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Abstract

This paper proposes a comparison between genatisemi-greedy algorithms for a collaborative VRRiity

logistics. In order to compare the performance @thhkalgorithms on real-size test cases, we devalojuster-
first route second algorithm. The clustering phaseade by a seep algorithm, which defines the rurabused
vehicles and assigns a set of customers to it. ,Thoereach vehicle, we build a min-cost route by twethods.
The first is a semi-greedy algorithm. The second genetic algorithm. We test both approaches ahsiee
instances Computational results are presented iandssed.

Résumeé

Cet article propose une comparaison entre algoeshggénétiques et semi-greedy pour un problémeuleées

de véhicules collaboratif en logistique urbaineufPocomparer les deux algorithmes, nous proposomss de
algorithmes séquentiels basés sur la méme phadenpuis les tournées sont construites par desépures
différentes. La premiére est de type sem-greedydduxiéme un algorithme génétique. Des résulats s
presents et discutés.

Keywords: city logistics systems, two-echelon vehicle rogtiaross-docking, simulation, collaboration.

Mots-clé: systemes de logistique urbaine, problemes de éesrde véhicules a deux niveaux, cross-docking,
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1. Introduction

Vehicle routing (VRP) optimization is a popular easch subject, where several soft
computing-based meta-heuristic methods have bempoped (Golden et al., 2008). One of
the main application fields is city logistics, as wbserve three main categories of problems:
(1) venhicle routing with time windows, related tocassing city centers, (2) dynamic vehicle
routing problems, which take into account varidipéel times, and (3) two-echelon vehicle
routing, that takes into account ruptures of chafgthough very advanced techniques and
algorithms are often proposed in literature, thegnain still used in academic cases not
always related to real practices.

On the other hand, collaborative transport is beangnain issue for researchers and
practitioners, but no simulation and optimizatiaols are available (Gonzalez-Feliu and
Morana, 2011). Furthermore, the existing heuristosnot allow to analyse collaborative
transport route optimization, since they are relate a single carrier. Collaboration in
transport can take several forms (Gonzalez-et 26113). Moreover, if we observe the
algorithms developed for multi-echelon vehicle nogtoptimization in city logistics (see
Mancini et al., 2014 for a detailed review), we @b that only few of them are applicable to
real-life cases, most of which have been developdle 70’s-80’s and are fast constructive
heuristics.

When two companies want to collaborate, each aghthaving its two-echelon distribution
schema, they will find a common cross-docking poifitten we can state that in partial
collaboration a part of the freight to be delivematl be shared then some customers will be
visited once (each company will deliver a partie# bther company’s customers which have
in common) and others twice (each company will tvitiem once). Finally, in a total
collaborative approach, each customer is visitedeoby a company, because they will
optimize their transport schemes to divide the gaolgical area into zones where only one of
them will deliver. In this case, the optimizatiomplem presents three main issues:

1. Allocate customers to companies for the last-misgritiution (allocation problem)
2. Locate the most suitable cross-docking points {lonaallocation problem)

3. Construct the second-echelon routes (vehicle roytinglem)
4

. Construct the first-echelon routes (vehicle roufingblem) transshipping the freight at
the cross-docking facilities in order to load thecand-echelon vehicles (matching
problem)

This paper aims to propose and compare two fasiriigns for real-life collaborative
urban logistics. First, we propose the two algongh that follow a sequential structure
(cluster-first route-second procedure plus a positropation algorithm, the first a semi-
greedy and the second a genetic algorithm). Sesoadest both algorithms on a set of real-
life instances and compare them, highlighting ttheaatages and limits of each procedure.

2. The proposed algorithms

In order to compare both algorithms, we propose wtlustering-first-route second
algorithms which start from the same clusteringsehafter that, the route construction and



the post-optimization heuristics of each algoritlame different. The common clustering
procedure is derived from the well-known sweep allgm (Golden, 1988) and allows to feed
each algorithm with the same inputs.

2.1. Semi-Greedy algorithm

Given the satellite clusters defined in the firsape, we build routes using a semi-greedy
algorithm (Toth and Vigo, 2002). This procedure stancts routes following an iterative
procedure that adds each customer to a route. Gietion i and an uncompleted route, a
list of candidates is defined by taking the n ctbsgistomers to the last point of the route.
This is made by defining a distance thresholdCustomers whom distance to the last point of
the route is less than are included into the so-called Restricted Candidlest (RCL). Then,
the customer inserted on the route is chosen abmaricbm the RCL customers. Finally, the
first echelon routes are build following the sammg@ple, knowing the load that will transit
on each satellite from the second-echelon routes.

2.2. Genetic algorithm

The genetic algorithm is applied to build a neatiropl route from the clustering results.
We choose to use a mutation algorithm on singléesobecause the complexity of the chosen
problem applied to real applications needs fastrabdst algorithms (Larranaga et al., 1999).
The first generation of solutions (tours) is getegtarandomly to avoid very time-costly
procedures. Thé"™ generation is obtained mutating groups of solstiaf the {(-1)"
generation. The possible mutations are the follgwiflip (reversing the order of the nodes in
a sub-route of the solution), swap (interchangimg nhodes within the route), and slide (a sub-
route of the solution goes).
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EIFIG|I |JIK|ILIM[IN|H|O|P
Figure 1. Proposed mutations for the Genetic Algorithm

We initialize the algorithm as follows. The initiaumber of solutions is set to 60. The
number of iterations depends on the number of nosiis a lower bound of 1000 for small
problems, and a higher bound of 10000 for largeblems.

Both algorithms have been programmed in MATLAB 7.8n@ run in an Intel Duo Core 2
T9300, 2,5GHz and 4 GB RAM.

