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Abstract

This paper studies rationalizability in a linear asymmetric Cournot oligopoly with
a unique Nash equilibrium. It shows that mergers favors uniqueness of the rational-
izable outcome. When one requires uniqueness of the rationalizable outcome max-
imization of consumers’ surplus may involve a symmetric oligopoly with few firms.
We interpret uniqueness of the rationalizable outcome as favoring a dampening of
strategic ‘coordination’ uncertainty. An illustration to the merger between Delta Air
Lines and Northwest shows that a reallocation of 1% of market share from a small
carrier to a larger one has implied a lower production volatility over time, yielding a
1.5% decrease in the coefficient of variation of number of passengers.
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1 Introduction

In a Cournot-Nash equilibrium, every firm is assumed to predict correctly the behavior of its
competitors. Rationalizability criteria are much less demanding. The set of rationalizable
outcomes comprises any outcome that can occur when firms expect some outcome in this
set. This set therefore includes Cournot-Nash equilibria but it is often larger. It may for
instance include production levels around the equilibrium: a firm expecting the others to
produce above the equilibrium, and so expecting a price lower than the equilibrium price
to arise, will produce below equilibrium.

The aim of this paper is to relate rationalizability to the market structure in a Cournot
oligopoly. The market structure is characterized by an exogenous distribution of productive
assets across firms, as in Perry and Porter (1985). This kind of setups naturally arises in
competition policy when a regulator has to choose how to allocate some production capacity
across different competitors. This applies to nuclear reactors in the power industry (Davis
and Wolfram, 2011), hospitals in the health insurance market (Town et al., 2006) or water
sources (Compte et al., 2002). The regulator usually tries to reach equal sharing of capacity
across a large number of firms. The standard justification for this policy is that consumers’
surplus is lower in the equilibrium corresponding to a monopoly-like situation, with one
firm holding most of the productive assets, than in a competitive equilibrium where each
of a large number of competitors retains control over similar capacity.

The rationalizability viewpoint leads to qualify this recommendation. The general flavor
of our results is that an asset reallocation improving consumers’ surplus in the equilibrium
may in fact give rise to a multiplicity of rationalizable outcomes, making less likely that
the equilibrium be ever achieved. In order to grasp intuition consider two firms that differ
according to production capacity. Equal sharing supposes to reallocate some assets from
the large to the small firm. Such a reallocation relaxes the capacity constraint of the small
firm, making its production less predictable. In turn the behavior of the large firm, reacting
to its expectation about the production of the small firm, also becomes less predictable.

We give a formal account of this intuition by appealing to rationalizability. The set of
rationalizable outcomes is computed using an iterated process of elimination of strategies
that are non best responses. At the beginning of the process, no restriction is made about
beliefs. The first step eliminates the decisions that are not rational, i.e., not best response
to some belief. The second step then eliminates all the decisions that are not best responses
to beliefs in the set of rational decisions. Every further step eliminates the decisions that
are not best responses to beliefs about decisions surviving the previous steps. This process
eventually yields the set of rationalizable outcomes. There is a unique rationalizable out-
come when the process is contracting, i.e., it is governed by a mapping with spectral radius
less than one (Bernheim, 1984; Moulin, 1984).

We provide a global characterization of the set of rationalizable outcomes in a linear
asymmetric Cournot setup with a unique Nash equilibrium. Our main result shows that
the spectral radius of the mapping governing iterated elimination of non best responses
increases following a reallocation of assets from a large firm to a smaller one. Achieving
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a higher consumers’ surplus in the equilibrium may consequently be associated with a
multiplicity of rationalizable outcomes. In addition we show that in case of multiplicity
such a reallocation enlarges the set of rationalizable aggregate productions.

Once Nash assumptions are relaxed, looking for a consumers’ surplus improvement
makes questionable policies involving unrestrained pursuit of competition. We character-
ize the asset distribution maximizing the aggregate equilibrium production subject to the
constraint that the equilibrium is the only rationalizable outcome. When the competi-
tive equilibrium is the only rationalizable outcome, this is indeed the solution we look for.
Otherwise, the solution is an oligopoly with few identical firms. We finally show that this
same asset distribution maximizes the lowest rationalizable aggregate production. In this
sense, a regulator who displays high risk aversion and so puts high probability of occurrence
on worst rationalizable productions should not implement an asset distribution implying
multiple rationalizable outcomes.

Bernheim (1984), Basu (1992) and Börgers and Janssen (1995) study rationalizability
in symmetric Cournot games. Guesnerie (1992) studies eductive stability (that coincides
with uniqueness of rationalizable outcomes) in the competitive case, and Gaballo (2013)
considers eductive stability in linear symmetric Cournot games. The closest paper to ours
is Moulin (1984). Moulin (1984) provides a condition for local Cournot (cobweb) stability
and shows that this condition locally governs elimination of non best responses. Ratio-
nalizability can also be analyzed exploiting the supermodular game structure of Cournot
duopolies or symmetric oligopolies (Vives 1990; Amir 1996) but this approach does not
extend to more general frameworks (Vives, 1999).

The process of iterated elimination allows for an interpretation of rationalizability as the
consequence of introspection. Other criteria for Nash robustness include real time learning
where agents revise their beliefs from observations of past outcomes. See, among others,
Milgrom and Roberts (1990), Guesnerie (1993), Marx (1999), Hommes and Wagener (2010)
or Durieu, Solal and Tercieux (2011). The Rationalizable Conjectural Equilibrium intro-
duced by Rubinstein and Wolinsky (1994) and Esponda (2013) involves both introspection
and feedback from observations. The literature suggests the existence of close links between
all these approaches.

The empirical literature provides no clear evidence that concentration is associated with
higher prices (Gugler et al., 2003). This is often viewed as reflecting a trade-off between
economies of scale and the ability of larger firms to exercise market power (Williamson,
1968; Perry and Porter, 1985; Farrell and Shapiro, 1990). Our theoretical model focuses on
one aspect of a merger: a merger is one form of reallocation of productive assets. Focusing
on this aspect our results suggest that changes in the set of rationalizable outcomes caused
by mergers may also blur the impact on the price level. In the airlines industry there is
mixed evidence that fare dispersion is higher in competitive routes (Borenstein and Rose,
1994; Gerardi and Shapiro, 2009). Our paper considers quantity instead of price dispersion.
We provide empirical evidence consistent with the theory that in the airlines industry the
main recent mergers have led to reduced intra-route passenger volatility. In the specific
case of the merger between Delta Air Lines and Northwest we find that a 1 percent transfer
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of market share from a small firm to a larger one decreases within carriers coefficient of
variation of the number of passengers by 1.5 percent.

The paper is organized as follows. In Section 2 we briefly present the setup and we
show that equilibrium production increases following a reallocation of assets from a large
firm to a smaller one. In Section 3 we give a necessary and sufficient condition for the
equilibrium to be the only rationalizable outcome. In Section 4 we establish the trade-off
between efficiency in equilibrium and uniqueness of the rationalizable outcome. In Section
5 we characterize the optimal distribution of assets. The illustration to the airline industry
is given in Section 6.

2 General setup

We consider a single product model of Cournot competition with M firms and N identical
productive assets. Firm ` owns N` assets, with N` decreasing in ` (N` ∈ R+). Producing
q` costs C (q`, N`) = q2

`/2σN` to firm ` (σ > 0). One can think of an asset as a plant, and
assume that producing q goods from a plant costs q2/2σ. By convexity, a firm minimizes its
overall cost by producing the same quantity q in each plant, yielding total cost C (qN`, N`).

Given N` firm ` produces q` maximizing p(q` + Q−`)q` − C (q`, N`), where Q−` is the
aggregate production of firms other than ` and p (·) = δ0 − δQ is the inverse demand
function (where Q is the aggregate production, and δ, δ0 > 0). Its best response is

R`(Q−`) =

{
qm` − b`Q−` if Q−` ≤ δ0/δ,

0 if Q−` ≥ δ0/δ,
(1)

where qm` = b`δ0/δ is the monopoly production of firm `, and

b` =
σδN`

2δσN` + 1
≥ 0. (2)

With this specification the slope b` of the reaction function is increasing and concave in N`.
A Cournot equilibrium is a M -vector (q∗` ) such that q∗` = R`(Q

∗
−`) for every `. There is

a unique equilibrium. In this equilibrium, productions are q∗1
...
q∗M

 = (I +B)−1

 qm1
...
qmM

 ,

where I is the identity matrix of order M and B is the square positive matrix

B =


0 b1 · · · b1

b2
. . .

...
...

. . . bM−1

bM · · · bM 0

 .
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Let Q∗ be the aggregate production in the equilibrium. Since the price p(Q∗) is positive
(otherwise no firm would be active in equilibrium) and the marginal cost tends to zero
when production tends to zero, it is always profitable for a firm to enter the market. Hence
all the firms are active in equilibrium (q∗` > 0 for every `).

Our first result states that an equal distribution of assets across firms yields the highest
aggregate production in equilibrium, and thus the highest consumers’ surplus.

Proposition 1. A transfer of assets from firm h to firm s increases the aggregate output
Q∗ in the Cournot equilibrium if and only if Nh > Ns (firm h is larger than firm s).

