section, we focus on the mathematical equations of our order-driven market, where two risky
assets are traded. It is based on a modified version of Chiarella et al. (2009) by Yamamoto (2011).

In our model, each trader is characterized by a fundamentalist component (gi1) and a chartist one
(gi2). At period t, one randomly chosen trader formulates her expectation about the future return that
will prevail in the interval (t+ τ i).

r̂it,t+τ i =
1

gi1 + gi2

[
gi1. ln

(
f̂t
pt

)
+ gi2.r̄

i
t

]
(5)

where τ i is the investment horizon of agent i, and pt denotes the spot price of the considering asset. The
weights gi1 and gi2 are generated following an exponential law of variance σ2

g1 and σ2
g2 , respectively. Note

that a pure fundamentalist strategy has gi2 = 0, whereas a pure chartist strategy has gi1 = 0. The choice
of a positive distribution is justified by the works of Hommes and Wagener, 2009 and Hommes et al.,
2007. They state that positive feedback for uninformed traders prevail in financial markets. By positive
feedback traders, the literature means traders who buy and sell on momentum. Bao et al. (2012) state
that with positive feedback traders, there is a self fulfilling oscillation around the fundamental value.
Whereas with negative feedback traders, agents learn and make the price converge to its fundamental
value.
The average stock return (r̄it) computed by chartists is defined by the expected trend based on the
observations of the spot returns over the last τ i time steps.

r̄it =
1

τ i

τ i∑
k=1

rt−k =
1

τ i

τ i∑
k=1

ln
pt−k
pt−k−1

(6)

The forecasted return of the agent (r̂it,t+τ i) allows her to formulate the future expected price.

p̂t+τ i = pt exp(r̂it,t+τ i) (7)

It has to be remembered that two risky assets are traded, therefore Eq. (5) to (7) are applied to each one.

Once the expected prices are defined (p̂1t+τ i , p̂
2
t+τ i), the agent tries to maximize her utility function

according to a budget constraint. We assume that the optimal demand of assets is defined by the
maximization of a constant absolute risk aversion utility function (CARA) under a gaussian return of
assets as :

max
W i
t+τi

Eit[U(W i
t+τ i , α

i)] = max
W i
t+τi

Eit[−exp(−αi.W i
t+τ i)]

W i
t = zi,1t .p1t + zi,2t .p2t + Cit

where W i
t reflects the agent’s wealth and αi her risk aversion. The wealth is composed by zi,jt that

denotes the amount of asset j owned by agent i at time t, pjt that is the spot price and Cit that is the
cash invest in a risk free asset, like saving account or bond.
Regarding to the maximization, the optimal demand at the expected prices (p̂i,1t+τ i , p̂

i,2
t+τ i) may be

expressed for asset 1 as :

πi,1t (p̂1t+τ i , p̂
2
t+τ i) =

ln

(
p̂1t+τ i

p1t

)
αi p1t V ar

i
1

(8)

and for asset 2 :

πi,2t (p̂1t+τ i , p̂
1
t+τ i) =

ln

(
p̂2t+τ i

p2t

)
αi p2t V ar

i
2

(9)
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The two assets are assumed to be independent (Cov = 0). In this case, πi,1t is equal to the optimal
demand of Yamamoto’s paper (2011). The variance (V arij) reflects the risk investment of asset j
evaluated by agent i. It is assumed to be equal to the variance of the logarithmic of the return rate.

V arij =
1

τ i

τ i∑
k=1

[rjt−k − r̄
i,j
t ]2 (10)

where r̄i,jt is the average spot return of asset j. A general writing is given by Eq. (6). The investment
horizon (τ i) and the risk aversion (αi) are dependent of agent’s features. We define them as Yamamoto
(2011):

τ i = τ
1 + gi1
1 + gi2

(11)

αi = α
1 + gi1
1 + gi2

(12)

where τ and α are respectively a reference time horizon and a reference degree of aversion toward risk.

