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Measurement and Classical Regime in Quantum
Mechanics

Guido Bacciagaluppi

Department of Philosophy, University of Aberdeen
and
Institut d’Histoire et de Philosophie des Sciences et des Techniques
(CNRS, Paris 1, ENS), Paris*

28 August 2011

In this article, I shall focus on two of the main problems raising interpre-
tational issues in quantum mechanics, namely the notorious measurement
problem (discussed together with the theory of measurement in section 4)
and the equally important but not quite as widely discussed problem of the
classical regime (discussed together with decoherence in section 3). The two
problems are distinct, but they are both intimately related to some of the is-
sues arising from entanglement and density operators, which are thus briefly
reviewed in section 2. A few fundamentals are rehearsed in section 1. The
article will aim to be fairly non-technical in language, but modern in out-
look and covering the chosen topics in more depth than most introductory
treatments.

The philosophy and foundations of quantum mechanics offer many more
examples of live research issues, and much progress has been achieved re-
cently in such traditional approaches as collapse theories, pilot-wave the-
ories and Everett interpretations, and in the (time-honoured but recently
revived) area of axiomatic reconstructions of the theory. Recent years have

*Address for correspondence: Department of Philosophy, University of Ab-
erdeen, Old Brewery, High Street, Aberdeen AB24 3UB, Scotland, U.K. (e-mail:
g.bacciagaluppi@abdn.ac.uk).



seen fascinating advances also in the study of the other great puzzle raised
by entanglement, namely quantum mechanical non-locality. No in-depth
coverage of these other topics will be attempted.

1 A few fundamentals

1.1 Phenomenology of measurements

In classical mechanics, measurements are idealised as testing whether a sys-
tem lies in a certain subset of its phase space. This can be done in principle
without disturbing the system, and the result of the test is in principle fully
determined by the state of the system. In quantum mechanics, none of these
idealisations can be made. Instead: (i) measurements are idealised as testing
whether the system lies in a certain (norm-closed) subspace of its Hilbert
space;! (ii) a measurement in general disturbs a system: more precisely (and
in the ideal case), unless the state of the system is either contained in or or-
thogonal to the tested subspace, the state is projected onto either the tested
subspace or its orthogonal complement (this is known as the ‘collapse’ of
the quantum state, or the ‘projection postulate’); (iii) this process is inde-
terministic, with a probability given by the squared norm of the projection
of the state on the given subspace (the ‘Born rule’ or ‘statistical algorithm’
of quantum mechanics).?

For instance, take a spin-1/2 system initially in the state
o) = al+z) + Bl=2) (1)

where |+,) and |—,) are the states of z-spin up and down. If we test for
x-spin-up (for the subspace P, ), the final state will be either |+,) with
probability |a|?, or |—;) with probability |3]?.

Often, one considers testing together a family of mutually orthogonal
subspaces.? Such a measurement is usually described as measuring a ‘self-

LA subspace is a subset that is closed under linear combinations. We shall assume
familiarity with the basic concepts of Hilbert spaces.

2Terminology varies, and sometimes the terms ‘collapse postulate’ or ‘projection pos-
tulate’ include also the Born rule.

3Note once and for all that we are not necessarily assuming that these subspaces are



adjoint (linear) operator’ (or ‘observable’)

A:ZaiPi 5 (2)

where the (real) numbers a; are called the eigenvalues of the operator A,
and are associated with the outcomes of the measurement. The P, are
the projectors onto the given subspaces.* These subspaces are called the
eigenspaces of A, and are the subspaces of all vectors |¢;) (the eigenvectors
of the operator) such that

Bilg) = 1¢) (3)
or equivalently

AlY) = agl;) . (4)

This is the origin of the traditional identification of quantum mechanical
observables with (self-adjoint) operators.®

The collapse postulate then states that upon measurement of A a state
|1b) will collapse onto P;|i) (suitably renormalised), with probability p; =
(1| P|v). The quantity

(A)y = (W]AJp) = (Y| Z a;Piy) = Zpl-ai (5)

is then the average value or expectation value of the operator A in the state
|¢). Note that unless the state is an eigenstate of the operator measured,
there is a statistical spread of results, i.e. the dispersion of A in the state

),
(AA)y = /(A%)y — (A)F (6)

one-dimensional. Alternatively, one can think of testing them in succession, in any order.
Explicit application of the collapse postulate and the Born rule will show that one will
obtain the same results with the same probabilities and the same final state, irrespectively
of the order in which the tests are performed.

4Linear operators are mappings on the Hilbert space (or a subspace thereof) that map
superpositions into the corresponding superpositions. The adjoint of a linear operator A
is a linear operator A™ such that (A*y|p) = (Y|Ag) for all vectors |¢), |¢) for which the
two expressions are well-defined. An operator is self-adjoint iff A = A*. A projection
operator P is a self-adjoint operator such that P2 = P. For ease of exposition, we shall
mostly confine ourselves to the case of operators with ‘discrete spectrum’ (the sum in (2)
is discrete), or even to finite-dimensional Hilbert spaces.

®Note that any self-adjoint operator can be decomposed uniquely into a sum (or more
generally an integral) of projectors onto a family of mutually orthogonal subspaces. This
is the so-called spectral theorem, which in elementary linear algebra is just the diagonal-
isability of self-adjoint matrices.




is non-zero.

The association between self-adjoint operators and families of mutually
compatible tests may seem purely conventional from the above description.
This is not quite so. Self-adjoint operators play a further role in quantum
mechanics, namely as (mathematical) generators of the unitary Schrodinger
evolution. Now, think of a Stern—Gerlach spin experiment. A Stern—Gerlach
magnet produces (approximately) a magnetic field that is inhomogeneous in
just one spatial direction. Classically, what such a magnetic field can do is
deflect along this direction a particle with non-zero magnetic moment, the
amount of the deflection being proportional to the magnetic moment itself.
In quantum mechanics, spin operators of the form

h h

S = §P+ — §P, (7)
(with Py and P_ the projection operators onto the ‘up’ and ‘down’ spin
states in some direction) will appear in the Schrodinger evolution that cou-
ples the spin of the particle to its position degrees of freedom, and the
deflection experienced by the particle will in fact be proportional to the
eigenvalue —i—% or —g. In this sense, the measurement is indeed sensitive to
the eigenvalues of the corresponding spin operator, and not just to the pro-
jections of the state on the mutually orthogonal eigenspaces.® This closer
relation between a measurement and a single self-adjoint operator will be
lost in the case of the generalised measurements discussed in section 4.4.

1.2 Minimal interpretation and standard interpretation

The above phenomenological rules yield a minimal interpretation of the for-
malism: some laboratory procedures are taken to be state preparations, and
others are taken to be tests. Quantum mechanics yields probabilistic rela-
tions between states and outcomes of tests (Born rule). And, depending on

®Incidentally, note that whether a (classical or quantum) particle moves up or down in
a Stern—Gerlach magnetic field will depend also on whether the inhomogeneous magnetic
field is stronger at the north pole or at the south pole. Inverting either the gradient or
the polarity of the field will invert the direction of deflection of a particle. (Since rotating
the apparatus by 180 degrees corresponds to inverting both the gradient and the polarity,
it has no net effect on the deflection.) Thus the choice of the words ‘up’ and ‘down’ for
labelling the results is rather conventional. (The existence of these two different set-ups for
measuring spin in the same direction is crucial in discussing contextuality and nonlocality
in pilot-wave theory.)



their outcome, tests are associated with further (preparatory) transforma-
tions of the state (collapse postulate). To be sure, the terms ‘preparation’
and ‘test’ (or ‘measurement’) are phenomenological, but in the cases in which
we (or the working physicist) would normally apply them, any fundamental
approach to quantum mechanics must allow us to recover the usual predic-
tions of the theory, including in particular the fact that future predictions
will depend on the previous outcomes in the way specified by the collapse
postulate.

A common alternative interpretation of the formalism (often called the
‘standard’ or ‘orthodox’ or ‘quantum logical’ or ‘Dirac-von Neumann’ inter-
pretation: we shall adopt the first of these terms) takes it that a quantum
system has certain properties also independently of measurements, namely
properties corresponding to tests that the system passes with probability 1.
These properties, which are uniquely fixed by the quantum state, can be
further identified either with the state itself (or rather the one-dimensional
subspace spanned by the vector state) — as is standardly done in the quan-
tum logic literature, most explicitly by Jauch and Piron (1969) — or with
an eigenvalue associated with that vector (hence also the name ‘eigenstate-
eigenvalue link’, due to Fine (1973), for this interpretational rule).” For
instance, an electron in a state of spin up in the z-direction will have a
property corresponding to the vector |+,), or, simply, a value —i—% for spin
in the x-direction. According to the standard interpretation, a collapse of
the quantum state is thus an actual change in the properties of the quantum
system.

Assuming that quantum mechanics is meant to apply to any physical
system whatsoever, and that there should not be a fundamental difference
in the way it is interpreted across different domains, intuitions from the mi-
croscopic and the macroscopic domains of application of the theory will pull
in different directions. Applying the minimal interpretation to macroscopic
systems would mean that such systems will merely appear to have certain
properties if measured (the Moon is not there until we look). In this do-
main, something like the standard interpretation would seem more natural

"Note that already according to the minimal interpretation, a quantum system de-
scribed by a vector in Hilbert space has a set of dispositional properties to elicit specific
responses with given probabilities in measurement situations (and these are fixed uniquely
by the sure-fire disposition to elicit a certain response with probability 1 in a suitable mea-
surement). The standard interpretation further identifies this set of dispositions with an
intrinsic property of the system.



(at least prima facie). On the other hand, applying the standard interpre-
tation to the microscopic domain would mean that measurements appear to
induce a discontinuous change in the properties of a microscopic system, in a
way that is not necessarily compatible with the Schrodinger equation. This
tension is the origin of the measurement problem of quantum mechanics
(which we shall eventually discuss in section 4.6).

Obviously, the minimal interpretation is an instrumentalist interpreta-
tion, while the standard interpretation involves an ontological commitment
to the quantum state. The former could be seen as a stripped-down version
of some historically more accurate reading of the ‘Copenhagen interpreta-
tion’. Note also that, while Schrédinger clearly had an ontological commit-
ment to the wave function, it is not clear that it could be phrased in the
abstract terms of the standard interpretation. He appears to have rather
been interested in the 3-dimensional manifestation of his wave functions, in
particular in terms of charge density (see also section 3 below). Something
like the standard interpretation instead may have been adopted by both
Dirac and von Neumann.

2 Density operators and reduced states

2.1 Density operators

Vectors in Hilbert space, as we have seen, define probability measures over
the results of measurements of quantum mechanical observables. Indeed,
up to phase factors, the association between unit vectors and such proba-
bility measures is one-to-one, since it is clear that if two unit vectors differ
by other than an overall phase factor, there will be at least one test (the
projection onto the subspace spanned by one of them), for which they will
define different probabilities.®

To get rid of overall phase factors, we can also identify a quantum state
defined by the vector |¢) with the one-dimensional projection operator onto
|1), denoted by |1) (1|, i.e. the linear mapping that takes any vector state

8Note that thinking of Hilbert-space vectors in terms of their associated probability
measures also makes readily intelligible why one considers only unit vectors. Indeed,
normalisation of the vector ensures that the probabilities are correctly normalised, i.e.
add up to 1.



|p) to the state (|p)|1)) (the state |¢) multiplied by the complex number
(1|¢)). This can be suggestively written as

()Wl [e) = [N (le) - (8)

This identification is particularly useful if one wishes to generalise the notion
of a quantum state further. Indeed, it is clear that the probability measures
defined by vectors in Hilbert space will not be the most general such prob-
ability measures. The set of these measures ought to be a convex set, i.e.
closed under convex sums.

One can write a convex sum of two states corresponding to projection
operators, say onto |11) and |¢) as the operator

p = p1|Y1)(P1] + palib2) (Y2 (9)

that maps any vector |¢) to the superposition

p1{Y1lp) 1) + p2(talp)|iba) | (10)

with p; + p2 = 1. We can now write the corresponding probability for the
system passing a certain test represented by the projection P as

pp(P) = Tr(pP) . (11)

Here Tr(pP) is the symbol for the so-called trace of the operator pP, defined
for any operator A as

Te(A) = > (il Alvs) (12)

(2

with the [1/;) forming a basis of the Hilbert space.’