Proof. The equilibrium aggregate production is

Q∗ =
S

1 + S

δ0

δ
, with S =

M∑
`=1

b`
1− b`

. (3)

The production Q∗ increases in S, and the ratio b`/(1− b`) is increasing and concave in N`.
A transfer of assets from a large to a small firm implies a lower bh/(1 − bh) and a higher
bs/(1− bs). By concavity, S increases, and so Q∗ increases. �

This result is a particular case of Perry and Porter (1985) or Farrell and Shapiro (1990).
It includes the case of a merger (a merger between firms s and h amounts to transfer all
the assets of s to h). A corollary of Proposition 1 is that, when all the firms have the same
number of assets, Q∗ increases with the number M of firms (from a symmetric oligopoly
with M firms, the transfer of all the assets of one firm to the others results into a symmetric
oligopoly with M−1 firms). Hence, given N , the production Q∗ and the consumers’ surplus
are maximized in a competitive equilibrium (an equilibrium with an infinite number of
identical firms).

3 Dominance solvability

An equilibrium is dominant solvable when it is the unique rationalizable outcome of the
Cournot game.

Rationalizable outcomes are defined from the following process. Suppose that every
firm ` produces in

[
qinf
` (0), qsup

` (0)
)

= [0,+∞). Then, define iteratively (for all t ≥ 1) the
sequences

[
qinf
` (t) , qsup

` (t)
]

of sets of best responses of firm ` to the belief that the aggregate
production of others is in

[
Qinf
−` (t− 1) , Qsup

−` (t− 1)
]
, with Qinf

−` (t− 1) =
∑

k 6=` q
inf
k (t− 1)

and Qsup
−` (t− 1) =

∑
k 6=` q

sup
k (t− 1). Strategic substitutabilities imply that

qinf
` (t) = R`

(
Qsup
−` (t− 1)

)
, and qsup

` (t) = R`(Q
inf
−` (t− 1)). (4)

For all ` the sequences are converging since (qinf
` (t)) increases in t, (qsup

` (t)) decreases in t,
and they are bounded (0 ≤ qinf

` (t) ≤ q∗` ≤ qsup
` (t) ≤ qm` for all t ≥ 1). Their limits, denoted
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qinf
` and qsup

` , are fixed points of the recursive system (4). The limit set [qinf
` , qsup

` ] is the set
of rationalizable productions of firm `.

Local dominance solvability is defined as the uniqueness of the rationalizable outcome in
a game where the strategy sets are restricted to a neighborhood of the equilibrium (qinf

` (0)
and qsup

` (0) are close to q∗` for every firm). Under this restriction, all the firms are active,
and the recursive system (4) becomes qinf

1 (t)
...

qinf
M (t)

 =

 qm1
...
qmM

−B
 qsup

1 (t− 1)
...

qsup
M (t− 1)

 ,

and  qsup
1 (t)

...
qsup
M (t)

 =

 qm1
...
qmM

−B
 qinf

1 (t− 1)
...

qinf
M (t− 1)

 .

Local dominance solvability obtains when this system is contracting, i.e., the spectral radius
of B is less than 1.

Lemma 1. The spectral radius of B is the unique positive root ρ of

F (ρ) ≡
M∑
`=1

b`
ρ+ b`

= 1. (5)

We have ρ < 1⇔ F (1) < 1.

Proof. Let e be an eigenvalue of B, and v an associated eigenvector. Then, ev = Bv
yields

ev` + b`v` = b`

M∑
k=1

vk ⇔ v` =
b`

e+ b`

M∑
k=1

vk for all `.

Summing over ` implies that every eigenvalue e of B is such that

F (e) ≡
M∑
`=1

b`
e+ b`

= 1.

For e ≥ 0, the function F is continuous and decreasing. Moreover, F (0) = n > 1 > 0 =
F (+∞). Hence, B admits a unique positive real eigenvalue. Since B is a positive matrix,
it follows from Perron-Frobenius theorem that this positive real eigenvalue is the spectral
radius ρ of B. That is, F (ρ) = 1 for ρ > 0. Finally, since F is decreasing, we have: ρ < 1
if and only if F (1) < 1. �

The inequality F (1) < 1 is the local condition found by Moulin (1984). We are going
to show that this is also the condition for global dominance solvability of the equilibrium.
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This is done by investigating the set of rationalizable outcomes. With identical firms, either
the equilibrium is dominant solvable (qinf

` = qsup
` = q∗` ≡ q∗ for all `), or [qinf

` , qsup
` ] = [0, qm]

with qm = qm` for all ` (see, e.g., Basu, 1992). In our setup firms are heterogeneous and it
is no longer true that qinf

` = 0 for every ` when the equilibrium is not dominant solvable.
The next result shows that the values of qinf

` are ranked according to `.

Lemma 2. The bounds qinf
` and qsup

` are nonincreasing in `. Furthermore, the lowest
rationalizable production qinf

` is 0 if and only if ` > ¯̀, where ¯̀≥ 0 is the largest ` such that∑
k≤`

bk
1 + bk

+
∑
k>`

bk
1 + b`

< 1. (6)

Proof. See in appendix. �

To get an intuition about the existence of the threshold ¯̀, let us consider the first two
steps of the iterative process of elimination of non best responses. In the first step, qsup

` (1)
is the monopoly production qm` which is decreasing in ` (it is increasing in the number of
assets). In the second step, qinf

` (2) is the best response to Qsup
−` (1) which is increasing in `

(small firms face a higher aggregate production of others than large firms). It follows that
qinf
` (2) is decreasing in ` and possibly 0 for ` large enough. The argument extends to every

further step of the elimination process.
Given the threshold ¯̀, we can characterize the rationalizable outcomes of a linear

Cournot game.

Lemma 3. The set of rationalizable aggregate productions is the interval
[
Qinf , Qsup

]
, where

Qinf =

(
1 +

c− a
a2 − c (c+ e)

)
δ0

δ
, Qsup = Qinf +

e

a2 − c (c+ e)

δ0

δ
, (7)

with

a = 1 +
∑
`≤¯̀

b2
`

1− b2
`

, c =
∑
`≤¯̀

b`
1− b2

`

and e =
∑
`>¯̀

b`.

Proof. See in appendix. The appendix also characterizes the set
[
qinf
` , qsup

`

]
of ratio-

nalizable individual productions. �

Lemma 2 directly yields a necessary and sufficient condition for dominance solvability of
the Cournot game. On the one hand, when all the firms are active (¯̀= M), qinf

` = qsup
` = q∗`

for all ` since the equilibrium is the unique fixed point of the linear system (4). On the
other hand, the Cournot equilibrium is not the only rationalizable outcome when some
firms remain inactive (¯̀< M).

Proposition 2. The Cournot equilibrium is globally dominant solvable (the unique ratio-
nalizable outcome) if and only if ¯̀= M , or equivalently

Γ ≡
∑
`

b`
1 + b`

< 1. (8)
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Proposition 2 generalizes the local analysis by taking into account the decision of entry
analyzed in Lemma 2. It shows that (8) governs global dominance solvability, and thus
rationalizability of entry.

For illustrative purpose, consider an example of non Nash rationalizable outcomes with
identical firms, b` = b for all `. Condition (8) simplifies to (M − 1) b < 1. When the
equilibrium is not dominant solvable, any rationalizable deviation from the equilibrium
is justified by a belief in [0, qm]. Firm ` can produce q∗ + ε when it expects everyone
else to deviate by −ε/[(M − 1) b] from the equilibrium. This belief in turn is justified by
second order beliefs: a firm believes that everyone produces below the equilibrium when
it believes that everyone believes that everyone produces above the equilibrium (implying
that everyone produces below the equilibrium). Higher order beliefs are defined in [0, qm]
along the same lines.

4 Rationalizability and asset distribution

We now relate the asset distribution to the set of rationalizable outcomes. A first approach
consists in studying how a change in the asset distribution affects the spectral radius ρ.

Proposition 3. A transfer of assets from firm h to firm s increases the spectral radius ρ
of B if and only if firm h is larger than firm s (Nh > Ns).

Proof. Consider a transfer of dN > 0 assets from firm h to firm s, i.e., Ns increases by
dN and Nh decreases by dN (Ns < Nh). The resulting change dρ in the spectral radius is
obtained by differentiating (5):

F ′(ρ)dρ+

[
∂

∂Ns

(
bs

1 + bs

)
− ∂

∂Nh

(
bh

1 + bh

)]
dN = 0.

Since the ratio b`/(1+b`) is increasing and concave in N`, the term into brackets is positive.
Since F ′(ρ) < 0 for ρ > 0, we have dρ > 0. �

A transfer of assets from firm h to firm s implies a change in the slopes of their reaction
functions. Since the (absolute value of the) slope is increasing in the number of assets, bs
increases (which is detrimental to dominance solvability) and bh decreases (which favors
dominance solvability). The overall effect follows from the concavity of the ratio b`/ (1 + b`)
in the number of assets. Proposition 3 shows that asymmetry across firms favors dominance
solvability. In view of Propositions 1 any reallocation of assets which improves consumers’
surplus in equilibrium makes less likely that this equilibrium be the unique rationalizable
outcome.1

1An alternative assessment could refer to Γ characterized in Proposition 2. Proposition 3 holds true
when ρ is replaced by Γ.
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A second approach bears on the set of rationalizable aggregate productions
[
Qinf , Qsup

]
.

The difference Qsup − Qinf can be viewed as a measure of the strategic uncertainty in the
market, a large interval

[
Qinf , Qsup

]
magnifying strategic uncertainty. Our next result is

another version of the trade-off between efficiency and dominance solvability: a reallocation
of assets that yields higher aggregate production in equilibrium also raises Qsup −Qinf .

Proposition 4. Assume that the equilibrium is not dominant solvable (Qinf < Qsup).
Consider an infinitesimal reallocation of assets from a large firm h to a smaller one s,
dNh = −dNs < 0 (Ns < Nh). We have:

d
(
Qsup −Qinf

)
> 0.