Finally, the agent has to define and submit her order. The amont of assets (sj,it ) the agent is willing
to trade is determined by the absolute difference in the optimal demand for asset j at time t and t− 1
as:

si,jt = abs(πi,jt − π
i,j
t−1) (13)

The sign of this difference (πi,jt − π
i,j
t−1), gives the agent’s position. Notice that the submission price

may differ of the expected one (p̂i,jt+τ i , Eq. (7)) according to the agent’s mood (M i,j
t ). The buy price is

defined as :

bi,jt = p̂i,jt+τ i(1 +M i,j
t ) (14)

The sell price is:

ai,jt = p̂i,jt+τ i(1 +M i,j
t ) (15)

where M i,j
t is randomly assigned from a uniform distribution of mean zero.
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5.2 Parameters setup

For the perceived fundamental value, the parameters are arbitrary fixed and are justified by the
interpretation of the Kannehman’s evidences. We tried to reflect the difficulty of agents to estimate
the probability of occurrence, their excess of optimism, their wishful thinking, and their believes per-
severances.

Description Parameter Value
Market variables

Traders amount Nb_agents 1000
Share amount - ∞
Tick size - 10−3

Original fundamental value asset 1 : f10 f10 = 300
asset 2 : f20 f20 = 300

Original market price p10 p10 = f10 = 300
p20 p20 = f20 = 300

Fundamental value (Random Walk) f1t f1t−1 +N (0, σ2
f1

)

f2t f2t−1 +N (0, σ2
f2

)

Assets covariance Cov1,2 0
Agent components

Weight fundamentalist : g1 exponential law of variance σ2
g1

chartist : g2 exponential law of variance σ2
g2

Original endowment

wealth : W i
0 12.000 ECU

asset 1 : zi,10 U(0; 20)
asset 2 : zi,20 U(0; 20)
bond : Ci

0 W i
0 − z

i,1
0 .p10 − z

i,2
t .p20

Time horizon reference τ 300
Risk aversion reference α 0.1
Agent mood M i,j

t U(−0.25;+0.25)

Propensity of adaptation βi U(0;βmax)
βmax 2

Perfect knowledge case

Fundamental value of agent i f̂ it ft

Belief perseverance case

Fundamental value of agent i
γ1 pt−1 + γ2 f̂ it−1 + γ3 f̂ i0

f̂ it +Nt + a(f̂ it−1 − f̂ it−2 −Nt)

+b (ft−1 − f̂ it−1)

Anchor component
γ1 0.02
γ2 0.4
γ3 0.58

Information confidence a 0.98
Learning b 0.005
Original expectation (idiosyncratic) f̂ i0 f0 +N (0, σ2

f )

New information Nt N (0, 1)

Table 3: Parameters setup
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5.3 Demand function

Based on the Markowitz criteria, each agent try to maximize her utility :

U(W,α) = − exp(−αW ) (16)

The utility function is defined as a constant absolute risk aversion class, where α is the risk aversion
coefficient of the trader. Wt reflects the trader wealth at time t which is given by a cash amount Ct
and the quantity of the risky assets zjt holding times their spot prices pjt .

Wt = z1t .p
1
t + z2t .p

2
t + Ct (17)

The wealth at time t+ τ (assuming the order is executing at a price p before t+ τ) is given by :

Wt+τ = z1t+τ .p
1 + z2t+τ .p

2 + Ct+τ (18)
= Wt + s1t .p

1.ρ1t+τ + s2t .p
2.ρ2t+τ (19)

where ρt+τ = pt+τ/p − 1 is the return from t to t + τ . As a zero order approximation, the agent’s
expectation for future returns are taken to be Gaussian where future return is assumed to be ρt+τ =
pt+τ/p− 1 ' ln(pt+τ/p). Based on her knowledge, the trader tries to maximize at time t her forward
utility (Ut+τ ) :

max
Wt+τ

Et[U(Wt+τ , α)] = max
Wt+τ

Et[−exp(−α.Wt+τ )] (20)

Because the utility is exponential and the return are assumed to be Gaussian, it may be expressed as :

Û(Wt+τ , α) = − exp
(
−α.Et[Wt+τ ] + α2.σ2

t [Wt+τ ]/2
)

(21)

where σ2 reflects the risk of investment. The variance and the expected wealth are:

σ2
t [Wt+τ ] = s1t .p

12σ2
t (ρ1) + s2t .p

22σ2
t (ρ2) + 2.s1t .s

2
t .corrt(ρ1, ρ2) (22)