As already mentioned in section 1.1, operators of the form Al) = a;|v;)
can be used to classify simultaneous experimental tests for families of mutu-
ally orthogonal subspaces. A system will test positively to only one of these
tests, and to this test can be associated an eigenvalue of the corresponding
operator. Since Tr(pP;) is the probability for the outcome ¢ in a test of P;,
the expression

Tr(pA) = 3 aTe(pP) (13)

9One can check that the definition of the trace is indeed independent of the basis. In
finite dimensions and given a matrix representation of A, the trace is simply the sum of
the diagonal elements of the corresponding matrix.




is equal to the expectation value of the self-adjoint operator A.

The operator p is known as a density operator, because in the expression
(11) it plays a role similar to that of a probability density. Note that the one-
dimensional projection operators are the extremal elements of the convex set
of density operators, those that cannot be decomposed further in terms of
convex combinations of other density operators.

Now, it is a deep theorem due to Gleason (1957) that the states defined
by density operators are the most general probability measures that can be
defined over the possible tests that can be (ideally) performed on a quantum
system. A probability measure in Gleason’s sense, as one would expect, is
a positive, normalised mapping that in the finite-dimensional case is addi-
tive and in the infinite-dimensional case o-additive for families of mutually
orthogonal projectors.'®

Quantum mechanical states in the sense of density operators can be
alternatively characterised as the most general (linear) expectation value
functionals on the self-adjoint operators. This is actually what von Neumann
shows in what has come to be known as his no-hidden-variables theorem (von
Neumann 1932, pp. 305-24 of the English translation). More precisely, von
Neumann takes a state s to be an assignment of an expectation value to
each self-adjoint operator A, subject to a continuity requirement (which is
vacuous in finite dimensions), a trivial normalisation requirement s(1) = 1,
and a linearity requirement

s(A+ B) = s(A) + s(B) (14)

for any two observables A and B. He then proves that the only such ex-
pectation functionals on the self-adjoint operators are of the form Tr(pA),
with p a density operator. That is, the most general states in this sense are
indeed the quantum mechanical states.

Von Neumann took this result as showing that there could be no more
precise description of ensembles of quantum mechanical systems (in partic-
ular no states with zero dispersion for all observables), and thus as ruling
out ‘hidden variables’. Note, however, that von Neumann himself explic-
itly points out that assumption (14) is natural in the context of commuting

ONormalisation means p(1) = 1, with 1 the identity operator, i.e. the projection onto
the whole of the Hilbert space. The theorem holds for quantum systems with Hilbert
space of dimension at least 3 (but see the remark at the end of section 4.4 below).



observables (where we see it is analogous to Gleason’s additivity require-
ment), but is a very non-trivial assumption in the case of non-commuting
ones (pp. 308-9). As noted forcibly by Grete Hermann (1935), this vitiates
his conclusion about hidden variables.!!

A very simple geometrical intuition for the convex structure of density
operators in the case of spin-1/2 systems can be gained as follows. Imagine
mapping each state of spin-up in the direction r to the corresponding unit
vector in three spatial dimensions,

r=| ny . (16)

This mapping between the vector states of a spin-1/2 system and the unit
sphere is a bijection (one-to-one and onto). It turns out that it can be
extended to an affine isomorphism, i.e. a map that preserves convex combi-
nations. What this means in particular is that for any two vector states |1))
and |p), which are mapped onto unit vectors r and s on the sphere, we can
map the density operator

p =)+ (1 = Nle) el (17)

to the point Ar+ (1 —\)s in the interior of the unit ball in three dimensions.

This representation is known as the Bloch sphere or the Poincaré sphere.
We can use it to establish geometrically many propositions about density
operators. Here are a few examples. Density operators can be decomposed
non-uniquely as convex combinations of vector states, in fact in infinitely
many ways, and as combinations of arbitrarily many vector states (even
continuously many). On the other hand, for each density operator, there
is generally a unique decomposition as a combination of spin-up and spin-
down in a single direction (as a combination of antipodal points on the

"The relevant section 7 in Hermann’s essay has been translated into English by
M. Seevinck (see http://mpseevinck.ruhosting.nl/seevinck/trans.pdf). The same point
was famously made by Bell (1966), who further pointed out the absurdity of requiring
linearity of the hypothetical ‘dispersion-free states’ (which would have to assign an eigen-
value to each observable as a definite value). Bell uses the following example: consider
the operators 0., oy and o, + 0. For a linear, dispersion-free state A,

(0w + oy)x = (oz)r + (Ty)x - (15)

But the left-hand side takes the possible values /2, while the right-hand side takes the
possible values —2,0, +2, so that (15) cannot be satisfied.



sphere).!? The only exception is the state that lies at the centre of the

ball, which is the equal-weight combination of up and down states in any
direction (‘maximally mixed’ state). We also see that the only states that
are extremal (also called pure states) in the convex set of density operators
are indeed the vector states that map to the unit vectors on the sphere.

2.2 Proper and improper mixtures

The non-uniqueness in general of convex decompositions of a density oper-
ator is one of their most striking features, and a major difference between
probability measures in quantum and classical mechanics.

Also in classical mechanics one can introduce states that are convex
combinations of the pure states defined by points in the phase space (which
correspond to trivial — or ‘dispersion-free’ — probability distributions).
These general states are simply probability measures over phase space. But
it is always possible to decompose a classical probability measure uniquely
as a convex combination of extremal states (a convex set with this prop-
erty is known as a ‘simplex’). Indeed, both mathematically and physically,
when we deal with a probabilistic state in classical mechanics, we are always
dealing with a statistical mixture of non-probabilistic states, i.e. probabili-
ties arise through our ignorance of the actual pure state of the system, and
any statistical distributions of measurement results are attributable to this
same ignorance. There is no possible ambiguity, since the space of classical
probability measures is a simplex.

In quantum mechanics, things are different. Even though formally den-
sity operators can always be written as ‘mixtures’, i.e. as convex combina-
tions of pure states, at the very least their non-unique decomposability will
introduce an ambiguity in their interpretation. Assuming that in some case
a density operator has arisen through our ignorance of the actual pure state
of the system, this is not manifest in the form of the density operator. We
might know that the spread of results observed in our tests is partly due
to our ignorance of what the quantum state actually is, and partly due to
the probabilistic nature of the vector states themselves, but knowledge of
how to thus ‘apportion the blame’ is knowledge in excess of that encoded in

12Technically, a density operator (in arbitrary dimensions) is a ‘compact operator’, and
for such operators a discrete (if not necessarily finite) decomposition as a sum of mutually
orthogonal projectors always exists.
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the density operator itself. It corresponds formally not just to the density,
but to a particular convex decomposition. Unlike the classical case, this
decomposition cannot be uniquely retrieved from the state alone.

This feature of quantum mechanical ‘mixtures’ is essential to the ques-
tion of how they should be understood, especially in the context of our
distinction between the minimal and standard interpretations of the the-
ory. There is, however, an even more essential issue for the question of how
to understand density operators. Of course, density operators can arise as
genuine statistical mixtures of pure quantum states (for instance a state ob-
tained by randomly mixing systems prepared in different pure states). This
is generally referred to as a proper mixture. So, for instance, if we know that
a measurement of spin-x on an electron has been actually carried out, but
we are ignorant of the result, then we should apply the collapse postulate,
but average over the results (so-called non-selective measurement). In this
case we will have a proper mixture of the states |+,) and |—,) due to igno-
rance (we do not know which state we should actually best use for further
predictions).!3

However, there are other cases in which density operators arise that are
not thus related to our ignorance, namely as so-called reduced states, states
of subsystems of a larger system described by an entangled pure state.

Indeed, the phenomenological rules sketched in section 1.1 (collapse pos-
tulate and Born rule) turn out to have surprising consequences when applied
to the case of entangled states. Take a singlet state of two spin-1/2 systems

(el -he ). (18)
and test for P}m ® P_%x. The test will come out negative with probability
1, and the state will be undisturbed, since it lies in a subspace orthogonal
to the tested one. Now test for P{ ® P2 . The result will be [+1) ® |-2)
or |—1) ® |[+2), each with probability 1/2. In this case, we see that the re-
sults of the spin measurements performed on the two electrons are perfectly
(anti-)correlated. Correlations, albeit weaker, will be observed quite in gen-
eral if spin is measured along two different directions on the two subsystems

1BOf course the collapse postulate is a phenomenological rule, so if one does not believe
that collapse is fundamental, there is a sense in which proper mixtures cannot be prepared
in this way. Nevertheless, any fundamental approach to quantum mechanics, even if it
denies the reality of collapse, will have to explain the appearance of the possibility of
preparing proper mixtures, just as it will have to explain the appearance of collapse.

11



(as can be easily checked explicitly). Entanglement thus introduces what
appear to be irreducible correlations between results of measurements (even
carried out at a distance), and this for a generic pair of tests. This is the
origin of nonlocality in quantum mechanics.

On the other hand, performing a measurement (or any other manipula-
tion) on one of a pair of entangled particles does not affect the probability
distributions for results of measurements on the other. This is the so-called
no-signalling theorem. (That is, while conditionalising on the outcomes of
one measurement in general affects the probabilities for the other, condi-
tionalising on performing the measurement does not.) It is easy to see this
in the example: we have perfect anti-correlations between outcomes on the
two sides, but averaging over the outcomes on one side yields back the usual
50-50 distribution on the other side. By explicit calculation, one can check
the claim in the general case, i.e. for measurements along different spin di-
rections on the two sides.

The no-signalling theorem is crucial to our purposes, since it allows us
to generalise the description of quantum systems to subsystems of entangled
systems. Indeed, although such subsystems cannot be associated with any
vector in their Hilbert space, we can assign them a suitable probability
measure for each test we may want to carry out on them, because the no-
signalling result guarantees that the probability of such a test is well-defined
independently of whether any test (or which one) is carried out on the rest of
the system. So, we can define a probability measure for a test on a subsystem
by simply taking the marginal of the probability measure associated with
the entangled state of the total system when the relevant test is paired with
an arbitrary test on the rest of the system. But now, because of Gleason’s
theorem, we know that such a state must be given by a density operator.

Let us see this in a concrete example. Suppose we wish to define the
probability for a measurement of spin-x on one of a pair of spin-1/2 systems
in some arbitrary entangled state. We can write the state of the pair as

gy [H3) @2+ oy |[+3) @] —2) +a—y |- ) ®+2) +a—_|-1)®|-2) . (19)

If we were to measure spin-x on both electrons of the pair, the resulting
Born-rule probabilities would be

prv =lars” pro=la P pp=lag po=la|?,
(20)

12



and averaging over the results for the second electron, we obtain
py = lapiP o P and  po=la P tla P (21)

In this way, one can determine the probabilities for arbitrary tests on the
first (and similarly on the second) electron, and so associate with it a state in
Gleason’s sense (a probability measure for any family of mutually orthogonal
projections), even though it is not described by a vector in Hilbert space.

A more compact way of thinking of such a state is in terms of a con-
vex combination of the states that one would obtain through the collapse
postulate were one to perform a measurement on the other electron. So,
for instance, if one were to perform a measurement of spin-z on the first
electron, one would obtain the two (normalised) states:

1 1
(el rarthel-h) = e (e el ta|-D)

(22)

and

1 1
2:(a—+’—§:>®’+§>+a_—’—:}:>®‘_i>> = E’—i>®<a_+®]+i>+a__‘_i>> )
(23)
Writing

[hy) = opy ® |+2) + ap_|—2) (24)

and
V=) = oy ® [+3) +a—|-3) (25)

we see that the state of the second electron would collapse to |¢4) or [1)_)
with the probabilities p4 and p_ (defined by (21)), respectively.