Proof. See in appendix. �

In order to grasp some intuition, consider again the iterative process (4). The production
qsup
` (1) = qm` is increasing and concave in N`. A reallocation of assets from firm h to firm
s implies that qmh decreases and qms increases. By concavity qms + qmh increases. Hence, for
each firm ` 6= s, the reallocation implies an increase in Qsup

−` (1) so that qinf
` (2) decreases.

Firm s faces a smaller production Qsup
−s (1) but this effect happens to be dominated by the

aggregate effect on all the other firms. The argument then extends to every further step of
the iterative process.

5 Optimal asset distribution

Consider a competition regulator who wants to implement an asset distribution maximizing
aggregate production. In the presence of a multiplicity of rationalizable outcomes, the
regulator cannot be certain about the actual aggregate production. A possible way to
circumvent this problem is to restrict attention to asset distributions implying a unique
rationalizable outcome. The asset distribution (N`) and the number M of firms should
then maximize the equilibrium aggregate production Q∗ defined by (3) subject to the
dominant solvability constraint F (1) < 1 in (8), and feasibility

M∑
`=1

N` ≤ N. (9)

Proposition 5. Any ((N`),M) maximizing the aggregate equilibrium production Q∗ given
by (3) subject to the constraints (8) and (9) involves an equal sharing of productive assets:
N` = N/M for all `. Furthermore,

• if σδN < 1, then the solution involves an infinite number of firms (competitive mar-
ket), and (9) is the only binding constraint;
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• if σδN ≥ 1, then the solution is a symmetric oligopoly with

M∗∗ =
3σδN

σδN − 1

firms.2 The aggregate production is

Q∗∗ =
1

2

3σδN

1 + 2σδN

δ0

δ
(10)

Both constraints (8) and (9) are binding at the optimum.

Proof. See in appendix. �

A competitive market structure obtains when the given (finite) capacity is equally shared
among a arbitrarily large number of firms. The equilibrium in such a market is the only
rationalizable outcome when σδN < 1. This is the condition found by Guesnerie (1992)
with a continuum of total size N = 1 of firms. By Proposition 5 perfect competition should
be promoted when σδN < 1.

When σδN ≥ 1, there are multiple rationalizable outcomes in a competitive market.
A first way to restore uniqueness is to allocate only a part of the assets. The equilibrium
becomes dominant solvable when 1/σδ assets (1/σδ < N) are allocated to a large number
of firms. Perfect competition then involves production inefficiency with some productive
assets being not used. A second way to restore uniqueness is to allocate all the assets to few
firms only. The market structure now gets closer to a monopoly-like situation. Proposition
5 shows that this last alternative maximizes consumers’ surplus.

Proposition 5 may provide biased insights into the optimal distribution of assets. Indeed,
when σδN ≥ 1, there exist asset distributions where some rationalizable production is
greater than Q∗∗. Reaching such production levels could then justify the implementation
of an asset distribution yielding a multiplicity of rationalizable outcomes. But this goal is
met with certainty if and only if the asset distribution has Qinf greater than Q∗∗. Our next
result shows that this never happens.

Proposition 6. There is no distribution of assets such that the lowest aggregate production
Qinf is greater than Q∗∗.

Proof. See in appendix. �

A competition regulator whose risk aversion toward the strategic uncertainty is infinite
(the regulator puts a high probability on worst aggregate productions) should select an asset
distribution implying dominance solvability of the equilibrium. Still high risk aversion does
not always recommend to pick out the competitive outcome: the optimal asset distribution
involves imperfect competition when the production capacity is large (σδN ≥ 1).

2When M∗∗ is not an integer, the solution is the largest integer below M∗∗.
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6 An Illustration from the U.S. Airline Industry

Our theoretical analysis predicts that mergers could dampen market ‘coordination’ volatil-
ity by making more likely that firms form accurate beliefs about the behavior of their
competitors. We assess this prediction by considering the case of the airline industry. In
this industry a firm is an airline producing passenger transportation, a market is a route
between two airports or cities, and available seats, aircraft fleet or some measure for airline
network might provide plausible proxies for productive assets. The cost function appears
like the structure assumed in the theoretical model when it is viewed as a smooth approxi-
mation of a situation where cost per passenger are low until the carrier reaches full capacity.
The fixed costs that matter in the industry are however absent from the theoretical model.

6.1 Data description

Our data comes from the Airline Origin and Destination Survey (DB1B) collected by
the US Department of Transportation. We use the number of coupons, the origin and
destination countries and airports, the ticketing and operating carriers, and the number of
passengers from the DB1B Market dataset. Each quarter about 4 to 6 million transactions
are recorded in this dataset. We restrict our analysis to flights from 2000:Q1 to 2015:Q1,
where the origin and the destination are within the boundaries of the US.

We delete observations with missing or coded 99 ticketing carrier as well as tickets with
more than six coupons (Ciliberto and Tamer, 2009). We then aggregate the data so that
an observation gives the number of passengers per (ticketing) carrier, route and quarter.

A route comprises all undirected flights between two airports, irrespective of interme-
diate transfer points. Following Borenstein (1990) we assume that flights involving two
different airports in the same city are in separate markets. We exclude from the sample
the routes where reported flights are in only one direction, and small routes where there is
some quarter with no reported passengers. This gives us a sample of 2,937,091 observations
comprising 16,058 routes.

6.2 The merger between Delta and Northwest

Most of the illustration is provided in the context of the merger between Delta Air Lines
(DL) and Northwest Airlines (NW). The DL/NW merger started in 2008 over a period of
high global volatility, with the Great Recession, soaring fuel prices and H1N1 flu pandemic.
Early public information was released in January 2008 and the official announcement was
made in April. The merger finally was approved by the Department of Justice in October
2008 and completed in January 2010.

We choose a pre-merger period running until the quarter 2007:Q4 (included) which
precedes the early announcement. Kim and Singal (1993) advocates for some specificity
of the transitory period from the early announcement in 2008:Q1 to the completion in
2010:Q1. Since our theoretical analysis supposes that production facilities are actually
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transferred, we choose a post-merger period starting from the quarter 2010:Q2 that follows
completion. In order to get rid from seasonal patterns we select pre and post-merger periods
consisting of the same number of each quarter. As regional economies evolve routes may be
subject to different long term trends. Therefore we also require that the two periods have
the same length. The resulting pre-merger period thus runs from 2003:Q1 to 2007:Q4 and
the post-merger period from 2010:Q2 to 2015:Q1. Each period covers 5 consecutive years
and consists of 5 Q1 quarters, 5 Q2 quarters, etc.

Removing observations that are outside the time window and neglecting small carriers
with less than 1% of market share per quarter we are left with a sample of 1,875,281
observations.

6.3 Control and treatment

Following Kim and Singal (1993) we distinguish two groups of routes: those where both
DL and NW are present before the early announcement, and those where they are never
active. The routes in the first group are affected by the merger and they are used to build
a treatment group. The routes in the last group are assumed to be not affected by the
merger and form the basis for the control group.

There are 12,194 (resp., 9,740) routes where DL (resp. NW) is active (i.e., appears as
ticketing carrier) during at least one quarter before the merger. The intersection of these
two sets of routes yields 8,053 routes. We require strong presence of the two merging firms
for including a route into the treatment group. First DL has to be active each quarter in the
time window. This requirement selects 4,939 routes from the 8,053 routes. In this subset
we choose the routes where NW is active each quarter before the merger. The treatment
group finally comprises 412,943 observations, corresponding to the carriers present in 2,353
routes.

We apply the same criteria to the control group. We start from the 1,883 routes where
both DL and NW are never active. We pay some attention to the possible indirect influence
of DL and/or NW transiting through regional airlines bound by codeshare agreements.
Almost all regional airlines are involved into codeshare agreements with at least one major
carrier (Forbes and Lederman, 2009). Under codeshare regional airlines operate flights
ticketed by major carriers. Since by construction neither DL nor NW tickets flights in
these 1,883 routes, no regional airline can operate flights ticketed by DL or NW in these
routes. Note that regional airlines operating flights for DL or NW in other routes may be
present in the routes of the control group. Then they must operate flights on their behalf
or flights ticketed by any other major carrier than DL and NW. For instance Express Jet
Airlines (EV) operates many flights for DL, but there can be no route of the control group
where this happens, and still this group comprises routes where EV operates flights for
United Airlines (UA). We remove 11 routes from the control group where either DL or NW
operates flights ticketed by another carrier. In the set of remaining routes, we first select
the 1,559 routes where there is at least one carrier that is active each quarter both pre and
post-merger. This carrier plays the role of DL in the treated routes. Finally a counterpart
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of NW is found by requiring that the routes of the control group have at least two different
carriers always active until the merger announcement. This additional requirement is very
demanding: the control group eventually consists of 226 routes only, which corresponds to
a 21,192 observation sample.

The full dataset has 412, 943+21, 192 = 434, 135 observations of carriers in the selected
routes in the sample window.