Et[Wt+τ ] = Wt + s1t .p
1Et(ρ1) + s2t .p

2Et(ρ2) (23)

The Eq. (21) could be rewritten as:

Ût+τ = Ût × e
(
−α[s1p1Et(ρ1)+s2p2Et(ρ2)]+α2

2 [s21p
12σ2

t (ρ1)+s
2
2p

22σ2
t (ρ2)+2.s1t .s

2
t .cov1,2]

)
(24)

Differentiating the expected utility function (24) with respect to sjt gives:
d
ds1t

Ût+τ = −Ût+τ
[
αp1t ln

(
p1t+τ
p1

)
− α2s1tp

12σ2
t (ρ1)− 2s2tCov1,2

]
d
ds2t

Ût+τ = −Ût+τ
[
αp2t ln

(
p2t+τ
p2

)
− α2s2tp

22σ2
t (ρ2)− 2s1tCov1,2

] (25)

Setting the expression to zero we determine the optimal amount of stocks (S∗t = π(p)) that the agent
wishes to hold in her portfolio for a given price level p.

πi,1t (p̂1t+τ i , p̂
2
t+τ i) =

αip2t

[
ln

(
p̂1t+τ i

p1t

)
αi

2

p1tp
2
tV ar

i
2 − 2 ln

(
p̂2t+τ i

p2t

)
Cov1,2

]
αi4 p1

2

t V ari1 p
22
t V ari2 − 4 Cov21,2

πi,2t (p̂1t+τ i , p̂
2
t+τ i) =

αip1t

[
ln

(
p̂2t+τ i

p2t

)
αi

2

p1tp
2
tV ar

i
1 − 2 ln

(
p̂1t+τ i

p1t

)
Cov1,2

]
αi4 p1

2

t V ari1 p
22
t V ari2 − 4 Cov21,2

(26)

If we assumed the assets independent (Cov=0), it correspond to Eq. (8) and (9) :
πi,1t (p̂1t+τ i , p̂

2
t+τ i) =

ln

(
p̂1t+τ i

p1t

)
αi p1t V ar

i
1

πi,2t (p̂1t+τ i , p̂
1
t+τ i) =

ln

(
p̂2t+τ i

p2t

)
αi p2t V ar

i
2

(27)
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5.4 Chartists

Chartists are created so as to represent agents who would try to make profit by surfing on the
bubbles. Without fundamentalists to impose a market trend, they have a pure destabilizing impact.
They make the price increases strongly or falls to 0. In a chartists-market, the price is purely speculative
and never reflects its fundamental.

The key parameter for chartists is σ2
g2 , the variance distribution. It impacts the investment horizon

and the risk aversion in the opposite direction of fundamentalists. An higher variance implies a bigger
weight affected to chartist component, and so a decreasing aversion toward risk and a shorter investment
horizon. In the following table, we collect the percentage of market divergence in trading rounds. By
market divergence we mean a price exceeded 10 times, 100 times and 104 times the fundamental value.
The fall is bounded to a tick size beyond zero, the asset never disappears.

Divergence σ2
g2

= 0.1 σ2
g2

= 0.6 σ2
g2

= 1 σ2
g2

= 10

FV % t % t % t % t
x10 98.5% 1656 100 % 1042 100% 835 100% 630
x100 90.5% 2532 97.0% 1781 98.5% 1912 100% 1186
x10000 60.5% 4020 84.5% 3303 85.5% 3394 95.5% 2522

Table 4: Frequency of asset 1 divergence and time needed

All in all, the price of asset 1 diverges 92.5% of the time. We get similar results with the dynamics
of asset 2. The market diverges faster and more frequently when σ2

g2 increases (see Table 5). Hence,
a higher chartists weight reinforces the effect of self-fulfilling prophecy. When chartists expect a rise,
they submit orders at a higher price, thus trading price increases and the chartists expectations come
true. The price enhancement is based on agents speculations and not on fundamental components.