We can now determine the probabilities for any tests on the second
electron by taking the weighted average of the probabilities defined by |14 )
and |¢_), with the weights p4 and p_, respectively. We call this the reduced
state of the second electron, and write it formally as

p =P+ |V ) (s | + o[- ) (Y] . (26)

This representation makes it explicit that a reduced state is a density
operator. Furthermore, the no-signalling theorem shows us explicitly that
the representation (26) cannot be unique. If a different measurement were
to be carried out on the first electron, then the states (24) and (25) would

13



have to be different, if the total state is entangled, and the corresponding
probabilities would generally also be different. As a simple example, take
the singlet state (18). Measuring spin in direction r on the first electron
will collapse the second electron into a state of spin in the same direction r,
whatever this might be, due to the rotational symmetry of the state. Thus,
the reduced state of an electron from a pair in the singlet state will have the
form

p= 5l + 5l (27)

(in the case of the singlet the probabilities for the different results will always
be equal to 1/2) and will be independent of r.**

How are we to interpret density operators arising as reduced states of
entangled systems? Certainly not as proper mixtures! Indeed, if a composite
quantum system is in a pure entangled state, this state cannot be further
decomposed as a weighted average of other quantum states, so cannot be
interpreted in terms of ignorance. But then, neither can the states of the
subsystems be interpreted in terms of ignorance, despite the fact that the
subsystems are necessarily described by density operators. Contrapositively,
were the subsystems themselves in pure states (and we ignorant of which
pure states they were in), then the composite would be in a mixed state,
because it would actually be in a product state (but we ignorant of which
product state it was in).

A mixed state arising as the reduced state of a subsystem, where the total
system is in a pure state, is generally referred to as an improper mizture. The
reduced state of an electron from an entangled pair is a paradigm example
of an improper mixture, so that a decomposition such as (26) should not be
taken as indicating that the system is indeed either in the state |¢)4) or in
the state |1)_).

At least from the point of view of the minimal interpretation, there is
nothing especially problematic about this. Quantum systems have disposi-
tional properties to elicit certain outcomes under certain test circumstances,
irrespectively of whether we seek to explain them further. If we do seek to
explain these further, the case of subsystems of entangled systems will turn
out to be particularly tricky, but from the point of view of the minimal
interpretation it is perfectly natural for subsystems of entangled systems to
have such dispositional properties. The only aspect of note is that in the

1 Geometrically, this is the maximally mixed state at the centre of the Bloch sphere.

14



case of such subsystems we explain the distributions over outcomes purely
in dispositional terms (just as in the case of systems in pure states), while in
other cases, we may have reason to analyse the distributions over outcomes
partially in terms of ignorance.

Instead, the existence of entanglement and reduced states has rather dis-
quieting consequences for the standard interpretation. Indeed, if the system
is neither in the state [¢)4) nor in the state [¢)_) (nor in any other state that
might appear in a convex decomposition of the density operator of the sys-
tem), then the system simply lacks any of the properties that in the standard
interpretation are associated with these states. We can still apply the stan-
dard interpretation and associate properties of the system with tests that
the system willl pass with probability 1. In general, however, these proper-
ties will no longer correspond to one-dimensional subspaces of the Hilbert
space, but only to higher-dimensional ones (the name ‘eigenstate-eigenvalue
link’ becomes a bit of a misnomer in this case).! In extreme cases, such
as with two entangled electrons (where each electron’s spin space is itself
only two-dimensional), the individual electrons will have no non-trivial spin
properties: the only test they pass with probability 1 is the trivial one testing
the projection onto the whole of the Hilbert space!

2.3 The bit commitment problem

We shall conclude this section with an example illustrating both the notion
of density operators, and some of the mystery surrounding entangled states.
Because a mixed state characterises all statistical predictions of quantum
mechanics for measurements on a system, it is impossible, by means of
measurements performed on that system, to distinguish whether a density
operator corresponds to a proper mixture or an improper mixture, or which
proper mixture (if any) it corresponds to. This can be illustrated with an
example from quantum information theory, the so-called bit commitment
problem.

The problem is as follows: Alice commits herself to sending Bob a definite
bit of information (0 or 1). She then sends it, and Bob receives it. How can
he make sure that what she sends is, indeed, what she had committed herself

5 Technically, these are all those subspaces that contain the (norm-closed) range of the
density operator, i.e. the (norm-closure of) the subspace of all vectors that are images of
vectors under the linear mapping defined by the density operator.

15



to? (In whatever scheme we devise we must additionally ensure that Bob
does not infer the actual bit of information any sooner than when Alice in
fact sends it.) Example: Alice and Bob are on the phone, and they decide
to bet on something. First Alice tosses a coin. Then Bob chooses heads or
tails. Finally, Alice tells him whether it was heads or tails that had come
up. The protocol is fair (or safe) if Bob is sure that Alice does not lie and if
Alice is sure that Bob did not know the outcome of her toss before he chose
heads or tails.

There is an obvious classical solution to this problem (assuming Bob is
not an expert lock-picker): Alice writes the result of her toss on a piece of
paper (1 for ‘heads’, 0 for ‘tails’), puts it into a safe, sends the safe to Bob
but keeps the key. After Bob has chosen heads or tails, Alice sends the key
as well. The question is now whether there is a quantum solution to this
problem that is rigorously fair (and could be implemented by sending just
a few electrons instead of keys and safes).

Here is an attempt to realise this. (One could also phrase it in terms of
polarisation states of photons, in which case Alice could send them along
a more or less standard optical fibre as used in telecommunications.) Alice
takes some random sequence of zeros and ones, say 1100010101110010. ..,
and prepares a collection of electrons as follows. If the result of her coin toss
(her ‘bit commitment’) is ‘heads’, she prepares the electrons one after the
other as spin-up (for 1) and spin-down (for 0) in the z-direction; if her result
is ‘tails’, she does exactly the same, but with spin states in the y-direction.
She then sends the electrons, in sequence, to Bob.

At this point, Bob has an ensemble of electrons. We assume he knows
that Alice has prepared them either in x-spin states or in y-spin states, but
since the sequence is random, there are as many up states as down states
on average. Since further

() el ) = 5 (G H ) @)

the ensemble is characterised by the maximally mixed state, irrespective
of whether Alice had got heads or tails. As this characterisation gives the
maximal information Bob can extract from the ensemble by making mea-
surements, he has no way of telling whether Alice has prepared the electrons
in x- or y-spin states.

At a later stage, Alice tells Bob which way she had prepared the elec-
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trons, together with the random sequence she used. Now Bob can actually
check whether Alice is telling the truth. Indeed, if he makes a sequence of
measurements on the electrons, in the order they were sent, then, if the di-
rection of his measurements is the same as the one in which they have been
prepared, say x, he will reproduce the random sequence told him by Alice;
but if the direction of his measurements is the other one, say y, then he will
obtain a completely new random sequence which is unrelated to the first
(and which Alice could thus not have anticipated). Thus, the fact that no
information on top of that provided by the density operator is available, in
particular about how a proper mixture has been prepared, provides a ‘safe’
in which the actual information about the result of Alice’s toss is inaccessible
without a ‘key’.

But the same fact gives Alice also the possibility of cheating. Instead of
sending Bob one of the two above proper mixtures, Alice can send him, say,
the right-hand electrons from an ensemble of pairs prepared in the singlet
state. Since it is impossible for Bob to tell whether the state he receives,
namely again the maximally mixed state, is a proper or improper mixture,
he sees no difference between this case and the previous case. But in this
situation, Alice can wait for Bob to choose heads or tails and then perform
a sequence of, respectively, spin-z or spin-y measurements, tell Bob she
had done that before sending him the electrons (as a way of preparing the
corresponding proper mixture by way of collapsing the state), and tell him
the sequence of results she obtains (exchanging ones and zeros). Since results
of spin measurements on pairs of electrons in the singlet state are perfectly
anti-correlated, when Bob measures his electrons, he obtains, indeed, the
sequence Alice has told him, not suspecting that Alice has just then collapsed
the electrons into the states he measures.

Thus, the indistinguishability of proper and improper mixtures prevents
Bob from finding out that Alice is cheating, while the objective difference
between proper and improper mixtures (namely, in terms of the state of the
composite system) makes all the difference for Alice in enabling her to cheat
in the first place!

This situation turns out to be extremely general. If a protocol for bit
commitment is based on the idea that a density operator could be one of
two different proper mixtures, which information is then disclosed later on,
then there always exists a cheating strategy based on the fact that this same
density operator could be an improper mixture. This result is called the no-
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go theorem for safe bit commitment protocols (Lo and Chau 1997, Mayers
1997).

3 Classical regime and decoherence

The problem of the classical regime is the question of whether and how the
sweeping success of classical physics (in particular on the macroscopic scale)
can be explained in quantum mechanical terms. While in the philosophical
literature it is the measurement problem that usually takes pride of place, the
problem of the classical regime is equally important in assessing the empirical
adequacy of quantum theory and its interpretations. In this section we shall
look at this problem as it is generally viewed today, through the eyes of
decoherence theory. To fix the ideas, however, we start with a couple of
early examples of work related to this problem.

Schrodinger (1926) contributed a seminal paper on the classical regime,
in which he showed that Gaussian wavepackets for the harmonic oscillator
maintain their shape and size (narrow in both position and momentum) and
follow the trajectories predicted by Newtonian mechanics. He believed this
provided the model for the relation between ‘micromechanics’ and ‘macrome-
chanics’. Another early treatment of ‘classical’ trajectories was given by
Heisenberg (1927) in his analysis of a-particle tracks as emerging through
repeated collapse of the wave function in a bubble chamber. An alterna-
tive treatment of a-particle tracks was given by Mott (1929), who showed
that the wave function of the combined system of a-particle and gas was
concentrated on configurations in which the gas was ionised along straight
lines.

These examples (at least in hindsight) represent rather different ap-
proaches to understanding the problem of the classical regime, characterised
by different (or potentially different) interpretational approaches. Schroding-
er had an ontological commitment to the wave function. At the time, he
thought of it as representing (or manifesting itself as) a charge density in
3-dimensional space. Thus, in order to recover a classical regime, it is es-
sential in a Schrodinger-like approach to identify quantum states that are
both kinematically and dynamically like classical states, i.e. for which the
classical quantities such as position and momentum are both approximately
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well-defined and evolve in an approximately classical manner.'©

As for Heisenberg, it appears that at the time he did not even believe
in the existence of wavefunctions, but only in the transition probabilities
between values of (measured) quantum mechanical observables.!” For such
a view, it is essential that the transition probabilities defined by the Born
rule reduce approximately to 0 or 1 for results of measurements performed
along classical trajectories. Thus, such an approach (if applied consistently
throughout, in particular up to the macroscopic scale) arguably aims at an
instrumental recovery of the predictions of classical mechanics.

The standard interpretation and the minimal interpretation of quantum
mechanics that we have introduced in section 1.2 can be seen as sanitised
versions of the approaches by Schrodinger and Heisenberg, respectively. In-
stead, Mott’s treatment is an early example of a decoherence analysis, in
which no collapse need be invoked to destroy the interference between the
wave components corresponding to the different trajectories. As I see it,
a decoherence-based approach is best viewed as interpretationally neutral,
but as providing a very powerful tool for any approach to the problem of
the classical regime.

A beautiful example of the importance of the problem of the classical
regime for foundational issues is given by Einstein’s (1953) contribution to
the Edinburgh Festschrift for Max Born. Einstein describes a macroscopic
ball (of Ilmm diameter), bouncing elastically to and fro inside a box along the
direction . The wavefunction of the ball is given by a standing wave, which
fills the entire box, and has a similarly spread-out distribution in momentum.
According to Einstein, Born’s statistical interpretation provides an adequate
description of the situation for an ensemble of systems (at least according
to his own reading of Born). However, an individual ball must have a well-
defined macroscopic state, and that is not described by the wavefunction.
To the objection that the Schrodinger equation has other solutions, that are

18Tt is important to add that, at least by 1927, Schrodinger was well aware that this
‘charge density’ was mot simply a classical charge density, but a quantity that would
(approximately) behave as a classical charge density only in certain respects and/or in
the appropriate regime. See in particular his contribution to the 1927 Solvay confer-
ence (Schrodinger 1928), and also the discussions in Bacciagaluppi and Valentini (2009,
chapter 4, esp. section 4.4) and Bacciagaluppi (2010, esp. section 4).