Table 1: Summary statistics

Control Treatment

Period Pre merger post-merger Pre merger post-merger

(1) (2) (3) (4) (5) (6) (7) (8)

Nb of quarters 20 20 20 20 20 20 20 20

Nb of routes 226 143 226 143 2353 2135 2353 2135

Distance per route (in km) 1322 1585 1322 1585 2068 2007 2068 2007

Nb of airports 99 81 99 81 137 137 137 137

Nb of different carriers 18 18 16 14 20 18 16 16

Nb of carriers per route and quarter 2.32 2.32 2.36 2.37 4.90 4.65 3.87 3.69

Nb of passengers per route and quarter (period) 22,589 4878 20,542 5184 6,485 4736 6,575 4729

Herfindahl index per route and quarter 0.63 0.63 0.67 0.66 0.37 0.38 0.46 0.47

Homogeneity devices No Yes No Yes No Yes No Yes

Descriptive statistics about the two groups are given in normal font style in Table 1. The
treatment typically comprises longer routes with less competition and much less passengers.
In view of these differences one may find questionable the validity of the common trend
assumption. In our setup it is difficult to assess the validity of this assumption since the
dependent variable will be computed only once before the merger and once after the merger
for each carrier × route pair. Nevertheless one might argue that this assumption is more
likely to hold when the two groups display ex ante greater similarity. To obtain more similar
groups we use a nearest neighbor matching algorithm that matches each treated route one
at a time to the control route with closest score. The propensity score is computed from
a logit model whose all explanatory variables are from 2000:Q1, i.e., three years before
the beginning of the pre-merger period. The explanatory variables are the distance of
the route, the number of passengers transported in the route, the number of competitors
and the Herfindahl index in the route. We have also constrained the number of carriers in

13

 
Documents de travail du Centre d'Economie de la Sorbonne - 2014.28R (Version révisée)



2000:Q1 to be the same in the treated route and the matched control route.3 The matching
procedure leads to 83 unmatched routes in the control group, and 218 in the treatment
group. The matched subsample has 370,169 observations obtained from 143 routes in the
control group and 2135 treated routes. Descriptive statistics about the two groups at the
outcome of this procedure are given in italic font style in Table 1. The matching procedure
performs rather well.

Remark 1. Our methodology does not guarantee the absence of connections between the
routes of the two groups. In particular some DL/NW competitors are active in the two
groups, and some treated and control routes share a common endpoint. We find that 15 over
23 carriers are active in both treated and control routes, yielding multimarket contacts in all
the routes of the control group, and in most treated routes. Such contacts possibly influence
coordination (Ciliberto and Williams, 2014). They may be potential confounding factors
if the DL/NW merger occurs simultaneously with changes in the pattern of multimarket
contacts. Virtually all the carriers are involved in multimarket contacts before and after the
merger, with no clear changes in the pattern of multimarket contacts. Only America West
Airlines (HP) and Spirit Airlines (NK) are involved in multimarket contacts either before
or after the merger. America West and US Airways (US) merge during the period under
consideration, and US was still involved in multimarket contacts after the DL/NW merger.
Spirit Airlines appears in both groups only in the post-merger period, but represents less
than 1% of the passengers transported during this period. The issues implied by the
routes in different groups having common endpoints are potentially more worrisome. In
the matched dataset 54 airports belong to both groups. All the routes in the control group
and 2/3 of the treated routes share one common airport. We did not address this issue
specifically. It may be partially handled by the inclusion of a route fixed effect in our
econometric specification.

6.4 Econometric model

Our measure of ‘coordination’ volatility is the coefficient of variation CoVar of the number
of passengers per carrier and route,

CoVarfrp =
σfrp
q̄frp

, (11)

where q̄frp is the average number of passengers transported by carrier f in route r during
period p, and

σ2
frp =

1

#P(p)− 1

∑
t∈P(p)

(qfr(t)− q̄frp)2 ,

with P(p) consisting of the quarters t in period p.

3The estimation is made using the matchit function available for R, with the nearest method, allowing
for replacement, a ratio equal to 1 and the constraint of performing an exact matching on the number of
carriers in 2000:Q1 covariate.
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Our most general econometric model takes the form

log(CoVarfrp) = Xfp b0 + µf + µr + Postp bPost + Treatedfr bTreat

+ Postp × Treatedfr bdd + εfrp.

The regressors include carrier and route fixed effects µf and µr, the Postp variable (equal
to 0 when p = 0 and 1 otherwise), and a Treatedfr variable equal to 0 for all the carriers
f in a route r of the control group, and to 1 for all the carriers f in a route r of the
treatment group. In our theoretical model firms face the same cost environment whereas
the DL/NW merger occurs in a context of sharp increase in oil prices and possibly perturbed
labor relations. The vector Xfp comprises a constant and two controls for differential cost
changes: Pfuelfp gives the fuel price per gallon4 and Wagefp the average wage per full time
equivalent worker.5,6

The coefficient bdd is the difference-in-differences impact of the merger on the (logarithm
of the) coefficient of variation of the number of passengers.

6.5 Impact of the DL/NW merger

To implement the econometric model we transform the sample so that the unit of ob-
servation becomes a triplet (carrier × route × period). We are then left with only two
observations for each carrier f and route r. The first one gives CoVarfr0 and the other
CoVarfr1. This yields a sample of 26,283 observations. We first consider the ‘intensive’
margin by abstracting from entry and exit firms’ decisions. We remove all the observations
corresponding to carriers that are active during either the pre or post-merger periods, but
not in the two periods (except NW that is present in the pre-merger period only). That
is, we examine how volatility changes for carriers that are active both before and after the
merger. The resulting full ‘intensive’ sample has 21,885 observations. The own effect of
the extensive (entry/exit) margin will be analyzed in Table 3.

4This variable is computed from the Air Carrier Financial Reports, Form 41 Financial Data, Schedule
P-12a, as the ratio between the total fuel cost (in US Dollars) spent on scheduled domestic flights (SDOMT-
COST) and the total fuel consumption (in Gallons) on scheduled domestic flights (SDOMT-GALLONS).

5It is computed from the same Form 41 Financial Data, now Schedules P-6 and P-1a Employees. It is
equal to the ratio of total salaries (SALARIES) in Schedule P-6 and total full-time equivalent employees
(EMPFTE) that counts two part-time employees as one full-time employee, given in Schedule P-1a. Both
variables are aggregated per period (pre and post-merger).

6The theoretical model also supposes given production facilities for every firm. The seat capacity
reported in the T-100 database is not a suitable proxy for capacity since it is potentially endogenous.
Indeed airlines adjust both frequencies and aircraft (and thus seat capacity) over seasonal cycles. Schedule
B-43 Inventory available in Form 41 Financial Data provides an annual inventory of aircraft engines per
carrier as well as some details about aircrafts. It is better suited for controlling for firm size, but the data
is available from 2006:Q1 only. Since the US/HP merger occurred before 2006, we did not include seat
capacity in the illustration. Still we checked that the impact of the DL/NW and UA/CO mergers that both
occurred after 2006 are unaffected by the inclusion of this additional control (the results are not reported
in the paper).
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Figure 1: Distribution of CoVar per carrier and route

Figure 1 depicts the distribution of CoVar before the merger announcement (solid line)
and after the merger completion (dotted line), for carriers in routes of the control group (in
black) and of the treatment group (in red). The right panel considers the whole treatment
group. It shows that these routes resisted well the destabilization that occurs in the routes
of the control group, with volatility being slightly dampened in the treatment group. The
two remaining panels describe the volatility impact for different subsamples of the treatment
group. The panel in the middle considers a subsample that only consists of DL observations.
The production of this carrier clearly enters a huge stabilization phase following completion.
The right panel excludes DL and NW observations and highlights that volatility is just
slightly magnified among DL/NW competitors in the treated routes. The difference-in-
differences argument thus suggests that stabilization not only concerns DL but also DL/NW
competitors, that is all the firms active in the market.

The regression results reported in Table 2 confirm the insights from Figure 1. Columns
(1) to (3) apply to the 21, 885 observation sample of firms active both before and after
the merger observations. For each specification the DL/NW merger caused a significant
volatility reduction. The coefficient of variation of the number of passengers transported
decreases by 24.7% in column (3). In this sample NW has 14.9% market share before the
merger, so that the transfer of 1% market share from a small carrier to a larger one yields
a 1.65% reduction in the firms’ production variability.
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Columns (4) to (6) apply to the 18, 675 observation sample of the matched firms active
both before and after the merger. The coefficient of variation now decreases by 30.5% in
column (6) but NW has 19.9% market share in this sample. This gives the main result of
this illustration: the transfer of 1% market share from NW to DL implied a 1.53% reduction
in production variability at the firm × route level.

Table 2: A stabilizing impact of the DL/NW merger

CoVar

Full intensive‡ sample Matched intensive‡ sample

(1) (2) (3) (4) (5) (6)

Constant −1.005∗∗∗ 0.066 −4.213∗∗∗ −0.906∗∗∗ −1.193∗∗∗ −4.372∗∗∗

(0.034) (0.116) (0.413) (0.034) (0.046) (0.503)

PFuel (log) −2.282∗∗∗ −2.510∗∗∗

(0.129) (0.161)

Wage (log) 2.649∗∗∗ 2.754∗∗∗

(0.257) (0.311)

Post 0.183∗∗∗ 0.185∗∗∗ 1.410∗∗∗ 0.244∗∗∗ 0.244∗∗∗ 1.605∗∗∗

(0.037) (0.039) (0.103) (0.043) (0.046) (0.127)

Treated 0.300∗∗∗ 0.208∗∗∗

(0.035) (0.036)

Post × Treated −0.218∗∗∗ −0.261∗∗∗ −0.247∗∗∗ −0.276∗∗∗ −0.319∗∗∗ −0.305∗∗∗

(0.039) (0.042) (0.044) (0.045) (0.049) (0.049)

Route fixed effect No Yes Yes No Yes Yes
Carrier fixed effect No Yes Yes No Yes Yes
Nb of observations 21,885 21,885 21,885 18,675 18,675 18,675

Notes: ∗∗∗ (resp., ∗∗ and ∗) Significant at the 1 (resp., 5 and 10) percent level.
Standard errors are clustered at the route level.
Pre merger period: 2003:Q1–2007:Q4; post-merger period: 2010:Q2–2015:Q1.
‡ Full and matched samples only comprise carriers present both before and after the merger.