In a market where only chartists interact the price could increase infinitely until one of them decides
to sell at a relative low price. This decision could be motivated by the explosive variance of the trading
price or a liquidity needed. If low price sellers are in minority, the market dynamics are, at best,
impacted for a short time. If a panicked rush appears, the price falls down for a longer time, until a
new bubble borns. The bubbles burst and bloom cyclically until the asset price exceeds the market
limits. In this kind of market, driven by self-fulfilling prophecies, the price is not informative (Fig. 8).

As an example for σ2
g2 = 0.1 and Divergence = 104, the average price is higher than 17000ECU ,

and a variance exceeded 109. The trading volume of asset 1 is around 300, which is approximately
similar to a market populated by fundamentalists with σ2

g1 = 10 (359) and half trading volume than a
market with σ2

g1 = 0.1 (710). The standard deviation of exchanging volume is, at least, 3 times higher
for the chartists-market (due to the destabilizing effect of chartists). The maximum volume of exchange
in a time-step is twice bigger than the fundamentalists-market: 26 versus 11.

The low aggregate trading volume of chartists may come from the computational method. Indeed,
the volume of exchange is only estimated with non-diverging markets – in a market where the price
doesn’t rise too much, it can be due to an illiquid market or a volatile one. For the few cases where the
market is not considered as diverging, the trading price is above the fundamental value 49% of time.
It verifies the explanation of cycles with bubbles burst and bloom.

Concerning the traders’ choice between market (MO) and limit order (LO), chartists submit less
MO than fundamentalists. This could be justify by a wide bid-ask spread and a relative short term
horizon. In any case, this result is in accordance with the microstructure theory. O’Hara and Easley
(1995) has pointed out that " the discretionary uninformed traders can increase liquidity (in the period
in which they trade) of the market". The submitters of limit orders are considered as provider of
liquidity. The informed traders capture this liquidity by submitting market orders. So, it is predictable
that fundamentalists submit more market orders than chartists. Moreover, we can expect that in an
heterogeneous market, the ratio of submitted market orders decrease, and the market liquidity increases
compare to a fundamentalists-market.
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(a) Asset 1: Trading price (σ2
f1

= 0.2) (b) Asset 2: Trading price (σ2
f1

= 0.2)

(c) Asset 1: Spread between the trading price and the
fundamental value on a shorter period 0-1000

(d) Asset 2: Spread between the trading price and the
fundamental value on a shorter period 0-1000

Fig. 8: Price dynamics in a market populated by chartists (σ2
g2 = 0.6)
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5.5 Tables and graphics

Table 5: Frequency of asset 1 divergence and time needed

Divergence σ2
g2

= 0.1 σ2
g2

= 0.6 σ2
g2

= 1 σ2
g2

= 10

FV % t % t % t % t
x10 98.5% 1656 100 % 1042 100% 835 100% 630
x100 90.5% 2532 97.0% 1781 98.5% 1912 100% 1186
x10000 60.5% 4020 84.5% 3303 85.5% 3394 95.5% 2522

Divergence=10 means that the trading price exceed 10 times the fundamental value at least once in the simulations
t = the average time needed for divergence

Table 6: Divergence table, when asset-1 diverges

σ2
f1

= 0.01

Divergence σ2
g2

= 0.6 σ2
g2

= 1 σ2
g2

= 10

10 99.5% 99.5% 100%
100 96% 97.5% 99%
10000 73.5% 83% 94%

σ2
f1

= 0.2

Divergence σ2
g2

= 0.6 σ2
g2

= 1 σ2
g2

= 10

10 99.5% 100% 100%
100 96% 98.5% 99.5%
10000 77% 83% 94.5%

σ2
f1

= 1

Divergence σ2
g2

= 0.6 σ2
g2

= 1 σ2
g2

= 10

10 100% 100% 100%
100 97% 98.5% 99%
10000 76% 81% 94%

For each σ2
g2
, 9 pools of trading rounds are simulated with different variance for the white noise of the fundamental

value (ft = ft−1 +N (0, σ2
f ) with σ

2
f = 0.01, 0.2, 1)

Table 7: Impact of components (σ2
f = 0.2)