17See in particular Born and Heisenberg’s contribution to the 1927 Solvay conference
(Born and Heisenberg 1928), and the discussions in Bacciagaluppi (2008), and Baccia-
galuppi and Valentini (2009, esp. chapters 3 and 6).
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sufficiently localised in position and momentum, Einstein replies that these
solutions will spread out in time. FEinstein considers also two attempts at
interpretation of the wavefunction alternative to Born’s. One is de Broglie-
Bohm theory, in which a particle will have a well-defined trajectory guided
by the wavefunction.'® In Einstein’s example, however, the velocity of the
ball will be equal to zero, so that, in Einstein’s view, de Broglie-Bohm
theory fails to provide the correct macroscopic description of the ball as
bouncing to and fro inside the box. The other one is Schrodinger’s idea of
the wavefunction literally describing a wavelike nature of material particles
(which in some form Schrédinger had recently returned to). In this case,
however, even the macroscopic ball is a wavelike object filling the whole box,
and Einstein’s verdict is that also Schrodinger’s reading of the wavefunction
fails to do justice to the classical regime. Einstein’s own conclusion is that
a statistical interpretation of the wavefunction in the sense he attributes to
Born is the appropriate interpretation to give to the theory.

3.1 Coherent states and Ehrenfest’s theorem

The first question we shall discuss now is the sense in which one could
talk of a quantum state as being approximately classical and behaving ap-
proximately classically, in the special case of pure quantum states. The
obvious candidates are wavefunctions with a small spread both in position
and in momentum (small compared to some macroscopic scale). This was
Schrodinger’s initial guess as to the appropriate candidates for the descrip-
tion of classical particles in quantum mechanics.

The Heisenberg uncertainty relations give a lower bound for the prod-
uct of the spreads in position and in momentum, but for sufficiently massive
(‘macroscopic’) systems, this in itself is a very small limitation. For instance,
it is compatible with the uncertainty relations that a system have a spread
in position of 10"*3cm and a spread in momentum of 10~ *3gcm/s. If the
system has a (macroscopic) mass of 1g, the latter corresponds to a spread in
velocity of 107!3cm/s. If we are merely interested in describing our system
on such a macroscopic scale, we can reasonably say that the system has
both a well-defined position and a well-defined momentum. Note that such
a wavefunction will typically be non-zero everywhere both in position space

8Recall that Bohm (1952) had recently rediscovered and extended the pilot-wave theory
by de Broglie (1928).
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and in momentum space. ‘Small spread’ means that the ‘bulk’ of the wave-
function is localised. Indeed, it is well-known that those wavefunctions that
attain the lower bound given by the uncertainty principle are Gaussian wave
packets (i.e. they have the shape of Gaussian bell curves when represented
either as functions of position or as functions of momentum), and as such
have infinite ‘tails’.*®

It is obvious, on the other hand (as in Einstein’s example), that even for
very massive systems there are states with macroscopically large spreads.
For instance, take 11 and 19 to be two quantum states of a macroscopic
system with very small spreads, but with macroscopically different average
values of position and momentum, say x and p in one case, ' and p’ in the
other. Then the state 1/v/2(11 +12) will have spreads of the order of |z — 2’|
and |p — .

An obvious question is thus whether states with small spreads in both
position and momentum remain such under the quantum evolution. With
regard to this, as already mentioned, Schrédinger (1926) made the following
discovery. Gaussian wave functions for a harmonic oscillator (i.e. with the
potential proportional to the square of position, e.g. an ideal spring) keep
exactly the same shape and move exactly along the classical trajectories.
These states, which are both kinematically and dynamically ‘classical’ are
called the coherent states of the harmonic oscillator.?? Schrédinger was led
by this result to think that all classical behaviour could be explained in these
terms by quantum mechanics and, indeed, the result can be generalised in
various ways. But we shall see that this hope was misplaced.

A simple way of generalising these results, at least in part, is as follows.
For short, write (A) to mean (i(t)|A|Y(t)), i.e. the average value of an
operator A in the state [1(t)) (see equation (5)). Then, with m the mass
of the particle, @ and P the position and momentum operators, and V (Q)
the operator representing the potential (which is a function of position), one

9This need not be a problem in itself, say if one interprets the wavefunction along
Schrédinger’s lines as manifesting itself in 3-dimensional space as a charge (or mass)
density. It may become a problem if the ‘tails’ are themselves highly structured, as
will happen in spontaneous collapse theories in the case of measurements or Schrodinger
cats, as this allows for an Everettian-style criticism of the idea that such a wavefunction
represents a single copy of a quasi-classical system (i.e. the tail is itself a ‘tiny’ live or dead
cat).

20They are very important also in quantum optics, because each mode of the electro-
magnetic field is a harmonic oscillator.
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can derive the two parts of Ehrenfest’s theorem:

(P)=m @) (29)

(the average momentum is mass times the time derivative of the average
position), and

Lipy = ~(vV(Q) (30)
(the time derivative of the average momentum is equal to the average force).
Thus, the average position and momentum almost obey Newton’s second
law, with the qualification that the classical value of the force at the average
position is replaced by the average value of the force. This holds for all
quantum states, but if the state has a small spread in position, the average
value of the force is approximately equal to the value of the classical force.
Thus, a state with a small spread in position will follow an approximately
classical trajectory as long as its spread remains small (at least if the external
potential in which it moves is uniform enough on the scale over which the
state is spread).?!

Do position spreads remain small? In the case of a Gaussian, any in-
crease in the position spread leads to a decrease in momentum spread and
vice versa. Typically, under the unitary evolution, the spread in position in-
creases.?? In the simple case of no potentials (‘free Gaussian’), if the system
has macroscopic mass, the spread of the state will remain small for a very
long time. For a system with mass 1g, starting off in a Gaussian state with
position spread 10~ '3cm, it will take 600 years for the spread in position
to increase to 10 %cm, and it will take another 6000 million million years
for it to further increase to twice that size. If potentials are present, the
spreading can be enhanced or counteracted, e.g. if the wave function is in a
potential well it may stay trapped there. In the case of the hydrogen atom,
the spreading of wave functions was pointed out to Schrodinger by Lorentz
in their well-known correspondence of 1926 (published in Przibram 1963).
In particular, Lorentz showed that electrons in the hydrogen atom would be
spread out over their entire orbits, even for the case of high-energy orbits.

21Thus, while we might want to identify kinematically a classical state with one with
small spreads in both position and momentum, it is specifically the smallness of the spread
in position that determines whether this state will behave classically also in terms of its
dynamics (in the sense of Ehrenfest’s theorem).

22Note that this is not a strict result, but only a phenomenological arrow of time, since
the Schrodinger equation is time-symmetric.
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The examples so far are somewhat mixed, and one might think that
Schrodinger’s intuition might yet prove sound at least for sufficiently macro-
scopic systems. That is precisely what Schrodinger replied to Einstein upon
receipt of his draft for the Born Festschrift. To which Einstein replied that
one could repeat the calculation taking not a 1mm ball but a dust particle,
and get a spread-out state within 24 hours!??

Regardless of the quantitative details, the discussion so far has presup-
posed that the state of our system always remain a pure state. That is,
the time evolution equation of the system (the Schrodinger equation) may
include external potential terms, but it includes no interaction terms. If
quantum interactions are included, however, the picture changes dramati-
cally. And that is the case we really need to discuss.

3.2 Entanglement with the environment

If two quantum systems do not interact, the state of each system will evolve
(unitarily) within the Hilbert space that describes that system, and the
state of the composite system (if initially a product state!) will always
retain its product form, |¥(t))|¢(t)). If the two systems interact, instead,
the state of the composite system will evolve (unitarily) within the product
Hilbert space, and in general the state of the composite system will have the
entangled form

PILICIIESE (31)

We can use this state in the standard way to make predictions for the
composite system, as well as for either subsystem (in particular to calcu-
late the spread in position or in momentum of either subsystem). Indeed,
a measurement on a subsystem is just a special kind of measurement on
the composite system, so the usual formalism applies. Equivalently, as dis-
cussed already in section 2.1, we can make predictions for measurements on
a subsystem using the reduced state of that subsystem, which is an improper
mixture that takes the form, say,

Z | |?[95) (] - (32)

28ee Schridinger to Einstein, no date (but between 18 and 31 January 1953), AHQP
microfilm 37, section 005-012 (draft ms.) and 005-013 (carbon copy), and Einstein to
Schrédinger, 31 January 1953, AHQP microfilm 37, section 005-014 (both in German).
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In some cases, it may be more convenient to write this as an integral, for
instance over Gaussian wave packets centred at different positions (although
as mentioned in section 2.1 a decomposition of the form (32) always exists).
If the component states are Gaussians with macroscopically different average
positions (and/or momenta), the spreads of the state now can be macroscop-
ically large, just as with pure states that are sums of such Gaussian wave
packets.

Recall that improper mixtures are not ignorance-interpretable, so that a
macroscopically large spread in position or momentum that arises in this way
through quantum interactions cannot be discussed away simply by applying
an ignorance interpretation to the mixed state. Such a state appears to be
genuinely non-classical.

Thus, we have to ask whether interactions typically lead to mixed states
with large spreads, or whether we can find a regime in which these spreads
remain small. Now, however, it is clearly the case that quite common inter-
actions do in fact lead to such apparently non-classical states.

One class of interactions that lead to mixtures of macroscopically differ-
ent states are measurement interactions, as with Schrodinger’s (1935) own
example of the cat. Although the scenario is well-known, here is the de-
scription of the thought experiment, as given by Schrodinger himself:

A cat is penned up in a steel chamber, along with the fol-
lowing diabolical device (which must be secured against direct
interference by the cat): in a Geiger counter there is a tiny bit
of radioactive substance, so small, that perhaps in the course of
one hour one of the atoms decays, but also, with equal probabil-
ity, perhaps none; if it happens, the counter tube discharges and
through a relay releases a hammer which shatters a small flask
of hydrocyanic acid. If one has left this entire system to itself for
an hour, one would say that the cat still lives if meanwhile no
atom has decayed. The first atomic decay would have poisoned
it. The @—function of the entire system would express this by
having in it the living and the dead cat (pardon the expression)
mixed or smeared out in equal parts.

Such an example clearly provides a link between the problem of the clas-
sical regime and the problem of measurement. We shall postpone discussion
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of the latter, however, since the two problems are distinct. In the case of
the measurement problem, we have a special case of failure or apparent fail-
ure of classicality at the kinematical level, but the dynamical behaviour of
a measuring apparatus (when coupled to the measured system) is actually
far from classical. The special twist of the measurement problem is that
preparations and measurements are what is needed to apply quantum me-
chanics in the first place: if it turned out that these could not be analysed
theoretically, the theory would in some sense be undermining itself.?

From the point of view of the classical regime, however, something per-
haps even more startling happens, namely that very common and sponta-
neous interactions of a system with its environment lead to the same kind
of states with large spreads.

To fix the ideas, think at first of a pair of coupled harmonic oscillators,
and start them off in the non-entangled state

|ground)|first excited) . (33)

Both classically and quantum mechanically, two coupled oscillators will re-
curringly exchange energy, i.e. evolve to and fro between this state and the
non-entangled state |first excited)|ground). But quantum mechanically, this
will happen through intervening stages of the form

a(t)|ground)|first excited) + b(¢)|first excited)|ground) , (34)

which are entangled; and the single oscillators will be correspondingly in
mixtures of their ground and first excited states. As above, these mixed
states arise from quantum interactions and the ensuing entanglement. Thus,
they do not allow for an ignorance interpretation.

Now imagine a harmonic oscillator coupled to a thermal bath of harmonic
oscillators. It will be taking energy from and giving energy to all of them. If
initially the oscillator and the bath are unentangled, the recurrence time for
disentangling again could be arbitrarily long (or infinite), and in general the
state of the oscillator may be a mixture of any of its energy states. Indeed, if
the oscillator is assumed to be in thermal equilibrium with its environment,
its quantum mechanical description is a mixture of all its energy states.
The spread in position and momentum can be calculated in various ways.