In Appendix we provide more details on DL/NW merger. We find that a stabilizing im-
pact for different pre and post-merger periods, provided that the transitory period between
announcement and completion is not taken into account. We also find that the merger has
a destabilizing impact in the very short run. The gain in stability obtains two years after
the completion and then quickly reaches the level reported in Table 2.

In appendix we perform various robustness checks. In particular we find no impact for
unbalanced placebo mergers, as well as for the routes where DL does not compete with NW
during the pre-merger period. We also find a stabilizing impact for two other important
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mergers of the last decade, the one between US Airways and America West, and the one
between United and Continental.

6.6 Discussion and limits

Column (1) of Table 3 shows that the merger effect entirely disappears when the post-
merger goes from announcement to completion. Column (2) shows that the stabilizing
impact reappears, but is mitigated with respect to those reported in Table 2, when the
post-merger period starts from announcement and ends in 2015:Q1. These results suggest
that the actual transfer of production capacities is a necessary condition for stabilization.7,8

In Appendix we analyze the recent merger between Southwest Airlines (WN) and AirTran
Airways (FL) completed in 2014:Q4. We find results consistent with this prediction. There
is indeed no impact for the merger, with a post-merger period ending at completion.

Columns (3) to (5) take into account the extensive margin by the inclusion of all the
carriers active either before or after the merger. Column (4) considers our reference post-
merger period starting following the completion. It therefore differs from column (6) in
Table 2 by including the carriers exiting the market before the announcement or entering
the market after the completion. The impact in column (4) is negative but in this large
dataset it is significant at the 10 percent level only, suggesting exits of ‘stable’ carriers
from the control group and/or entries of ‘unstable’ carriers in the treated routes. With
different post-merger periods the extensive entry/exit margin the merger yields no impact
on variability of the number of passengers. The lower size of the sample in column (5)
is mostly due to entries after completion. These entries imply enough instability in the
treated routes to offset the stabilizing impact of the merger reported in column (2).

These early results accord with our theoretical predictions. The stabilizing impact
on production only appears following the completion, once productive assets of the two
airlines are actually merged; it concerns not only the merging firms but also the other firms
present in the market; new entries tend to exacerbate variability. Still our method does
not allow us to identify properly changes in the set of rationalizable outcomes. Alternative
plausible mechanisms consistent with an equilibrium viewpoint could explain stabilization
as well. Some of them have already been discussed above or are discussed in the appendix.
Others could involve collusion (merger may facilitate collusion by reducing the number of
participants in a market) or sharing of information on uncertain demand (Kalnis, Froeb and

7Specific features of the airline industry imply that some actions in fact are pre-announced and only
gradually committed to over time: details about the flight are taken and announced to passengers well
ahead of the actual flight date, and market intelligence data clearinghouses help forming accurate forecasts
about competitors’ actions. If the DL/NW merger was a surprise in the airline industry, it may also be
that carriers cannot easily change their own schedules early in the transitory period.

8The sample in column (1) is a subset of the sample in column (2): the sample in column (2) comprises
firms exiting during the transitory period but reentering the route after completion. The mitigated impact
in column (2) could therefore also result from temporary exits of firms whose behavior displays more inertia
after the completion.
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Table 3: Limits to the impact of the DL/NW merger

CoVar

Matched intensive‡ sample Full† matched sample

(1) (2) (3) (4) (5)

Post-merger period 2008:Q2–2009:Q41 2008:Q2–2015:Q12 2008:Q2–2009:Q41 2010:Q2–2015:Q13 2008:Q2–2015:Q12

Constant −1.777 5.337∗∗∗ −0.808 −3.423∗∗∗ 0.248
(1.280) (0.265) (1.948) (0.682) (0.688)

PFuel (log) 1.217∗ −2.366∗∗∗ 0.182 −2.075∗∗∗ −2.487∗∗∗

(0.654) (0.144) (0.831) (0.252) (0.189)

Wage (log) 0.034 −3.783∗∗∗ 0.020 2.320∗∗∗ −0.380
(0.878) (0.184) (1.299) (0.444) (0.458)

Post −0.318∗∗ 2.677∗∗∗ −0.096 1.405∗∗∗ 2.092∗∗∗

(0.151) (0.104) (0.209) (0.224) (0.243)

Post × Treated 0.161 −0.159∗∗∗ 0.129 −0.251∗ 0.057
(0.098) (0.044) (0.141) (0.129) (0.174)

Route fixed effect Yes Yes Yes Yes Yes
Carrier fixed effect Yes Yes Yes Yes Yes
Nb of observations 33,348 11,033 35,638 22,481 13,108

Notes: ∗∗∗ (resp., ∗∗ and ∗) Significant at the 1 (resp., 5 and 10) percent level.
Standard errors are clustered at the route level.
‡ The sample only comprises matched carriers present both before and after the merger.
† The sample comprises all the matched carriers present during one quarter at least over the sample window.
1. Pre merger period: 2006:Q2–2007:Q4.
2. Pre merger period: 2001:Q1–2007:Q4.
3. Pre merger period: 2003:Q1–2007:Q4.

Tschantz, 2010). More should thus be done to assess the plausibility of the rationalizability
viewpoint.

7 Conclusion

Considering rationalizable outcomes affects usual recommendations made in competition
policy when the competitive outcome is not dominant solvable. In this case, the market
should sometimes involve few firms, each one endowed with similar production capacities.
We find that market power ‘stabilizes’ Nash equilibrium production by favoring dominance
solvability of the equilibrium. This implies a trade-off between stability and efficiency:
Asymmetry results both in a lower consumers’ surplus in equilibrium and a gain in the
likelihood that the equilibrium be reached.

Robustness checks could tackle the following issues:

1. The flavor of the results is that instability is favored by model primitives discouraging
entries. A typical example involves entry fixed costs. If these costs are large enough to
deter entry of a firm expecting all the others to produce their monopoly production,
then the ‘no production’ decision is rationalizable (which implies that the monopoly
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production is rationalizable as well,
[
qinf
` , qsup

`

]
= [0, qm` ]). This argument is robust: it

relies neither on symmetry nor on linearity. In addition, entry fixed costs may yield
equilibrium multiplicity, which implies failure of global dominance solvability (the set
of rationalizable solutions always includes all the equilibria).

2. Our results can be extended to a general linear anonymous game. In such a game,
the best-response map is

R`(Q−`) =

{
a(N`)− b(N`)Q−` if Q−` ≤ a(N`)/b(N`),

0 if Q−` ≥ a(N`)/b(N`).

In the Cournot game, a = δ0b/δ. Since our results rely on first and second derivatives
of these two two functions, by continuity, they still hold when a and b are close in
the C2-topology.

3. Our analysis abstracts from the possibility of collusion among firms. Firms’ homo-
geneity is known to favor collusion (Compte et al., 2002). Our results can therefore
be thought of as another illustration of the fragility of the equilibrium with identical
firms. Still, the issue of rationalizability and collusion would be worth to study. On
the one hand, it is possible that the market never reaches the equilibrium when firms
have similar production facilities, because the market outcome is a rationalizable out-
come different from the Cournot equilibrium, so that collusion does not arise. On the
other hand, collusion maintains asymmetries across firms, and may therefore preserve
dominance solvability of the equilibrium.

4. In our analysis, the asset distribution is exogenous. A market for the assets may
possibly preserve dominance solvability of the equilibrium. If, for instance, firms
with a higher stock of assets are more likely to acquire new assets, because e.g.,
the assets can also be used as collateral, then a market for productive assets favors
asymmetries across firms, and thus dominance solvability of the equilibrium.
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Appendix

A Proof of Lemmas 2 and 3

Let L0 be the set of values of ` such that qinf
` = 0. The relations (4) give:

∀` /∈ L0 , qinf
` = b`

(
δ0

δ
− (Qsup − qsup

` )

)
,

∀` ∈ L0 , qinf
` = 0,

∀` , qsup
` = b`

(
δ0

δ
−
(
Qinf − qinf

`

))
.

Solving for qinf
` and qsup

` gives

∀` /∈ L0 , qinf
` =

b2
`

1− b2
`

(
δ0

δ
−Qinf

)
+

b`
1− b2

`

(
δ0

δ
−Qsup

)
, (12)

∀` /∈ L0 , qsup
` =

b`
1− b2

`

(
δ0

δ
−Qinf

)
+

b2
`

1− b2
`

(
δ0

δ
−Qsup

)
, (13)

∀` ∈ L0 , qsup
` = b`

(
δ0

δ
−Qinf

)
, (14)

and ∀` ∈ L0, qinf
` = 0. Summing over ` gives a linear system in Qinf and Qsup whose solution

is (7), namely:

Qinf =

(
1 +

c− a
a2 − c (c+ e)

)
δ0

δ
, Qsup = Qinf +

e

a2 − c (c+ e)

δ0

δ
,

with

a = 1 +
∑
`/∈L0

b2
`

1− b2
`

, c =
∑
`/∈L0

b`
1− b2

`

and e =
∑
`∈L0

b`.

For every ` ∈ L0, qinf
` = 0 so that

∑
k 6=` q

sup
k > δ0/δ. Using (13), (14) and the expressions

of Qinf and Qsup, this latter inequality is equivalent to:

(c− a) (bm + 1) + e

a2 − c (e+ c)
> 0. (15)

Since e ≥ 0 and

Qsup −Qinf =
e

a2 − c (e+ c)

δ0

δ
≥ 0, (16)

it follows that a2 − c2 − ce > 0, so that the inequality (15) is equivalent to

(a− c) (bm + 1) < e, (17)
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which is equivalent to (6) since

c− a =
∑
k/∈L0

bk
1 + bk

− 1.