Parameter σ2
g1

= 0.6 + f̂i σ2
g1

= 0.6, σ2
g2

= 1 + f̂i + β = 2

Average price 308.157 306.601 309.623 307.580 314.148
(Std. Err) (12.33) (3.70) (13.34) (6.04) (9.11)
Price variance 695.665 552.525 849.258 726.803 801.683

(227.26) (112.85) (223.35) (155.92) (334.26)
Mean spread 7.79 6.93 9.21 8.16 14.70

(4.58) (11.74) (6.09) (12.30) (15.80)
Spread interval [-72;+77] [-68; +77] [-98; +132] [-90; +115] [-93; +141]
Overvalued 61.44% 59.84% 62.15% 60.39% 66.83%
Liquidity 592.8899 573.1003 391.1416 392.1275 632.5406

(92.22) (33.32) (26.55) (21.38) (76.86)
MO (buy) 20.17% 20.64% 20.55% 20.77% 16.62%
MO (sell) 26.13% 25.06% 23.73% 23.22% 19.32%
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Table 8: OTP with σ2
f = 0.2

σ2
g1

= .6 σ2
g1

= 1 σ2
g1

= 10

Asset 1 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
price 308.1574 12.32511 308.5255 12.43877 308.7847 12.14842
variance 695.6651 227.2629 710.3875 245.5468 754.0125 245.0574
mean fv 300.3684 11.89047 300.6404 11.02654 300.6333 10.57084
volume 592.8899 92.22462 554.1616 70.9133 359.2986 46.13003
mean volume 0.0846986 0.0131749 0.0791659 0.0101305 0.0513284 0.00659
max volume 11.02806 9.170719 10.94757 6.253219 9.628196 6.97539
empty 0.0307221 0.0439115 0.0348336 0.0460844 0.0348007 0.0443637
overvalued 61.44% 0.0753254 61.44% 0.0738832 61.85% 0.0855326
mean spread 7.788996 4.584102 7.885097 5.147205 8.151459 6.281391
min spread -72.33428 8.516987 -72.69171 8.482047 -72.95131 8.329592
max spread 77.45177 6.372596 78.35316 6.433966 78.23292 8.157135
variance spread 648.9922 207.5843 666.5788 230.6979 702.8659 223.1803
means95 7.869221 4.670239 7.956016 5.264398 8.326653 6.382589
mins95 -40.52318 9.37619 -40.9088 10.46586 -44.06135 11.27737
maxs951 56.98935 12.31665 58.10474 12.68831 57.43411 13.31851
variances95 518.0513 176.0479 531.5191 192.232 564.9372 187.6149
Asset 2 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
price 310.4384 14.41455 309.6829 12.31885 309.1788 13.56409
variance 695.5531 267.0946 714.1698 237.3936 776.5419 271.0681
mean fv 300.9104 13.22514 299.6201 10.7646 299.1682 12.00967
volume 613.6832 156.6822 579.0842 143.0713 370.6732 105.7914
mean volume 0.087669 0.0223832 0.0827263 0.0204388 0.0529533 0.0151131
max volume 14.4399 10.52302 14.77144 9.396637 12.61206 6.8184
empty 0.0300579 0.0442258 0.0370929 0.0456139 0.0406014 0.047353
overvalued 64.04% 0.0873622 64.94% 0.0843774 64.08% 0.0894455
mean spread 9.528054 5.892816 10.06278 5.886229 10.01056 6.95305
min spread -73.41645 8.496879 -74.2861 7.131068 -74.22578 8.279589
max spread 78.76266 5.920565 78.93036 5.644677 80.62684 6.275525
variance spread 663.3532 241.2208 672.9731 212.7183 742.3849 260.2845
means95 9.644843 6.012068 10.231 6.012701 10.2157 7.098899
mins95 -39.22203 10.75663 -39.87547 10.63538 -42.48869 12.32808
maxs951 57.90253 12.26719 58.19551 13.06891 59.31074 12.56349
variances95 533.1659 208.8357 536.8655 180.1373 601.8252 228.8337
MO buy-1 20.17% 0.0188271 20.12% 0.0214991 20.19% 0.0242499
MO sell-1 26.13% 0.0193556 26.20% 0.0212283 26.21% 0.0248144
MO buy-2 19.70% 0.0230664 19.56% 0.0244686 19.60% 0.0267621
MO sell-2 26.81% 0.0231043 27.00% 0.0237113 27.11% 0.0272122
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Table 9: OTB with σ2
f1