24Gee sections 4.1-4.5 for the theoretical discussion of measurements, and section 4.6
for the measurement problem.
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One rather suggestive way uses the fact that for high temperatures one can
rewrite the equilibrium state as a mixture of all possible coherent states
of the oscillator, with weights depending on their energy. One can thus
picture the oscillator as roughly spread out over the classical trajectories
corresponding to the most probable energies (see e.g. Donald 1998).

This example illustrates very well the following general idea, which I owe
to Matthew Donald. While in classical statistical physics we may think of
equilibrium states, at least intuitively, as describing our ignorance of the
actual microstate of a system, quantum equilibrium states should generally
be thought of as improper mixtures: there is no matter of fact about which
pure state describes the system, and any macroscopic spreads resulting from
the weighted average in the mixture are genuine non-classical features.

A macroscopic oscillator will clearly not draw in enough energy to be
spread out over macroscopic scales, if the environment is, say, at room tem-
perature (a classical oscillator will not start jittering on a macroscopic scale);
but as a matter of fact, one can easily think of systems that are much more
sensitive to the influence of a thermal environment, and are thus highly
problematic from the point of view of justifying an approximate description
in terms of classical physics. One example is a molecule of gas in equilib-
rium in a box. Every such molecule will be spread out over the entire volume
of the box (Donald 1998). Thus, deriving classical statistical physics from
quantum mechanics is part of the problem of the classical regime (cf. also
Wallace 2001).

Another possible example is that of a Brownian particle suspended in
a fluid. Our classical intuition is that it is tossed around by the molecules
of the fluid, which influence the particle’s motion in a very irregular way.
If, however, the interaction of the Brownian particle with its environment
is treated quantum mechanically, it would seem that its state will be an
improper mixture spread over all its classically possible positions.

Radioactive decay always involves entanglement with the environment,
and if the emitted radiation causes a carcinogenic mutation that kills a cat,
this is only one component in a complicated entangled state (that includes
not only the undecayed component, but also components describing decays
at different times). The similarity with Schrodinger’s cat is not accidental:
this is precisely a Schrodinger cat, but arising spontaneously, without the
need for the experimenter’s ‘diabolical device’.
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A little thought will multiply the examples. ‘Environmental’ interactions
such as these are clearly ubiquitous. And if this is what they lead to, then
it is clear that, at least in its original form, Schrédinger’s approach to the
problem of the classical regime is doomed to failure.

3.3 Decoherence and the classical regime

Luckily, the same interactions that lead to entanglement with the envi-
ronment also provide at least a crucial ingredient for the resolution of the
problem, because they also induce decoherence between the various classical
components they Supelrpose.25

To explain the concept of decoherence, let us first look at a very elemen-
tary example, namely the two-slit experiment. One repeatedly sends elec-
trons or other particles through a screen with two narrow slits, the particles
impinge upon a second screen, and we ask for the probability distribution
of detections on the surface of the screen. In order to calculate this, one
cannot just take the probabilities of passage through the slits, multiply with
the probabilities of detection at the screen conditional on passage through
either slit, and sum over the contributions of the two slits. There is an ad-
ditional ‘interference term’ in the correct expression for the probability, and
this term depends on both of the wave components passing through one or
the other slit.

There are, however, situations in which this interference term (for de-
tections at the screen) is not observed, i.e. in which the classical probability
formula applies. This happens for instance when we perform a detection at
the slits, which at least phenomenologically induces a collapse of the wave-
function. The disappearence of the interference term, however, can happen
also spontaneously, when no detection at the screen is performed, for in-
stance if sufficiently many ‘stray particles’ scatter off the electron between
the slits and the screen. In this case, the reason why the interference term
is not observed is because the electron has become entangled with the stray
particles, and the results of any observation on the electron are determined
by its reduced state alone. As in our discussion of reduced states in sec-
tion 2.2, the probabilities for results of measurements performed only on

25 This subsection is mostly based on my entry for the Stanford Encyclopedia of Philos-
ophy (Bacciagaluppi 2003).
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the electron are calculated as if the wave function had collapsed to one or
the other of its two components.

The intuitive picture is one in which the environment monitors the sys-
tem of interest by continuously ‘measuring’ some quantity characterised a
the set of ‘preferred’ states (‘eigenstates of the decohering variable’). Inter-
action potentials are functions of position, so the preferred states will tend
to be related to position, or to be in fact joint approximate eigenstates of
position and momentum (since information about the time of flight is also
recorded in the environment), i.e. coherent states. The localisation thus
achieved can be on a very short length scale, i.e. the characteristic length
above which coherence is dispersed (coherence length) can be very short. A
speck of dust of radius @ = 10~°cm floating in air will have interference sup-
pressed between (position) components with a width of 10~!3cm. Even more
startingly, the time scales for this process are minute. The above coherence
length is reached after a microsecond of exposure to air.

One can thus argue that generically the states privileged by decoherence
at the level of components of the quantum state are localised in position or
both position and momentum, and therefore kinematically classical. (One
should be wary of overgeneralisations, but this is certainly a feature of many
concrete examples that have been investigated.)

What about classical dynamical behaviour? Interference is a dynami-
cal process that is distinctively quantum, so, intuitively, lack of interference
might be associated with classical-like dynamical behaviour. To make the in-
tuition more precise, think of the two components of the wave going through
the slits. If there is an interference term in the probability for detection at
the screen, it must be the case that both components are indeed contribut-
ing to the particle manifesting itself on the screen. But if the interference
term is suppressed, one can at least formally imagine that each detection
at the screen is a manifestation of only one of the two components of the
wave function, either the one that went through the upper slit, or the one
that went through the lower slit. Thus, there is a sense in which one can
recover at least one dynamical aspect of a classical description, a trajectory
of sorts: from the source to either slit (with a certain probability), and from
the slit to the screen (also with a certain probability). That is, one recovers
a ‘classical’ trajectory at least in the sense that formally, the probabilities
reduce to those of a classical stochastic process.
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In the case of continuous models of decoherence with interactions based
on the analogy of approximate joint measurements of position and momen-
tum, one can do even better. In this case, the trajectories at the level of
the components (the trajectories of the preferred states) will approximate
surprisingly well the corresponding classical (Newtonian) trajectories. In-
tuitively, one can explain this by noting that the preferred states are the
states that themselves tend to get least entangled with the environment, so
they will tend to follow the Schrédinger equation more or less undisturbed.
But in fact, as we have seen from Ehrenfest’s theorem, narrow wave packets
follow approximately Newtonian trajectories. Thus, the resulting ‘histories’
will be close to Newtonian ones on the relevant scales.?%

The most intuitive physical example for this are the observed trajecto-
ries of a-particles in a bubble chamber, which are indeed extremely close
to Newtonian ones, except for additional tiny ‘kinks’. Indeed, one should
expect slight deviations from Newtonian behaviour. These are due both to
the tendency of the individual components to spread, and to the detection-
like nature of the interaction with the environment, which further enhances
the collective spreading of the components (a narrowing in position corre-
sponds to a widening in momentum). These deviations appear as noise,
i.e. particles being kicked slightly off course.?” Other examples will include
trajectories of a harmonic oscilator in equilibrium with a thermal bath (so
the decomposition we mentioned above is not just suggestive, but in fact
quite accurate), and trajectories of particles in a gas (which are a precondi-
tion for then applying classical derivations of thermodynamics from classical
statistical mechanics).

Thus we see that decoherence provides us with tantalisingly classical
structure, both kinematical and dynamical, at the level of components of
the wave function. It is thus natural to assume that it will play a crucial
role in any resolution of the problem of the classical regime. Whether it
can play such a role and how, however, will depend on the interpretational
approach one adopts towards quantum mechanics.

Let us take first the minimal interpretation of the theory, according to

%For a review of more rigorous arguments see e.g. Zurek (2003, pp. 28-30). Such
arguments can be obtained in particular from the Wigner function formalism, as done
e.g. by Zurek and Paz (1994), who apply these results to derive chaotic trajectories in
quantum mechanics.

2TFor a very accessible discussion of a-particle tracks roughly along these lines, see
Barbour (1999, chap. 20).
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which quantum mechanics is about the results of preparations and measure-
ments, and merely provides a probabilistic link between these two. If one
adopts this view, the problem of the classical regime is a question about the
results of measurements performed on certain ‘classical’, generally macro-
scopic systems (or possibly certain elements of their environment). Deco-
herence tells us that it is indeed possible to isolate a classical regime (at
least one?®) for which appropriate measurements will reveal either actual
quasi-classical trajectories, or the appearance thereof.

What we mean by this is the following: (a) if the measurements along a
quasi-classical trajectory are actually carried out (as in Heisenberg’s treat-
ment of a-particle tracks), then the results obtained will ‘line up’ along
the quasi-classical trajectories provided by decoherence; but even if (b) the
intermediate measurements are not carried out, and only the final measure-
ment is, one can consistently assign retrospectively the whole trajectory to
the system (sometimes merely guessing what the trajectories ‘must have
been’). This distinction is related to what is known as the movability of the
Heisenberg ‘cut’ between observer and observed (which we discuss in the
next subsection).

One will thus recover the predictions of classical mechanics, but only
instrumentally. Indeed, measurements will need to be regarded as primitive
even in classical mechanics, and it will be out of measurements that we will
reconstruct ‘objects’ that ‘look’ and ‘behave’ classically (the Moon is not
there if we do not look).

What of the standard interpretation? In a sense, the problem of the
classical regime is more natural if one adopts this view, because if one man-
ages to derive a classical regime within quantum mechanics in the standard
interpretation, then this would recapture also the standard interpretation of
classical mechanics (with measurements being derived notions). However,

28The question of uniqueness of a classical or ‘quasi-classical’ regime has been quite
hotly debated especially in the ‘decoherent histories’ literature, and it appears that explicit
definitions of quasi-classicality always remain too permissive to identify it uniquely. But
maybe uniqueness is not strictly necessary (as nowadays often argued in the context of
the Everett interpretation). For these issues see e.g. Wallace (2008).

Attempts to enforce uniqueness in other ways appear to overshoot the mark. Indeed,
various ‘modal’ interpretations based on the biorthogonal decomposition theorem, the
polar decomposition theorem, or the spectral decomposition theorem for density operators,
select histories uniquely, but end up agreeing with the results of decoherence only in special
cases, failing to ensure classicality in general (Donald 1998, Bacciagaluppi 2000).
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as we have seen, if one rejects a minimal interpretation of the formalism, but
has some fuller ontological commitment to the wavefunction as describing
a quantum system itself, then decoherence appears to exacerbate the prob-
lematic nature of the classical regime. Indeed, quantum interactions tend to
create improper mixtures at the level of the component systems. Therefore,
it would appear that they destroy classicality, as in the case of Schrodinger’s
cat.

As in FEinstein’s discussion, if one wishes to keep a fuller ontological
commitment to the wavefunction, or to provide a description of individual
quasi-classical systems within quantum mechanics, one will have to replace
the standard interpretation (or quantum theory itself) with some alterna-
tive approach. The same broad frameworks that are usually proposed as
relevant to the measurement problem appear to be useful (but note our
concluding qualifications in section 5). Today’s Everett interpretations are
intimately connected with decoherence. Indeed, the revival of Everettian
ideas can be traced back to Zeh’s work on decoherence from the early 1970s,
and was taken up in the philosophy literature arguably starting in the early
1990s with the work of Saunders, and later of Wallace and others. In these
modern versions of Everett, either the ‘many worlds’ or the physical corre-
late of the ‘many minds’ are explicitly identified with the stable structures
created by decoherence at the level of components of the universal wave-
function.?? Pilot-wave theories along the lines of de Broglie and Bohm also
need to address explicitly the problem of the classical regime, since in gen-
eral the trajectories defined in the theory are highly non-classical (see e.g.
Holland 1995, chapter 6, and, for a different point of view, Allori and Zanghi
2009). At least in the non-relativistic particle theory, it would seem that the
components preferred by decoherence correspond nicely with the ‘full’ and
‘empty’ waves of the theory. In Einstein’s example, the macroscopic ball
or dust particle will be decohered by the environment inside the box, and
the system will be effectively guided by only one of the components running
in opposite directions and that form the standing wave when superposed.
However, it is less clear whether similar results are available in the case
of quantum field theoretic generalisations (see e.g. Wallace 2008). Finally,
spontaneous collapse theories might also be able to take advantage of the
structures provided by decoherence (which generally operates on a much
faster time-scale than spontaneous collapse), but explicit studies combining

29For a comprehensive collection of recent papers on the Everett interpretation, in par-
ticular covering the more modern developments referred to here, see Saunders et al. (2010).
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collapse models and decoherence are notably lacking from the literature.