Hence, qinf
` = 0 if and only if (6) does not hold true. Since the LHS of (6) is increasing in

`, there is a value ¯̀ such that qinf
` = 0 if and only if ` > ¯̀.

B Proof of Proposition 4

Let dNh = −dNs < 0. By (2), b` is increasing and concave in N`. Hence we have dbh <
0 < dbs and dbh + dbs > 0. Differentiating (16) gives:

dQsup − dQinf =
δ0

δ
d

(
e

a2 − c (c+ e)

)
. (18)

We distinguish between 3 cases for the computation of dQsup − dQinf .
Case 1: ¯̀< h < s. a and c remain constant and (18) writes:

dQsup − dQinf =
δ0

δ

a2 − c2

(a2 − c (c+ e))2de,

where de = dbh + dbs > 0. Since a2− c2 = (a− c) (a+ c), simple algebra allows us to check
that the above numerator is positive so that dQsup − dQinf > 0.

Case 2: h < s ≤ ¯̀. e remains constant and (18) writes:

dQsup − dQinf = −δ0

δ

e

(a2 − c (c+ e))2 (2ada− (2c+ e) dc) .

This has the same sign as ((2c+ e) dc− 2ada). It is positive if and only if(
c+

1

2
e

)∑
`≤¯̀

d

(
b`

1− b2
`

)
> a

∑
`≤¯̀

d

(
b2
`

1− b2
`

)
. (19)

On the one hand, b`
1+b`

is increasing and concave in N`, which implies

∑
`≤¯̀

d

(
b`

1 + b`

)
> 0.

This latter inequality rewrites∑
`≤¯̀

d

(
b`

1− b2
`

)
>
∑
`≤¯̀

d

(
b2
`

1− b2
`

)
, (20)
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The LHS is positive since b`
1−b2`

is shown to be increasing and concave in N` (but the RHS

cannot be signed because
b2`

1−b2`
is neither concave nor convex in N`). If the RHS is negative,

then (20) implies that (19) holds true. If the RHS is positive, then rewriting (17) for ¯̀

gives

a− c > e

1 + b¯̀
, (21)

which implies c+ 1
2
e < a. Combining this latter inequality with (20) proves that (19) holds

true. This shows that dQsup − dQinf > 0.
Case 3: h ≤ ¯̀< s. (18) writes:

dQsup − dQinf = −δ0

δ

e

(a2 − c (c+ e))2 (2ada− (2c+ e) dc)

+
δ0

δ

a2 − c2

(a2 − c (c+ e))2de

dQsup − dQinf has the same sign as

−e (2ada− (2c+ e) dc) +
(
a2 − c2

)
de

= e
(2c+ e) (1 + b2

h)− 4abh

(1− bh)2 (1 + bh)
2 dbh +

(
a2 − c2

)
dbs

Since dbs > 0 > dbh and dbh + dbs > 0, the above expression is positive if

e
(2c+ e) (1 + b2

h)− 4abh

(1− bh)2 (1 + bh)
2 <

(
a2 − c2

)
(22)

Inequality (21) implies (h ≤ ¯̀):

a− c > e

1 + b¯̀
≥ e

1 + bh
> 0. (23)

Using (a2 − c2) = (a− c) (a+ c) a sufficient condition for Inequality (22) is

e
(2c+ e) (1 + b2

h)− 4abh

(1− bh)2 (1 + bh)
2 < (a+ c)

1

1 + bh
e.

This rewrites:
(2c+ e)

(
1 + b2

h

)
− 4abh < (a+ c) (1− bh)2 (1 + bh) .

Using again Inequality (23) (e < (a− c) (1 + bh)), a sufficient condition for the above
inequality is

(2c+ (a− c) (1 + bh))
(
1 + b2

h

)
− 4abh < (a+ c) (1− bh)2 (1 + bh) .

This rewrites

2abh (bh − 1) < −c2b2
h (1− bh) ,

a > cbh.

Since a− c > 0, a > c > cbh. This shows dQsup − dQinf > 0.
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C Proof of Proposition 5

We maximize Q∗ subject to (8) and (9) in three steps. Since Q∗ is increasing in S (see (3)),
the optimization problem is to maximize S subject to (8) and (9).

Step 1. Consider the Lagrangian:

M∑
`=1

σδN`

σδN` + 1
+ µ

(
1−

M∑
`=1

σδN`

3σδN` + 1

)
+ η

(
N −

M∑
`=1

N`

)
.

It is the Lagrangian associated with the maximization problem for a given value of M .
Any solution to the initial optimization problem satisfies the first-order conditions in N`

associated with this Lagrangian. The first-order conditions in N` are:

σδP (σδN`) = 0, for every `,

where

P (x) =
1

(1 + x)2 − µ
1

(1 + 3x)2 −
η

σδ
.

Hence, the number of different firms (different values of N`) at a solution of the optimization
problem equals the number of positive roots of P . Observe that

P ′(x) = − 2

(1 + x)3 + µ
6

(1 + 3x)3 .

Since P ′(x) ≥ 0 rewrites

(3− (3µ)1/3)x ≤ (3µ)1/3 − 1,

P ′ can change its sign at most once. Hence, either P is monotonic or P admits one
local extremum. It follows that P admits at most 2 positive roots: the solution to the
optimization problem involves at most two types of firms.

Denote i = 1, 2 the type of a firm. Let Mi the number of firms of type i (i = 1, 2).
Every type i firm uses Ni assets (0 ≤ N1 ≤ N2 w.l.o.g.).

Step 2. We maximize S for given N1 and N2 under the 2 constraints (8) and (9). S is
linear in M1 and M2:

S = M1
σδN1

σδN1 + 1
+M2

σδN2

σδN2 + 1
.

The stability constraint (8) is linear:

M1 ≤
3σδN1 + 1

σδN1

− N2

N1

3σδN1 + 1

3σδN2 + 1
M2,

and the feasibility constraint (9) is linear too:

M1 ≤
N

N1

− N2

N1

M2.
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The marginal rate of substitution of S is
σδN2
σδN2+1
σδN1
σδN1+1

, it lies between the slopes of the constraints:

N2

N1

3σδN1 + 1

3σδN2 + 1
<

σδN2

σδN2+1

σδN1

σδN1+1

<
N2

N1

.

Thus, we have 3 cases:
Case 1: N1 ≥ σδN−1

3σδ
. Then

3σδN1 + 1

σδN1

≥ N

N1

,

and the feasibility constraint is the only relevant constraint (i.e., feasibility implies stabil-
ity). The solution is M2 = 0, M1 = N/N1. The value of S is

σδN

σδN1 + 1
.

Case 2:N2 ≤ σδN−1
3σδ

. Then,
3σδN2 + 1

σδN2

≤ N

N2

,

and the stability constraint is the only relevant constraint (i.e., stability implies feasibility).
The solution is M1 = 0, M2 = 3σδN2+1

σδN2
. The value of S is

3σδN2 + 1

σδN2 + 1
.

Case 3: N1 <
σδN−1

3σδ
< N2. The 2 constraints are relevant. The solution is at the

unique intersection between the constraints, namely
M1 =

1

N2 −N1

3σδN1 + 1

3σδN1

(
3σδN2 + 1

σδ
−N

)
M2 =

1

N2 −N1

3σδN2 + 1

3σδN2

(
N − 3σδN1 + 1

σδ

)
The value of S is (after some computations):

σδN1 (1 + 3σδN2) + σδN2 + 2σδN+1
3

(σδN1 + 1) (σδN2 + 1)
.

Step 3. We solve for N1 and N2 maximizing S in each of the 3 above cases.

27

 
Documents de travail du Centre d'Economie de la Sorbonne - 2014.28R (Version révisée)



Case 1. Maximizing S amounts to minimize N1. If σδN ≤ 1, then the solution is
N1 = 0 and M1 = +∞ (M2 = 0) and the aggregate production is σδN (we are in the
competitive case). If σδN > 1, then the solution is N1 = σδN−1

3σδ
and

M1 =
3σδN

σδN − 1
,

S =
3σδN

σδN + 2
.

The aggregate production is

Q∗ =
S

1 + S

δ0

δ
=

1

2

3σδN

1 + 2σδN

δ0

δ
.

Case 2. (this case requires σδN > 1) Maximizing S amounts to maximize N2. The
solution is

N2 =
σδN − 1

3σδ
,

this is the same solution as Case 1.
Case 3. (this case requires σδN > 1). The derivatives of S w.r.t. N1 and N2 have the

following signs:

∂S

∂N1

∼ 3σδN2 −Nσδ + 1 > 3σδ
σδN − 1

3σδ
−Nσδ + 1 = 0,

∂S

∂N2

∼ 3σδN1 −Nσδ + 1 < 3σδ
σδN − 1

3σδ
−Nσδ + 1 = 0.

S is increasing in N1 and decreasing in N2. At the optimum,

N1 = N2 =
σδN − 1

3σδ
.

This is again the same solution as Case 1.

Summing up the 3 cases:

• If σδN ≤ 1, then Case 1 is the only possible case and the solution is that N is divided
equally across an infinite number of firms (competitive market).