3. Computational results



First, and to assess the suitability of the metheds applied them to classical 2E-VRP
instances (Gonzalez-Feliu, 2008) comparing it tet Belutions found (Baldacci et al., 2013).
We are aware that those algorithms are not thefbeghis problem, since they have been
adapted to a more complex case and aim to findtaldeisolution quickly. The aim of the
proposed methods is not to solve an optimizatia@blem but to provide a quick indicator.
Moreover, routes obtained with this algorithm follb@havioral patterns that are close to the
reality, as it is observed when comparing resultsinfle routes with the route database, in
terms of length and travelled distances.

Table 1.Summary of computational results on Gonzalez-F&l{R008) instances

Group of Literature Algorithm Computational
instances distance distance Gap time

20 customers 5.59 5.17 7.60% 0.08

31 customers 8.98 7.89 12.19% 0.12

50 customers 46.91 41.86 10.47% 0.11

After that, we apply both algorithms to specifistances in urban context. Those instances
are based on scenarios proposed in Gonzalez-FaitSalanova (2012). The first scenario
considers no collaboration, so a single VRP (oagestis defined. Scenarios 2 and 3 propose
a first level of collaboration, but based on infrastures (no freight transport pooling is
allowed but all transport carriers use 2E-VRP apghiea). Then, scenarios 4 and 5 propose a
real transport pooling approach.

Computational
Big vehicles (1st stage) Small vehicles (2nd stage) times (s)
Semi- Semi- Semi-
Test | Vehicles| greedy | Genetic| Gap | Vehicles| greedy | Geneticl Gap| greedy | Genetic
1.1 1| 88720, 80477 9% 0 0 0| 0%
1.2 2| 119013 101 903 14% 0 0 0| 0%
1.3 2| 189732 177 316| 7% 0 0 0| 0% 0,06 95,18
1.4 2| 124 321 116 321] 6% 0 0 0] 0%
1.5 2| 210067 203 896| 3% 0 0 0] 0%
2.1 2| 31550 31550 0% 8| 143631 136 466/ 5%
2.2 3| 34560 34560 0% 11| 2241912155300 4%
2.3 3| 95593 95593 0% 4| 112867 97 761 13%| 0,08 330,26
2.4 2| 40829 40829 0% 7| 170426 162 786 4%
2.5 2| 73787 73787 0% 6| 162388 154993 5%
3.1 1| 60975 60975 0% 8| 166 858 154 070, 8%
3.2 2| 87760 85495 3% 11| 237 304 219 030 8%
3.3 3| 234 348 234 348 0% 5| 116 336|104 120/ 11%| 0,15 454,09
3.4 2| 106 665 106 665 0% 7| 142 476|128 300 10%
3.5 2| 205976 200 108 3% 8| 140424 133850 5%
4.1 3| 34560 34560 0% 11| 2241912155300 4%
4.2 2| 40829 40829 0% 7| 170426 162 786 4% 0.09 355.91
4.3 2| 73787 73787 0% 6| 162388 154993 5% ' '
4.4 3| 121 694 121 694 0% 12| 207 464 194 274] 6%
5.0 9| 960 847| 650 186 32% 39| 1 015965 518 594 49%| 0,00 437,93

Table 1. Computational results of both algorithms on pr@abealistic instances

The route lengths obtained by the semi-greedy #kgorare in average 5.5% higher than
the routes obtained by the GA. Form Table 2 we saa that the average difference of



distances in relation to the number of nodes. ute low capacity of the smaller trucks,
most of the routes (55%) have less than 10 nodés,an average overestimation of 2%. For
longer routes, the average overestimation is 10P4edms of computation time, the semi-
greedy algorithm has an average time of 0.001 sk;amhile the GA needs 5.25 seconds.
The computation time grows exponentially with thentwer of nodes for both algorithms, but
the GA has a fix quantity of time of 5 seconds.

Figure 2 shows the solutions of both algorithms Zasf the routes. We observe that the
semi-greedy algorithm overestimates the route wigtabut it is much faster than the GA.
However, the differences of distances are smalh dge big routes, so both algorithms are
suitable in strategic planning decision supporthoes.

Semi-greedy GA
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Figure 2. Routes comparison in terms of length and comjmutdiime

Distance 86.348 m; Time 0.009 s

4. Conclusion

The algorithm presented compares the route obtdigedsemi-greedy Algorithm with the
route obtained by a Genetic Algorithm for the saeeof customers. The routes obtained by
the genetic algorithms are shorter than the roalégined by the Greedy Algorithm (from 2%
to 14%), but the computation time of the Genetigadkithm is much higher than the
computation time of the semi-greedy Algorithm. Whsslving real-life problems with an
important number of customers, Genetic Algorithmadhe big quantity of time.

Faster algorithms must be developed for complexlpno® such the problem presented
above in realistic conditions, where is more imaottto analyse many configurations with
suboptimal routes and clusters than less configuratwith optimal routes and clustering,



Genetic Algorithms can be used after the firstofatierations done by faster algorithms, when
the most important variables have b iteen decigdub (is collaborating and the way they are
collaborating) for optimizing the results obtainbyg the first group of algorithms in the
clustering and routing phases.

Further developments are the following. Genetioadlgm should be programmed also for
the clustering phase and for the whole problem tewiu merging nodes from different
clusters in the routes. When using genetic algostiion both phases the complexity of the
problem will increase, and the computation time deee for convergence will increase
importantly. If the new genetic algorithm runs @asonable times, the final step will be to use
it for the collaborative 2E-VRP decision suppomecidiing the groups of operators that will
collaborate and the way they will do it.
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