3.4 Heisenberg’s ‘cut’

We conclude this section by expanding on the remarks in the last subsection
on the Heisenberg ‘cut’. In particular, we wish to make precise in what
sense decoherence is relevant to Heisenberg’s discussion of the movable cut
between observer and observed (or to von Neumann’s discussion of mea-~
surement chains), and in what sense it is not. This will provide also a good
entry into the topic of measurement, treated in the next section.

Especially in the early 1930s, Heisenberg used to emphsise the impor-
tance of the movability of the ‘cut’ between the quantum and the classical
domains in ensuring the consistency of quantum mechanics (cf. Heisenberg
1930, chapter 4, 1949, pp. 7-21 and 35-46, and especially 1985). Neither
Heisenberg nor any of the other founding fathers of quantum mechanics be-
lieved in a rigid boundary between a quantum world, to which one could
apply quantum mechanics, and a classical world, to which one could apply
only classical mechanics and to which the apparatus and the observer be-
longed. Any parts of the world (including ostensibly ‘classical’ ones) could
be treated quantum mechanically if one so wished.?® Consistency of the
theory had to be ensured, according to Heisenberg, in the sense that apply-
ing quantum mechanics to a ‘classical’ part of the world should produce the
same predictions as if classical mechanics had been used.

At the risk of pre-empting somewhat our discussion of measurements
in the next section, let us consider a so-called ‘measurement chain’; e.g.
the example discussed by von Neumann (1932) in his chapter on quantum
measurement: we measure the temperature of a (quantum) gas using a
(classical) thermometer, or we treat the interaction between the gas and
the thermometer quantum mechanically, and we observe (classically) the
height of the mercury column, or we treat also the interaction between the

30While this point is especially clear in Heisenberg’s writings, it is clear that it was
espoused also by other main exponents of what is known collectively as the Copenhagen
interpretation. For instance, Bohr often applies the uncertainty relations to macroscopic
pieces of apparatus in his replies to Einstein’s critical thought experiments of the period
1927-1935 (Bohr 1949). And Pauli, commenting to Born on Einstein’s views, is adamant
that under the appropriate experimental conditions also macroscopic objects would display
interference effects (Pauli to Born, 31 March 1954, reprinted in Born 1969).
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thermometer and the human retina quantum mechanically, and our brain
registers (classically) the image on the retina, or we treat the whole physical
process quantum mechanically, and it is only our consciousness that becomes
(‘classically’) aware of the outcome (and collapses the physical state). Now,
there are two senses in which we can establish the consistency of these
descriptions.

First, if the successive (quantum or classical) interactions are such as
to correlate perfectly the values of the temperature and the values of the
quantities that are meant to record the temperature, then it follows straight-
forwardly that, irrespective of where the collapse postulate and Born rule
are applied, one will obtain the same final results with the same probabili-
ties. This is actually the sense in which both Heisenberg and von Neumann
are interested in establishing consistency.3!

Second, we can consider the influence of decoherence. Note that if no
decoherence were present, then performing some other measurement on the
thermometer (i.e. a measurement incompatible with that of the length of the
mercury column), or somewhere further along the measurement chain, would
reveal interference terms between the components of the state corresponding
to different measured temperatures. The placing of the ‘cut’ would influence
the final statistics, just as the timing of the collapse does in the case of the
two-slit experiment (collapse behind the slits or at the screen). Conversely,
once decoherence has kicked in at the level of the thermometer, there is
no further measurement we would be able to perform in practice on the
thermometer that could distinguish whether the thermometer is a classical
or a quantum system. And similarly for the retina and for the brain of the
observer. It is in this stronger sense that decoherence establishes that the
location of the cut between the quantum and the classical domain (where the
collapse postulate is applied along the measurement chain) is arbitrary.3?

31Tndeed, von Neumann’s aim was simply to show that there always exist unitary evo-
lutions that will produce such perfect correlations, in order to establish consistency in
this first sense. Heisenberg’s discussion, although technically somewhat defective (see the
analysis in Bacciagaluppi and Crull 2009), is along similar lines. Note, however, that
Heisenberg is particularly interested in the case of the Heisenberg microscope, where the
electron interacts with a microscopic ancilla (the photon), and one considers alternative
measurements on the ancilla. For Heisenberg’s purposes it is thus important that inter-
ference is still present and that decoherence does not kick in until later.

32The same point is valid if we are talking about the empirical determination of when
and where collapse occurs in spontaneous collapse theories. See the nice discussion in
Albert (1992, chapter 5).
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4 Theory and problem of measurement

We now turn to discussing the theory and problem of measurement. We
shall start by discussing measurements in some detail, using Stern—Gerlach
measurements as our exemplar, and generalising the phenomenological no-
tion of a measurement (and of a measurable quantity or ‘observable’) using
the tools provided by the so-called POV measures. This theoretical discus-
sion will then provide the basis for discussing the measurement problem in
section 4.6.

4.1 Discretised position measurements

Quite surprisingly, there is no perfect analogue for the collapse postulate in
the case of measurements of continuous quantities, such as position. Naively
one would expect a wavefunction 1 (z) to collapse to a (renormalised) Dirac
d-function centred at some point g, i.e. to 1(x)d(x — q), with a Born proba-
bility density given by [1(g)|>. The problem with this is the mathematical
fact that any function that is non-zero at a single point has square integral
0, and is thus identified with the zero vector. Dirac’s famous d-functions are
thus not actually quantum states, so, trivially, one cannot collapse a state
to a d-function.

This was recognised already by von Neumann (1932), who used discreti-
sation procedures to describe measurements of position. For instance, we can
(ideally) test for whether a wave function lies in the subspace of all square-
integrable functions that are non-zero in the interval [z1,z3]. If the test
is positive, the original wave function () will collapse to X[q, z,)(%)¥(7)
(suitably renormalised),?® with probability

/ Xor o) (@) (35)

(This suggestion is so obvious that the problematic nature of the collapse
postulate for continuous quantities often goes unnoticed.)

Such discretised measurements of position are all we need to analyse
explicitly how a spin measurement works, and in fact to generalise it to

#3The function X(,, 4,)(x) is the so-called characteristic function of the interval [z1, z2],
i.e. the function that is 1 on the interval and 0 outside.

34



include more realistic kinds of spin ‘measurements’.

4.2 Ideal spin measurements

Let us first describe the case of an ideal measurement of spin. Note that a
system with both spin and position degrees of freedom is described using the
tensor product of the Hilbert spaces used to describe a ‘pure’ spin-1/2 sys-
tem (a two-dimensional complex Hilbert space) and a spinless particle (the
Hilbert space of Schrodinger’s wavefunctions), just as if one were composing
two separate systems.

Take an electron that we assume to be initially in a state

lp) @Y . (36)

What this means is that the electron is described as having a spin state,
given by the vector |¢) in the two-dimensional spin space of the electron, as
well as a wavefunction, .

Now suppose we want to perform a measurement of spin in some given
direction, and that with respect to this spin basis, |¢) = a|+) + 8|—), so
that (36) equals

al+) @Y+ Bl-) @ ¢ . (37)

If we pass the electron through an ideal Stern—Gerlach magnet, the evolution
of the state will be described by the appropriate Schrédinger equation, which
is unitary. Therefore, we can consider separately the deflection of the two
components and superpose the results. We obtain

al+) @Yy + fl-) @ Y- (38)

(where ¢4 and 1_ are suitably deflected versions of ). We see that the
spin degree of freedom of the electron is now entangled with its position
degrees of freedom.

We now detect the electron on a screen, i.e. perform a position measure-
ment. Indeed, we perform a discretised measurement of position, because
we only need to distinguish whether the electron hits the half of the screen
associated with the up or down component of the spin (which, as mentioned
in the footnote on p. 4, depending on the experimental setup might or might

35



not coincide with the upper or lower half of the screen, respectively). As-
suming that ¥4 and ¥_ do not overlap, the standard collapse postulate and
Born rule, applied to the detection of the electron on the screen, will yield
either

[+) ® ¥y with probability |a|? (39)

or
|-)®_  with probability |3|? , (40)

and thus we can actually derive the collapse postulate and Born rule for
the spin measurement from the collapse postulate and Born rule for the
discretised measurement of position.

4.3 ‘Unsharp’ spin measurements

Real experiments, however, will not yield exactly the above result. Let us
return to the discussion of our Stern—Gerlach example. It is a fact that
wavefunctions, even if at any one time they can be zero outside of a given
interval, will (typically) spread instantaneously out to infinity, so that while
we could expect the bulk of 1/ and ¥_ to be concentrated each on one half
of the screen, they will have ‘tails’ spreading out to the ‘wrong’ half of the
screen, say

Yy =Vpp+hp- and Yo =9+ (41)

Here, ¥, is meant to represent that part of ¢4 that is distributed over
the half-screen associated with the up result, and ¥, _ the part that is dis-
tributed over the half-screen associated with the down result; and similarly
for ¥__ and ¢_,. We shall assume for simplicity that

J1oncf = [lo-sP = (12)
[1ossl = [lo-p=1-c. (43)

In this case, applying the collapse postulate and Born rule to detecting
the electron on the screen yields either

and thus also

al+) @+ Bl—) @Yy (44)
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or
al+) ® Py— + Bl-) @ Y- (45)

(both to be suitably renormalised), with probabilities
la>(1 =€) +|8)%e (46)

and
e+ |BIP(1 —¢) | (47)

respectively.

We see that the effect of the measurement on the spin state of the electron
is no longer simply given by the standard collapse postulate. Indeed, the two
possible states of the electron after the measurement are not even product
states, so that the spin of the electron is still entangled with its spatial
degrees of freedom, and the spin part of the electron is collapsed to an
improper mixture: either

(1 = &)[+)(+] + |87l =) (-] (48)

or

ja2el ) (+] + [BI*(1 — )| =) {~] (49)

with the same probabilities (46) and (47) (also here, we need to suitably
renormalise, since the weights in each decomposition need to sum to 1).

Note that these are the states we obtain if we, indeed, know the result
of the spin measurement, and can select one of these two final states on
the basis of the measurement result (thus performing a so-called selective
measurement). If we do not know the outcome of the spin measurement,
then future predictions for spin measurements on the electron will use a state
that is itself a (proper) mixture of the two corresponding density operators.
We can obtain this by simply adding the two (unnormalised) states (48) and
(49), to yield

2[4 (| + 1817 (— - (50)

This is now a case of non-selective measurement, in which we obtain a mixed
state that is partially ignorance-interpretable. But — as in the case of the bit
commitment problem of section 2.3 — we need to know the past history of
the system (how the state has been prepared), in order to know how and how
far to interpret this mixed state in terms of ignorance. If the measurement
is ideal, then the correct decomposition of the state is in terms of spin-up
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or spin-down; if the measurement is correctly modelled by the above, the
correct decomposition is given in terms of (48) and (49).

In this example (where we have combined an ideal Stern—Gerlach mag-
net with a more realistic position state), we see that the probabilities in (50)
are independent of the shape of the position state (and indeed, of whether
it is ‘ideal’ or ‘realistic’). One easily realises that even more general trans-
formations on the spin state of the electron can be induced by a detection
on the screen, if one considers that the Stern—Gerlach magnetic field itself is
not ‘ideal’ (in order to satisfy the Maxwell equations, it cannot be perfectly
homogeneous in the directions perpendicular to that of measurement). Or,
indeed, if one considers that one could have chosen, at least in principle, any
other unitary coupling between the spin and position degrees of freedom of
the electron before proceeding to the detection on the screen.