= 0.2 and σ2
f2

= 1

σ2
g1

= .6 σ2
g1

= 1 σ2
g1

= 10

Asset 1 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
price 306.1534 3.463512 306.3909 4.428084 306.6645 4.943354
variance 557.3468 131.1669 567.7487 128.1391 618.8802 186.5933
volume 578.2245 31.8367 536.9683 33.07209 350.9792 25.6745
max volume 7.205507 4.983599 7.271991 4.155743 6.43139 3.839755
empty 0.0097464 0.0213598 0.0100921 0.0211485 0.0134243 0.0280378
overvalued 59.74% 0.1677892 60.10% 0.1824225 57.49% 0.1557758
mean spread 6.911655 12.32845 7.322211 13.05146 5.173439 11.53773
min spread -69.69829 13.87851 -68.97779 15.19092 -71.71536 13.62496
max spread 77.33325 14.94849 77.48692 14.6541 75.0051 13.00802
variance spread 604.4926 142.0178 615.7138 139.9558 663.056 191.6678
mean spreadEFV 0.9585063 11.68905 1.137591 12.01733 -1.263458 10.33704
min spreadEFV -16.12562 11.66179 -16.06191 12.56467 -18.0219 11.39867
max spreadEFV 18.04531 12.37507 18.28009 12.12234 15.47089 10.54068
variance spreadEFV 48.20557 33.40747 51.33188 38.64856 47.13037 42.22906
Asset 2 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
price 306.9574 4.857592 307.3198 4.740281 307.6364 6.105452
variance 554.5131 124.6286 546.4546 148.3676 610.1107 165.1104
volume 591.5599 104.284 545.064 98.79757 362.3642 78.3615
max volume 9.448241 6.288714 9.1585 5.0728 9.462259 7.067709
empty 0.0084321 0.0185964 0.0099371 0.0189447 0.0154214 0.0247669
overvalued 57.24% 0.337121 57.42% 0.334296 53.53% 0.3484412
mean spread 10.51849 58.13192 11.59553 60.38223 5.454497 56.81206
min spread -104.4057 60.1539 -103.0915 62.62739 -107.7331 58.155
max spread 117.198 61.72648 118.8464 61.65015 111.0119 59.30671
variance spread 1760.692 1047.526 1823.554 1307.714 1642.148 920.5805
mean spreadEFV 3.766442 58.18193 4.482041 60.67168 -1.915285 57.38136
min spreadEFV -65.32578 60.14335 -64.62811 62.65806 -66.80576 57.027
max spreadEFV 72.74141 59.81421 72.84327 60.14862 63.62937 58.75076
variance spreadEFV 1211.545 996.9575 1279.267 1242.215 1023.606 855.6559
MO buy-1 20.72% 0.0127661 20.73% 0.0156313 20.77% 0.0182882
MO sell-1 24.94% 0.0130618 25.05% 0.0165479 25.17% 0.0184851
MO buy-2 20.66% 0.0171273 20.54% 0.0162071 20.46% 0.0211096
MO sell-2 25.33% 0.0169755 25.44% 0.0169223 25.63% 0.0213242