• If σδN > 1, then the 3 cases give the same solution: a symmetric oligopoly with 3σδN
σδN−1

firms and where each firm owns the same number σδN−1
3σδ

of assets. The aggregate
production is 1

2
3σδN

1+2σδN
δ
δ0

. One easily checks that both constraints (8) and (9) are
binding.
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D Proof of Proposition 6

The expression (7) of Qinf implies:

1

1− δ
δ0
Qinf

= 1 +
∑
`≤¯̀

b`
1− b`

+

(∑
`≤¯̀

b`
1−b2`

)∑
`>¯̀b`∑

`≤¯̀
b`

1+b`
− 1

.

By definition of ¯̀ and Lemma 2, we have∑
`≤¯̀

b`
1 + b`

<
∑
`≤¯̀

b`
1 + b`

+
∑
`>¯̀

b`
1 + b¯̀

≤ 1,

where the strict inequality comes from the equilibrium being unstable. Hence∑
`≤¯̀

b`
1 + b`

− 1 < 0,

and
1

1− δ
δ0
Qinf

≤ 1 +
∑
`≤¯̀

b`
1− b`

.

From (10), we have
1

1− δ
δ0
Q∗∗

= 2
1 + 2σδN

2 + σδN
.

Since every aggregate production (Qinf or Q∗∗) is smaller than δ0
δ

, we have:

Qinf < Q∗∗ ⇔ 1

1− δ
δ0
Qinf

<
1

1− δ
δ0
Q∗∗

.

A sufficient condition for this last inequality is

1 +
∑
`≤¯̀

b`
1− b`

< 2
1 + 2σδN

2 + σδN
. (24)

Let α` = N`/N ≥ 0 (α` decreasing in ` and
∑
α` = 1). Using the definition (2) of b`, (24)

rewrites ∑
`≤¯̀

σδα`N

σδα`N + 1
<

3σδN

σδN + 2
. (25)

Note that f (α`) = σδα`N
σδα`N+1

is concave in α` so that (Jensen inequality)

∑
`≤¯̀

f (α`)∑
`≤¯̀α`

≤ f

(∑
`≤¯̀α`∑
`≤¯̀α`

)
= f(1).
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This rewrites ∑
`≤¯̀

f (α`) ≤
σδN

σδN + 1

∑
`≤¯̀

α`

Since
∑

`≤¯̀α` ≤ 1 and
σδN

σδN + 1
<

3σδN

σδN + 2
,

this implies ∑
`/∈L0

f (α`) <
3σδN

σδN + 2
,

which shows that (25) holds true.

E Empirical illustration

E.1 Alternative treatment and placebo mergers

The theoretical model predicts no impact on volatility in markets where NW does not
compete with DL before the merger. To test this prediction, we select a new treatment
group consisting of the routes where DL is active each quarter whereas NW is never present.
The control group is unchanged, except that now we require that only one carrier be active
each quarter during the full time window. We then run the same matching procedure as
in the main text. The results reported in column (1) of Table 4 show no volatility impact
of the merger.

In order to assess for a possible mechanical effect due to the post-merger reduction in
the number of suppliers we consider two variants. In the first one we remove from the
final matched subsample all the observations corresponding to DL and NW. The results
reproduced in column (2) of Table 4 show that stabilization still occurs in the sample
consisting of DL/NW competitors only.9 In the second variant we impute to DL all the
flights ticketed by NW before the merger (which removes NW in the pre-merger period).
Column (3) shows that stabilization still obtains in this case.10

Finally we also consider placebo mergers with unbalanced route characteristics. Columns
(4) and (5) of Table 4 report the results for two such mergers. The first one is between Amer-
ican Airlines (AA) and Continental (CO) and follows the chronology of the actual merger
between United (UA) and CO, i.e., announced in 2008:Q1 and completed in 2011:Q4. The

9Airlines do not supply quantities on city-pair routes, but instead they supply quantities on airport-
pair segments. After the merger the opportunity cost of allocating a seat on a segment to a passenger is
determined from a larger set of post-merger routes that include the segment. This could make routes more
stable in equilibrium. The impact reported in column (2) in the absence of DL and NW suggests that
stabilization at least partly proceeds from different channels.

10The results in Table 4 apply to the ‘intensive’ margin, with all the observations corresponding to
carriers present both before and after the merger. They are therefore not driven by additional post-merger
competitor entry or exit induced by the merger.
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second one is between DL and UA and follows the chronology of the actual DL/NW merger.
We find no volatility impact for these mergers.11

Table 4: Robustness checks

CoVar

DL without NW2 Without DL and NW2 Early consolidation2 AA/CO placebo1 DL/UA placebo2

(1) (2) (3) (4) (5)

Constant −3.780∗∗∗ −4.435∗∗∗ −3.301∗∗∗ −2.365 −8.231∗∗∗

(0.879) (0.502) (0.212) (1.499) (1.035)

PFuel (log) −1.200∗∗∗ −2.506∗∗∗ −2.646∗∗∗ −0.242 −1.664
(0.457) (0.161) (0.105) (0.691) (1.696)

Wage (log) 1.944∗∗∗ 2.793∗∗∗ 2.421∗∗∗ 0.946 5.032∗∗∗

(0.564) (0.310) (0.128) (0.831) (0.667)

Post 0.636∗ 1.603∗∗∗ 1.732∗∗∗ 0.004 0.991
(0.352) (0.127) (0.083) (0.382) (1.292)

Post x Treated −0.123 −0.308∗∗∗ −0.277∗∗∗ −0.163 −0.574
(0.115) (0.048) (0.043) (0.122) (0.354)

Route fixed effect Yes Yes Yes Yes Yes
Carrier fixed effect Yes Yes Yes Yes Yes

Notes: Standard errors are clustered at the route level.
∗∗∗ (resp., ∗∗ and ∗) Significant at the 1 (resp., 5 and 10) percent level.
1. Pre-merger: 2004:Q4–2007:Q4; Post-merger: 2012:Q1–2015:Q1.
2. Pre-merger: 2003:Q1–2007:Q4; Post-merger: 2010:Q2–2015:Q1.

11The first placebo merger involves a fictitious merging firm (AA instead of UA) while the second one has
a fictitious merged firm (UA instead of NW). One needs therefore to adopt different modelling strategies
for these two placebo mergers. In the first case the merged carrier (CO) no longer tickets flights in the post
merger period. Actually most of these flights are certainly ticketed by UA. We cannot consider that UA in
these routes is unaffected by a AA/CO merger. We therefore remove from the treatment group associated
with placebo AA/CO placebo merger all the 734 routes actually treated in the UA/CO merger. It remains
1594 routes in the control group and 922 in the treatment group before applying the matching procedure,
and 448 routes in the control group and 922 treated routes after applying this procedure. Note that the
results reported in column (2) of Table 4 suppose no extensive margin, as in Table 2. In the case of the
placebo merger between DL and UA, there is a fictitious merged carrier: UA indeed tickets flights following
the fictitious merger. We impute all these tickets to DL (which removes UA from the post-merger sample).
As in the previous placebo merger the 2,353 actually treated routes of the DL/NW must be removed since
DL production already comprises part of NW production in these routes. We are left with few routes:
26 routes in the control group, and 1109 treated routes. The matching procedure selects 14 routes in the
control group and 304 treated routes. Focusing on the intensive margin the final matched sample has 1618
observations. The results reported in column (5) of Table 4 obtain from this sample.
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E.2 Pre and post-merger period definition

To account for the possible coordination in advance of the actual merger, we run two
exercises where the DL/NW pre-merger period is 2002:Q1–2006:Q4 and 2001:Q1–2005:Q4,
respectively. In both cases the post-merger period is set as in Table 2 to the completion
period (2010:Q2–2015:Q1). In both cases we find a significant stabilizing impact of the
merger, with Post × Treated coefficient equal to −0.308 and −0.176 (and p-values less
than 0.01).

We also study the robustness of our results to a change in the sample window. Figure
2 depicts how the estimated impact of the DL/NW merger changes over time. We always
set a pre-merger period ending in 2007:Q4 and a post-merger period starting in 2008:Q2.
The figure gives the Post × Treated coefficient (in red) as well as its 5 percent confidence
interval (in blue) for our most general specification (including cost controls and route
and carrier fixed effects) when the end of the post-merger period varies from 2009:Q1 to
2015:Q1. In the main text we controlled for seasonality and possible trend of the number
of passengers transported by choosing pre and post-merger periods containing the same
number of each quarter. In Figure 2 the pre-merger period and the post-merger period
have the same length, proceeding backward from the quarter preceding announcement
(2007:Q4). For instance, the 10 quarter post-merger period starting in 2008:Q2 and ending
in 2010:Q3 is associated with the 10 quarter pre-merger period starting in 2005:Q3 and
ending in 2007:Q4. In general the number of each quarter contained in the two periods
differ. Figure 2 however shows that the result reported the column (2) of Table 3 are
robust to this weaker control for seasonality. Except for the completion quarter 2010:Q1
the DL/NW merger has implied a steady increase in volatility until the end of 2010, reaching
it maximum in 2010:Q4. Volatility then dampens and the gain in stability occurs about
two years after the completion. The 15% reduction in the coefficient of variation of the
number of passengers reported in Table 3 is obtained in 2013 and remains about unchanged
from this date.12

E.3 Stabilization impact for other mergers

Finally we have applied the same methodology to three other recent mergers: the merger
between United Airlines (UA) and Continental Airlines (CO), announced in 2008:Q1 and
completed in 2011:Q4; the one between US Airways (US) and America West (HP), officially
announced in 2005:Q2 and completed in 2007:Q2; and the recent merger between Southwest
Airlines (WN) and AirTran Airways (FL), announced in 2010:Q4 and completed in 2014:Q4.
In each case we have followed the same methodology as the one used for the DL/NW merger
for choosing pre and post-merger periods and for selecting the matched treated and control

12Part of this evolution is certainly driven by the progressive increase in the number of points which
enter in the computation of the standard error of the number of passengers, an additional quarter loosing
importance as the width of the time window is enlarged.
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Figure 2: Change in volatility over time

routes.13 The results are consistent with those reported in the main text for the DL/NW
merger. The first two mergers yield less volatility in the number of passengers. Volatility
is unaffected by the third merger, where the post-merger period only covers the quarters
from announcement to completion.