4.4 General phenomenology of measurements

The above examples of various kinds of spin measurements serve as perfect
illustrations of the general phenomenology and theory of measurements in
quantum mechanics. As discussed in section 1.1, measurements are phe-
nomenologically captured by the collapse postulate, which describes trans-
formations on the state of the measured system, and the Born rule, which
gives the probabilities for such transformations. Both rules need to be gen-
eralised. We shall sketch this generalisation here, but only in the discrete,
finite-dimensional case.

Let us first slightly redescribe the collapse postulate and Born’s rule for
the case of the standard measurements of section 1.1. Take a family of
mutually compatible quantum mechanical tests, corresponding to a family
of mutually orthogonal subspaces of the Hilbert space. (If they do not span
already the whole Hilbert space, we can add to the family the orthogonal
complement of their span, corresponding to the system testing negatively to
all the tests.) The corresponding projection operators form a so-called (PV,
or projection-valued) resolution of the identity:

Y p=1, (51)

where 1 is the identity operator on the Hilbert space. In this case, we also
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talk of a PV-observable.?*

In the case of a selective measurement of this PV-observable, with out-
come 1, the state of the system collapses as:

) — Pl | (52)

or more generally, writing p for the initial state to cover also the case when
it might not be pure:
p+ PipP, (53)

(in both cases with suitable renormalisation). The probabilities for the
collapses (52) and (53) are, respectively, (¢|F;|¢) and

T(PpB)) = Tr(pP,) - (54)

(Note that the trace is cyclic, i.e. Tr(AB) = Tr(BA) for any two operators,
and that Pi2 = P; for projections.)

In the case of a non-selective measurement, the collapse takes the form
pr> Y PP, (55)
i

(already normalised, because of (51)).

In the case of the more realistic spin measurements just discussed, in-
stead of the transformation (52), we have a transformation to an (improper)
mixture, which we can write as

(W) (W] = V1= ePL ) (V1 — ePy + VEP_[y){(|vVeP- (56)

or

(W) (W| = VEPLY) ($VePy + VI —eP_[¢)(Y|V1—eP_,  (57)

depending on the outcome, with probabilities given by the trace of (56) or
of (57), respectively.

34Instead of talking of resolutions of the identity, one can also talk of PV ‘measures’,
in the sense that (analogously to a probability measure), one can assign to each ‘event’
(subset I of the indices labelling the results) a corresponding projection 3, P;. One will
talk similarly of POV measures when the requirement that the elements of the resolution
of the identity be projections is relaxed.
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In the most general case, the transformation (52) or (53) takes the form
of a so-called operation, or completely positive map:

prr Y AipAs (58)
J

with suitable operators A;; for each outcome 4. (If there is only one A;,
corresponding to the outcome %, the operation is said to be ‘pure’, because
it maps pure states to pure states.)

The corresponding probabilities are given by

Te(Y A pA7) = Te(p Y AL Ayy) = Tr(pEy) | (59)
J J

where we have defined the so-called effect®® E; as

Bii=) A A . (60)
J

In the non-selective case, the transformation (55) becomes
oo Y Aot o
g
And the normalisation of the probabilities (59) yields the analogue of (51),
namely
Y E=1, (62)
i

i.e. the E; form an effect-valued (or POV, or positive-operator-valued) res-
olution of the identity (or POV-observable).

Interesting special cases are obtained when, as in the case of the spin
measurements above, the operations are combinations of the projections
from a PV-observable (so-called ‘unsharp’ measurements of the correspond-
ing PV-observable); or when the effects E; are in fact mutually orthogonal
projections, but the corresponding operations are not simple projections,
but have a more general form (‘disturbing’ measurement of the correspond-
ing PV-observable). Other cases of POV-observables can be interpreted as

35Technically, an effect is a positive operator with spectrum contained in the interval
[0,1].
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corresponding to sequences of measurements of PV-observables (or of other
POV-observables), yet others as corresponding (in certain specific senses) to
joint unsharp measurements of incompatible PV-observables. The closer re-
lation between a measurement and a single self-adjoint operator mentioned
in section 1.1 is clearly lost in the general case.

These transformations provide the general form of the phenomenologi-
cal collapse postulate, and the corresponding probabilities the general form
of the phenomenological Born rule. The above discussion of spin measure-
ments, however, illustrates also the general theoretical description of such
measurements. Indeed, one can show (this is know as the Naimark dilation
theorem) that any completely positive map on the states of the measured
system can always be obtained by suitable interaction with some other sys-
tem, followed by a PV-measurement on this other system (i.e. a transfor-
mation of the form (53) or (55), where it should again be emphasised that
the P; need not be one-dimensional projections). This other system can be
thought of either as a generally microscopic ancillary system or degree of
freedom (e.g. the position of the electron in a Stern-Gerlach measurement,
or the photon in the Heisenberg microscope), or as an ‘indicator variable’
or ‘pointer variable’ of a generally macroscopic measuring device. We shall
see this in detail (for the case of ideal measurements) in subsection 4.5.

POV-observables provide a very powerful tool for describing the phe-
nomenology of quantum mechanical measurements. And they have become
a completely standard tool in various branches of quantum physics (e.g.
quantum information theory).

For instance, it is well-known that using a measurement of a single PV-
observable it is impossible to reconstruct completely the quantum state de-
scribing an ensemble of systems. (If the PV-observable is spin in some direc-
tion, and if the state is pure, say a|+)+ 3|—) in that basis, the measurement
statistics will determine only the absolute values of the coefficients « and 3,
not their relative phases.) But there are single POV-observables (so-called
informationally complete observables) that allow such a reconstruction. A
simple example is given by the resolution of the identity

%Pf + éPﬁ“ + ép_{ + %Pﬁ + éPj + éPf , (63)
which intuitively pools together the information provided by measurements
of spin in the three directions z, y and z (and can be seen as one sense
of a joint unsharp measurement of the three PV-observables (Cattaneo et
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al. 1997)). Indeed, such a POV-measurement can be performed simply by
throwing a die and measuring spin in the direction x, y or z depending on
whether the die shows up 1, 2 or 3 (mod 3). Note, however, that from the
Naimark dilation theorem we also know that there is a single interaction
with an ancilla or measuring device that will implement on the electron any
set of six operations needed to measure the POV-observable (63).

Note that Gleason’s theorem can be formulated also in terms of proba-
bility measures over the outcomes of all possible POV experiments, yielding
again the quantum mechanical mixed states as the most general states defin-
ing probabilities for the outcomes of such experiments.36

We conclude by mentioning one example of continuous POV measure-
ments, the so-called ‘unsharp’ measurements of position, which provide a
continuous alternative to von Neumann’s discretisation procedures. The
wavefunction ¥ (x) collapses upon measurement to a wavefunction

a(r — q)y(x) (64)

(suitably renormalised), where a(z — q) is not a d-function but a normalised
Gaussian centred at ¢q. The probability density for the collapse is given by

/ oz — Q)(x) Pdz (65)

This POV-measurement has the intuitive properties of a measurement of
position, in that after the collapse the wavefunction is concentrated around
the point q. Readers may recognise this as the family of operations that take
place spontaneously in the spontaneous collapse theory by Ghirardi, Rimini

and Weber (1986).37

4.5 The standard model of measurement

The model of measurement that underlies standard discussions of the mea-
surement problem (although usually phrased mainly in terms of ideal mea-
surements) is directly related to the theoretical description based on the
dilation theorem, as follows.

361n this formulation, the theorem holds in all dimensions (Busch 2003).
3TFor further details of POV observables, we refer the reader to standard references, e.g.
Busch, Grabowski and Lahti (1995).
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In the ideal case, one takes the a basis of eigenvectors of the observable
one wishes to measure on the system of interest, {|;)}, and couples it one-
to-one to an orthonormal family of states {|¢;)} of the apparatus, in the
sense that for some ‘ready state’ |¢g) of the apparatus,

i) ® |o) = |pi) @ |¥i) (66)

for all 4. This is indeed possible through a single unitary evolution, because it
is simply a requirement that orthonormal states be mapped into orthonormal
states.

The outcomes of the measurement are assumed to correspond to or-
thogonal subspaces (not necessarily one-dimensional), or their correspond-
ing projections Py, each containing one or more of the |1);) (depending on the
‘resolution’ of the measurement). If each outcome corresponds to a single
|0:), the measurement is said to be maximal.?®

Under this coupling, an arbitrary state of the system will interact with
the apparatus in the ready state as

Zai’%‘> ® [tho) Z%‘VPO ® i) (67)

If the measurement is maximal, applying the standard collapse postulate to
the pointer observable will now yield any one of the states

i) @ [4i) (68)

with probability |a;|?. If the measurement is non-maximal, more than one
|1;) will lie in the subspace associated with the measurement outcome, and
the collapse will yield some superposition of the states (68).3

More generally, a measurement will involve an arbitrary coupling be-
tween the system of interest and the apparatus, so that the final state of the

38Note that the corresponding subspace in the apparatus Hilbert space need not be
one-dimensional: in the case of the spin measurements of section 4.2, we had infinite-
dimensional projections onto the upper or lower half of the detection screen. Given that
the ‘apparatus’ will usually be a macroscopic system, the idea that a reading should
correspond to a large subspace of its state space rather than to a single state is quite
appealing. A reading ought to correspond rather to a macroscopic state of the apparatus
than to a microscopic state, and a macroscopic state could well be represented by an
appropriate subspace P.

39Note that in this case the system is collapsed to an improper mixture of the states

i)
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composite will have the form

ZZ%’WQ ® [¥y) (69)

? J

or performing the sum over ¢ first,

> <ZO‘2‘J‘\%‘>> ® [tj) - (70)

J

Defining £; as the norm of >, ajjlp;), and [¢]) as éZz a;jlei), (70) can
be rewritten as

> Biles) @ i) - (71)
i

Applying the standard collapse postulate to the pointer observable will now
yield any one of the states

|05) @ [45) (72)

with the corresponding probability ﬁjz (or some superposition thereof if more
than one [¢);) lies in the subspace associated with the measurement out-
come).

4.6 The measurement problem

In this section, we shall build on the theory of measurement we have just
sketched, and describe the measurement problem of quantum mechanics.
The phrase ‘measurement problem’ denotes a complex of interrelated ques-
tions, but we shall take the following to be its core: whether the practical
rules of quantum mechanics (collapse postulate and Born rule) are derivable
from first principles, by applying the theory (in particular the dynamics of
the theory, as given by the deterministic Schrédinger equation) to a measure-
ment situation, i.e. a situation in which we have an appropriate interaction
between a system and a measuring apparatus.

As we have seen generalising the example of the Stern—Gerlach measure-
ment, a theoretical description of a measurement can indeed be given by
coupling the system of interest (the spin of the electron) to some ‘indica-
tor’ variable (the position of the electron on the upper or lower half of the
screen). And we have also seen that the collapse postulate and Born rule
for the system (in their most general form) can be obtained by applying
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the collapse and Born rule (in their more restricted form) to the indicator
variable itself.

Suppose that from an appropriate application of the Schrédinger equa-
tion, and without explicitly invoking the collapse postulate and the Born
rule for the indicator variable, one could derive that in the correct fraction
of cases the final state after a measurement is given by (68) or (72), rather
than by (67) or (71). Then the collapse and the Born rule would be deriv-
able from first principles, irrespective of whether one adopts the minimal or
standard interpretation of the theory.

Indeed, under the standard interpretation, states such as (68) or (72)
— or even appropriate superpositions of such states — correspond to the
apparatus possessing an intrinsic property indicating a definite outcome (a
subspace Py, representing an appropriate macrostate of the apparatus). And
under the minimal interpretation, these same states mean that the apparatus
has a sure-fire dispositional property to be seen as indicating a definite
outcome if somebody looks.