30 Vivien LESPAGNOL, Juliette ROUCHIER

Table 10: Two-types market with myopic agent. σ2
g1 = 0.6 and σ2

g2 = 1

β = 0, σ2
f1

= σ2
f2

= 0.2

TTP TTB
Asset 1 Mean Std. Er. Mean Std. Er.
price 309.623 13.33735 307.580 6.040267
variance 849.258 223.3471 726.8023 155.9246
volume 391.1416 26.55105 392.1275 21.38328
max volume 8.123096 5.535868 6.525318 4.079126
empty 0.0118771 0.0111059 0.0068514 0.0087016
overvalued 62.15% 0.0817064 60.39% 0.152901
mean spread 9.217 6.093379 8.156 12.2993
min spread -98.574 25.37524 -90.252 27.31835
max spread 132.057 44.44724 115.275 41.7988
variance spread 804.3789 190.9701 767.7095 172.077
mean spreadEFV XXX XXX 0.825 10.62857
min spreadEFV XXX XXX -16.574 10.69423
max spreadEFV XXX XXX 18.169 12.00475
variance spreadEFV XXX XXX 50.32136 42.07813
Asset 2 Mean Std. Er. Mean Std. Er.
price 310.860 12.16608 309.691 7.112836
variance 947.3698 285.6258 778.3532 201.7131
volume 420.4131 75.1874 415.8279 65.98666
max volume 12.38223 6.11285 9.802436 5.959227
empty 0.0187443 0.0155055 0.0098757 0.0093289
overvalued 63.67% 0.0956571 61.59% 0.1764587
mean spread 10.548 7.088149 9.332 14.26773
min spread -110.418 24.05953 -95.646 25.73981
max spread 145.036 44.72508 128.776 41.6798
variance spread 913.5817 269.3361 815.5288 216.4183
mean spreadEFV XXX XXX -0.034 12.61678
min spreadEFV XXX XXX -17.304 13.32003
max spreadEFV XXX XXX 17.020 12.26027
variance spreadEFV XXX XXX 44.1114 34.73074
MO buy-1 20.55% 0.0106554 20.77% 0.0093301
MO sell-1 23.73% 0.0110661 23.22% 0.0095739
MO buy-2 20.51% 0.012634 20.56% 0.0118371
MO sell-2 24.27% 0.0125587 23.72% 0.0122481
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Table 11: Two-types market with myopic agent. σ2
g1 = 0.6 and σ2

g2 = 10

β = 0, σ2
f1

= σ2
f2

= 0.2

TTP TTB
Asset 1 Mean Std. Er. Mean Std. Er.
price 309.645 15.22974 309.288 10.85575
variance 1956.68 591.2399 1771.537 505.3346
volume 353.1909 31.70824 359.5172 25.59655
max volume 7.523469 3.864274 7.465332 4.121011
empty 0.0356364 0.0350324 0.0249586 0.0138739
overvalued 57.86% 0.0987944 58.02% 0.1550106
mean spread 9.580 10.39823 9.753 16.83569
min spread -142.921 25.00724 -138.842 29.81492
max spread 243.640 78.684 230.3917 74.51019
variance spread 1910.569 582.1038 1813.58 515.8413
mean spreadEFV XXX XXX 0.768 12.62883
min spreadEFV XXX XXX -19.384 13.306
max spreadEFV XXX XXX 21.280 12.97876
variance spreadEFV XXX XXX 56.97127 45.44262
Asset 2 Mean Std. Er. Mean Std. Er.
price 309.436 16.16384 308.833 10.64477
variance 2311.15 877.6242 1808.425 585.7817
volume 378.5888 62.57369 424.1773 51.19907
max volume 11.76656 5.955194 9.868778 4.701071
empty 0.0381564 0.0161272 0.0229529 0.0119421
overvalued 57.00% 0.1161541 56.94% 0.1359406
mean spread 8.390 13.24927 9.082 14.8614
min spread -149.588 22.47362 -139.976 25.73726
max spread 251.085 89.33567 223.124 71.53082
variance spread 2272.728 835.8982 1867.683 612.2452
mean spreadEFV XXX XXX 0.539 11.09187
min spreadEFV XXX XXX -19.180 11.22918
max spreadEFV XXX XXX 21.270 12.4479
variance spreadEFV XXX XXX 57.38593 42.02272
MO buy-1 19.91% 0.01346 20.10% 0.0104076
MO sell-1 22.39% 0.011808 22.13% 0.0103705
MO buy-2 20.51% 0.0136254 20.17% 0.0106023
MO sell-2 22.53% 0.0138985 22.17% 0.0103072
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Table 12: Two-types market with non-myopic agent. σ2
g1 = 0.6 and σ2