However, this is not true if the the description just given in section 4.5
is correct. Just like in the bit commitment problem of section 2.3, where
there is an objective difference between the case in which Alice sends a
statistical mixture of electrons in various spin states, and the case in which
she sends electrons from entangled pairs (a difference enabling her to cheat),
so in the case of the standard model of measurement there is an objective
difference between the case of a statistical mixture of states associated with
different measurement results and states in which the macroscopic outcome
is entangled with the microscopic value of the measured observable. The
theoretical description of measurement in terms of a unitary interaction
has merely shifted the place of application of the phenomenological rules.
Thus, if it is a correct description of the process of measurement, it does
not provide a derivation of the collapse postulate and Born rule, whether
the interpretation of choice is the minimal interpretation or the standard
interpretation.

Before discussing this further, we should pause to consider whether we
have been misled by the power of the dilation theorem and been overly rash
in adopting this model of measurement. That is, we should see whether the
negative result just described is merely an artefact of the model of measure-
ment adopted.

45



What could count as a derivation of the collapse postulate and Born
rule from the Schrédinger equation? At first, it might seem conceptually
mistaken even to pose such a question. How can a probabilistic process
ever be derived from a deterministic one? According to von Neumann,
the differences run even deeper, in that the former is a thermodynamically
irreversible process, while the latter is reversible.’ On the other hand,
in the case of classical thermodynamics and statistical mechanics, we are
familiar with the claim that a phenomenologically irreversible theory can be
reduced (in some appropriate sense) to an underlying reversible one. The
obvious first attempt at answering the problem is thus to point out that it is
perfectly possible for a deterministic evolution to underpin statistical results,
if we consider statistical states (that is, genuinely statistical states, which
are proper mixtures) rather than pure states. That is, while the Schrédinger
evolution maps pure states into pure states, it is perfectly possible to obtain
a final state that is a proper mixture of different readings of the apparatus,
if the initial state is not pure but itself a proper mixture.

The intuition here is that the initial state of system and apparatus should
be given not by a product of pure states, but more realistically by a state of
the form |1)0) ® po, where pg is a suitable statistical state of the apparatus.
Indeed, any realistic apparatus will arguably be a macroscopic object, and
thus its exact microstate will not be specifiable. Instead, the state of the
apparatus will be given only in terms of certain macroscopic parameters,
analogously to the macrostates of statistical mechanics, and thus for instance
to be described as lying in some subspace Py or as some appropriate proper
mixture of microstates.!

For simplicity, let us stick to our Stern—Gerlach example, even though the
‘indicator’ variable (the position of the electron) is not itself macroscopic.*?
Imagine that initially we are not able to prepare the wave function v for
the spatial degrees of freedom of the electron, but only a proper mixture
p = f A BapadA, where each py corresponds itself to a wavefunction 9 (a
pure state) localised within the spread of the original . Imagine further

40Von Neumann’s characterisation is based on an extensive thermodynamic analysis,
which we shall not enter into, but it should be immediately clear that the transformation
(61) is not time-reversible.

41We shall assume this for the sake of argument, even though we have suggested in
section 3.2 that these mixtures might be improper in the first place.

42Recall that on the minimal interpretation the indicator variable is merely a variable
that if measured will produce the result that the apparatus reads either up or down. The
position of the electron fulfills this role perfectly.
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that p decomposes into

pZ/)mmM+/‘mmM, (73)
A A

where the weights p) are related to the coefficients in the decomposition

(37) as
| mir=laP and [ sl (74)
A A

Here A is the set of indices for which [¢)) ® py evolves to some final state
entirely contained in the subspace corresponding to 1 ® P, (i.e. the projec-

tion onto the half of the screen associated with ‘up’). And correspondingly
for A_.

Since the initial mixture was by assumption ignorance-interpretable, also
the final state is a proper mixture such that in a fraction |a|? of cases, the
electron has ended up on the half of the screen associated with ‘up’, and
in a fraction |3|? of cases, the electron has ended up on half of the screen
associated with ‘down’, as desired.

The problem with this obvious strategy is that it does not work in gen-
eral. Indeed, if the initial state of the electron is not (37) but, say,

") = 7|+) +6]-) , (75)

then, even assuming that each py still ends up on one or the other half of
the screen, it is not clear why the new sets A/, and A’ into which the set
A splits should again satisfy (74) with « and ¢ substituted for o and f.
Indeed, this constraint is impossible to satisfy for all initial spin states |¢) if
the temporal evolution is unitary.*®> The apparatus would have to conspire
to know in advance what spin state it is meant to measure in order to be
in the appropriate statistical mixture of microstates that will produce the
desired outcomes with the desired frequencies.**

43Note also that even if this were possible, such a solution to the measurement problem
would run into trouble when trying to reproduce the experimental violations of the Bell
inequalities, at least unless the microstates of the apparatuses are correlated before the
measurements.

44 Arguably, the only loophole is if one considers models in which the initial correlations
between the microstate of the apparatus and the state of the system (and between the
microstates of different apparatuses) are explained in retrocausal terms, and thus are no
longer conspiratorial. The models of measurement by Schulman (1997) are probably best
understood in this way. For more general discussion of retrocausal models in quantum
mechanics, see Price (1996).
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For the case of ideal measurements, the fact that the measurement prob-
lem cannot be solved by invoking an initial mixed state of the apparatus was
already discussed by von Neumann (1932, section VI.3), who remarks that
this idea was often proposed as a solution to the measurement problem.*> (It
is periodically ‘rediscovered’, which only shows that von Neumann’s book is
often referred to but still not widely read.) Von Neumann used this to sup-
port his claim that one needs indeed two different kinds of processes (namely
collapse and unitary evolution) to describe the behaviour of quantum sys-
tems with and without measurements. This ‘insolubility theorem’, as it is
now known, has since been widely generalised, in particular to include also
measurements of POV observables.*6

Thus we are left with our original conclusion, irrespective of the model of
measurement we choose. In a nutshell, measurements understood as quan-
tum interactions magnify quantum superpositions to the macroscopic level
(because of the linearity of the dynamics), and thus do not lead to the phe-
nomenologically correct behaviour (collapse postulate and Born rule). If we
apply the Schrodinger equation to describe the measurement process, then
we do not obtain states that would seem to include definite measurement
results, but superpositions of such states, nor do we obtain any kind of
probabilistic distributions over final states.

Under the minimal interpretation, this might not be very satisfactory,
but need not be particularly troubling, since the interpretation only seeks to
provide an instrumentalist reading of the theory. And in various variants of
the Copenhagen interpretation, one can argue that one should in fact expect
measurements — or the quantum-classical interface — to display a peculiar
behaviour. What is essential, on these interpretations, is consistency be-
tween different choices of when and where to apply the collapse postulate
and the Born rule. And, as we discussed in section 3.3, this consistency
is ensured by decoherence, or in a weaker sense by the existence of perfect
correlations along a measurement chain.*”

“5Historical puzzle: who is von Neumann referring to? Someone like Schrédinger who
suggested matter should be literally described by wavefunctions? Or something like the
early Copenhagen ‘disturbance’ theory of measurement?

468ee e.g. Fine (1970), Brown (1986), Busch and Shimony (1996) and Bassi and Ghirardi
(2000).

47T would suggest, however, that if one considers the in-principle possibility of perform-
ing arbitrary measurements unimpeded by decoherence, then problems of consistency arise
again in the context of thought experiments of the type of Wigner’s friend.
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As a matter of fact, von Neumann considered the measurement prob-
lem to be purely the question of whether such consistency (in the weaker
sense) could be ensured, and his treatment of the measurement problem
consists precisely in showing that unitary evolutions exist that will produce
the perfect correlations (i.e., essentially, in showing that the standard model
of measurement is well-defined). Collapse could occur when the thermome-
ter records the temperature of the gas, or when the length of the mercury
column is recorded in the photons travelling to the eye, or in our retina, or
along the optic nerve, or when ultimately consciousness is involved. If all
of these possibilities are equivalent as far as the final predictions are con-
cerned, von Neumann can maintain that collapse is related to consciousness
while in practice applying the collapse postulate at a much earlier (and more
practical) stage in the description.

From the point of view of the standard interpretation, however, the
problem is serious, because in the state (67) or (71) the system and the
apparatus are entangled, and the mixed state resulting for the apparatus is
not ignorance-interpretable. Thus, the apparatus does not have a reading
under the standard interpretation. As we have also seen, in the case of
the standard interpretation decoherence does not help; if anything it makes
the situation even worse, because it will produce such macroscopic improper
mixtures even independently of observer-engineered measurement situations.

Insofar as the standard interpretation is meant as an approach to quan-
tum mechanics that treats it as a fundamental theory, rather than as a
phenomenological theory, we see that the standard interpretation fails. In
particular, it fails to support a theoretical analysis of the process of mea-
surement that ensures that measurements have definite outcomes, let alone
one that enables one to rederive the phenomenological rules for the descrip-
tion of measurements (the collapse postulate and the Born rule). Everett
theories, pilot-wave theories and spontaneous collapse theories are again the
options of choice if one wishes to provide a solution to the measurement
problem rather than a minimalist or (neo)-Copenhagen dissolution,*® but a
detailed discussion of these goes beyond the scope of this article.

48As a prominent example of a neo-Copehagen view, one can take the ‘quantum
Bayesianism’ of Fuchs and co-workers (e.g. Fuchs 2010).
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5 Conclusion

We have discussed two of the main interpretational problems of quantum
mechanics, both engendered by the nature of quantum mechanical entangle-
ment, and the consequent failure of the ignorance interpretation of reduced
states.

The two problems are equally important if one wishes to give a founda-
tionally adequate reading of quantum mechanics. We are not here in the
business of discussing what a foundationally adequate reading of quantum
mechanics might be. The minimal interpretation, while not being entirely
satisfactory, will arguably count as adequate if one has an instrumental-
ist picture of science. More sophisticated Copenhagen or neo-Copenhagen
views may also find it easier to negotiate these two problems.*® Yet more
robust ontological requirements will prompt one to seek a more successful
replacement for the standard interpretation of quantum mechanics, with the
help of decoherence and usually along the lines of de Broglie-Bohm, collapse
or Everett.

A solution to the problem of the classical regime, however, will not au-
tomatically be also a solution to the measurement problem (and vice versa).
While pieces of apparatus are generally macroscopic systems or arguably at
least kinematically classical systems, their dynamical behaviour in probing
the quantum world is decidedly non-classical, and solving the dynamical
aspects of the measurement problem is thus distinct from deriving approx-
imately Newtonian trajectories. For instance, modern-day Everettians can
use the results of decoherence in an extremely effective way, both towards
the solution of the problem of the classical regime and towards that of the
measurement problem. But the Everettian solution to the measurement
problem relies more heavily on a successful derivation of the Born rule (e.g.
the decision-theoretic approach proposed by Deutsch (1999) and Wallace
(2007)). Should the critics of the Deutsch-Wallace approach prove correct
(e.g. Lewis 2010), Everettians might still be lacking a derivation of the Born
rule from first principles, and thus a full solution to the measurement prob-
lem.

Conversely, a solution to the measurement problem will not automat-
ically be a solution to the problem of the classical regime. For instance,

“¥Modulo the caveat about Wigner’s friend in section 4.6.
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recent developments in de Broglie-Bohm theory have included various pro-
posals for describing at least large portions of the standard model of particle
theory (see e.g. Colin and Struyve 2007, Diirr et al. 2005, Struywe and West-
man 2007, and the review in Struyve 2011). Critics, however, argue that
the configuration variables in these models (which are guided by the relevant
wavefunctional) are not necessarily decohering variables (Wallace 2008). It
may well be, as argued in particular in the ‘minimalist’ model of Struyve
and Westman (2007), that there are choices for configuration variables that
will ensure that measurement results (suitably construed) will always be
well-defined. But should the critics prove correct, the ‘measured’ classical
trajectories will be no more real than those of the minimal interpretation,
and pilot-wave theorists would still lack a fully satisfactory solution to the
problem of the classical regime.

Much progress has been achieved in recent years on the resolution of
these two problems, and generally in the philosophy and foundations of
quantum mechanics. One should expect to see more in years to come.
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