g2 = 1

β = 2, σ2
f1

= σ2
f2

= 0.2

TTP TTB
Asset 1 Mean Std. Er. Mean Std. Er.
price 314.795 15.44511 314.148 9.111996
variance 902.4987 396.3353 801.6831 334.2617
volume 617.0394 81.45461 632.5406 76.85992
max volume 20.66251 17.8293 20.13479 14.53847
empty 0.0153543 0.0153994 0.0132714 0.0133887
overvalued 68.77% 0.1205703 66.83% 0.1936148
mean spread 14.761 9.566618 14.704 15.80046
min spread -96.166 28.07585 -93.905 33.52497
max spread 142.326 46.79219 141.445 51.15623
variance spread 857.4721 374.2211 857.0026 370.3938
mean spreadEFV XXX XXX 1.018 11.98978
min spreadEFV XXX XXX -16.786 12.65067
max spreadEFV XXX XXX 18.544 12.47587
variance spreadEFV XXX XXX 53.58562 44.75238
Asset 2 Mean Std. Er. Mean Std. Er.
price 326.547 16.78076 325.308 13.47082
variance 1432.033 673.134 1334.09 759.1288
volume 710.5836 213.8777 760.9063 234.3343
max volume 31.0924 16.87446 31.98838 19.91671
empty 0.0345514 0.0286827 0.0266264 0.0184325
overvalued 76.55% 0.133096 73.90% 0.1690035
mean spread 26.751 12.05893 25.109 18.35389
min spread -114.198 23.42406 -109.162 26.22176
max spread 190.632 51.53113 177.906 54.00222
variance spread 1380.472 651.9696 1378.23 792.632
mean spreadEFV XXX XXX 0.644 12.16455
min spreadEFV XXX XXX -18.09 12.84863
max spreadEFV XXX XXX 19.532 13.09841
variance spreadEFV XXX XXX 55.80524 47.23891
MO buy-1 16.48% 0.011571 16.62% 0.0101137
MO sell-1 19.35% 0.0109981 19.24% 0.0103971
MO buy-2 15.35% 0.0132538 15.62% 0.0131221
MO sell-2 19.98% 0.0138066 19.92% 0.0121331
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Table 13: Two-types market with non-myopic agent. σ2
g1 = 0.6 and σ2

g2 = 10

β = 2, σ2
f1

= σ2
f2

= 0.2

TTP TTB
Asset 1 Mean Std. Er. Mean Std. Er.
price 315.087 16.98607 315.167 14.94488
variance 2609.926 1105.48 2287.299 873.6935
volume 465.7326 60.29947 486.1503 56.78002
max volume 16.48685 10.91818 17.94335 15.1951
empty 0.0342214 0.0179805 0.030465 0.0149577
overvalued 61.47% 0.1295715 61.90% 0.1602467
mean spread 15.581 15.18423 15.843 19.14285
min spread -143.546 27.16042 -140.049 29.04924
max spread 265.219 93.9506 247.705 76.04802
variance spread 2588.241 1084.544 2327.795 889.5185
mean spreadEFV XXX XXX 1.172 11.5666
min spreadEFV XXX XXX -18.966 12.2095
max spreadEFV XXX XXX 22.232 11.48083
variance spreadEFV XXX XXX 53.58916 38.04949
Asset 2 Mean Std. Er. Mean Std. Er.
price 328.902 21.07345 325.296 16.9841
variance 4071.31 3295.502 3125.436 1374.545
volume 557.2725 148.1856 618.7041 143.2585
max volume 25.26889 11.02454 22.013 10.33209
empty 0.0536886 0.0235475 0.0401043 0.0157431
overvalued 67.48% 0.1281061 66.86% 0.1482752
mean spread 28.35 19.27285 26.347 20.72252
min spread -148.941 23.38636 -142.411 25.78911
max spread 329.651 147.5279 294.439 85.96492
variance spread 4032.141 3308.326 3170.04 1413.612
mean spreadEFV XXX XXX 1.88 11.3333
min spreadEFV XXX XXX -19.091 11.54524
max spreadEFV XXX XXX 24.555 13.2024
variance spreadEFV XXX XXX 56.59346 47.42207
MO buy-1 16.36% 0.0112969 16.63% 0.0101674
MO sell-1 18.42% 0.0109538 18.36% 0.0102335
MO buy-2 15.71% 0.0113833 15.94% 0.011504
MO sell-2 19.02% 0.0123566 18.96% 0.0121034

Cohen et al. (1980) Duffy and Ochs (1999) Orléan (1995)
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