13In the case of the US/HP 42 treated routes satisfy presence requirements in the market before the
matching procedure, but only 1 route remains at the outcome of the matching. The results reported in
column (2) of Table 5 are obtained from the full sample, i.e., without applying route matching.
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Table 5: Results for other mergers

CoVar

UA/CO1 US/HP2 WN/FL3

(1) (2) (3)

Constant −3.672∗∗∗ 1.127∗∗∗ −9.252∗∗∗

(0.831) (0.320) (0.634)

PFuel (log) 0.055 0.018 4.004∗∗∗

(0.241) (0.378) (0.455)

Wage (log) 1.807∗∗∗ −1.262∗∗∗ 2.848∗∗∗

(0.456) (0.180) (0.283)

Post 0.038 0.268 −1.021∗∗∗

(0.279) (0.414) (0.122)

Post × Treated −0.364∗∗ −0.214∗∗∗ 0.021
(0.175) (0.055) (0.060)

Route fixed effect Yes Yes Yes
Carrier fixed effect Yes Yes Yes
Nb of observations 8,473 15,412 1,639

Notes: Standard errors are clustered at the route level.
∗∗∗ (resp., ∗∗ and ∗) Significant at the 1 (resp., 5 and 10) percent level.
1. Matched intensive sample;

Pre-merger: 2004:Q3:2007:Q4; Post-merger: 2012:Q1–2015/01.
2. Full intensive sample;

Pre-merger: 2001:Q2–2005:Q1; Post-merger: 2008:Q2–2012:Q1.
3. Matched intensive sample;

Pre-merger: 2006:Q4–2010:Q3; Post-merger: 2011:Q1–2014:Q4.
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R code leading to Table 2

– not to be published –

# DATA EXTRACTION 
memory.limit() ; memory.size(max = TRUE) ; memory.limit(size = 100000) 
year <- c("00", "01", "02", "03", "04", "05", "06", "07", "08", "09", "10", "11", "12", "13", "14", "15") 
quarter <- c("1", "2", "3", "4") 
for(i in year){ 
  for(j in quarter){ 
    file.name <- paste("Origin_and_Destination_Survey_DB1BMarket_20", i ,"_", j, ".csv") ;  file.name <- gsub(" ","", file.name)  
    t <- read.csv(file.name, header=TRUE, sep =",", comment.char="") 
    if(names(t)[1]=="ItinID"){ 

  t <- t[(t$OriginCountry=="US") & (t$DestCountry=="US"),] ;  t <- t[t$MktCoupons<=6,] 
  t <- subset(t, select=c(Year, Quarter, OriginAirportID,  DestAirportID, TkCarrier, OpCarrier, Passengers)) 
  } else { 
  t <- t[(t$ORIGIN_COUNTRY=="US") & (t$DEST_COUNTRY=="US"),] ;  t <- t[t$MARKET_COUPONS<=6,] 
  t <- subset(t, select=c(YEAR, QUARTER, ORIGIN_AIRPORT_ID, DEST_AIRPORT_ID, TICKET_CARRIER, 

OPERATING_CARRIER, PASSENGERS)) 
  names(t) <- c("Year", "Quarter", "OriginAirportID",  "DestAirportID", "TkCarrier", "OpCarrier", "Passengers") 

      } 
    file.name <- paste("DB1B_MARKET_20", i ,"_", j,".RData") ;  file.name <- gsub(" ","", file.name) ; save(t, file= file.name) ; 
     } 
} 
rm(t, file.name, i, j, year, quarter) 

#  ROUTE DEFINITION 
ROUTE_ID <- data.frame() 
for(i in year){ 
  for(j in quarter){ 
    file.name <- paste("DB1B_MARKET_20", i ,"_", j,".RData") ;  file.name <- gsub(" ","", file.name) ; load(file.name) 
    t <- unique(subset(t,select=c(OriginAirportID,DestAirportID))) 
    ROUTE_ID <- rbind(ROUTE_ID,t)  
    ROUTE_ID <- unique(ROUTE_ID) 
    rm(t,file.name) 
    print(Sys.time()) 
  } 
} 
rm(file.name, i, j, year, quarter) 
ROUTE_ID <- cbind(ROUTE_ID, ROUTE_ID) 
ROUTE_ID[,1] <- pmin(ROUTE_ID[,3], ROUTE_ID[,4]) ; ROUTE_ID[,1] <- pmax(ROUTE_ID[,3], ROUTE_ID[,4]) 
ROUTE_ID <- ROUTE_ID[,1:2] 
ROUTE_ID <- unique(ROUTE_ID) 
ROUTE_ID$ROUTE_ID <- 1:nrow(ROUTE_ID) 
BACK <- ROUTE_ID 
names(BACK) <- c("DestAirportID", "OriginAirportID", "ROUTE_ID") 
ROUTE_ID <- unique(rbind(ROUTE_ID,BACK)) 
rm(BACK) 
ROUTE_ID <- unique(ROUTE_ID) 
save(ROUTE_ID,file="ROUTE_ID.RData") 
rm(ROUTE_ID) 

# DISTANCE BETWEEN AIRPORTS 
load("DIST.RData") 
DIST <- unique(DIST) 
load("ROUTE_ID.Rdata") 
ROUTE_ID <- merge(ROUTE_ID,DIST,by.x=c("OriginAirportID"),by.y=c("AIRPORT_ID"),all.x=TRUE) 
names(ROUTE_ID) <- c("OriginAirportID","DestAirportID"," ROUTE_ID","OR_LON_DEGREES","OR_LAT_DEGREES") 
ROUTE_ID <- merge(ROUTE_ID,DIST,by.x=c("DestAirportID"),by.y=c("AIRPORT_ID"),all.x=TRUE) 
names(ROUTE_ID) <- c("OriginAirportID","DestAirportID","ROUTE_ID","OR_LON_DEGREES", 

"OR_LAT_DEGREES","DEST_LON_DEGREES","DEST_LAT_DEGREES") 
library(geosphere) 
p1 <- cbind(ROUTE_ID$OR_LON_DEGREES,ROUTE_ID$OR_LAT_DEGREES) 
p2 <- cbind(ROUTE_ID$DEST_LON_DEGREES,ROUTE_ID$DEST_LAT_DEGREES) 
ROUTE_ID$DIST <- distHaversine(p1, p2, r=6378137) 
ROUTE_ID$DIST <- round(ROUTE_ID$DIST / 1000,0) 
rm(p1,p2,DIST) 
ROUTE_ID <- subset(ROUTE_ID,select=-c(OR_LON_DEGREES, OR_LAT_DEGREES, DEST_LON_DEGREES, 
DEST_LAT_DEGREES)) 
save(ROUTE_ID,file="ROUTE_ID.RData") 

#  DATABASE BY ROUTE 
load("ROUTE_ID.RData") 
names(ROUTE_ID) <- c("OriginAirportID", "DestAirportID",  "ROUTE_ID", "DIST") 
myroute <- as.data.frame(table(ROUTE_ID$ROUTE_ID)) ; names(myroute) <- c("ROUTE_ID","freq") 
myroute <- myroute$ROUTE_ID[myroute$freq==2] 
mytrans <- data.frame() 
for(i in year){ 
  for(j in quarter){ 
  file.name <- paste("DB1B_MARKET_20", i ,"_", j,".RData") ; file.name <- gsub(" ","", file.name) ; load(file.name)  
  t <- merge(t,ROUTE_ID,by=c("DestAirportID", "OriginAirportID"),all.x=TRUE) 
  t <- t[t$ROUTE_ID %in% myroute,] 
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  t <- subset(t,select=-c(DestAirportID, OriginAirportID)) 
  t <- t[t$Passengers>0,] ;  
  t <- t[is.na(t$TkCarrier)==FALSE,] ; t <- t[!(t$TkCarrier==99),] ; t <- t[!(t$TkCarrier=="--"),] 
  t <- aggregate(Passengers~ROUTE_ID + Year + Quarter + TkCarrier +  DIST, data=t,FUN=sum,na.rm=TRUE) 
  QROUTE <- as.data.frame(aggregate(t$Passengers, by=list(t$ROUTE_ID), FUN=sum,na.rm=TRUE)) 
  names(QROUTE) <- c("ROUTE_ID", "QROUTE") 
  t <- merge(t, QROUTE, by=c("ROUTE_ID"), all.x=TRUE)  
  rm(QROUTE) 
  t <- t[t$Passengers/t$QROUTE>=0.01,] 
  t <- subset(t,select=-c(QROUTE)) 
  mytrans <- rbind(mytrans,t) 
  rm(t) 
  save(mytrans,file="mytrans1.RData") 
  } 
} 
rm(year,quarter,i,j,file.name,myroute)                            
names(mytrans) <- c("coderoute", "year", "quarter", "comp", "dist", "qcomp") 
save(mytrans,file="mytrans2.RData") 
rm(ROUTE_ID) 
 
# CODESHARE 
load("ROUTE_ID.RData") 
ROUTE_ID_REVERSE <- ROUTE_ID 
ROUTE_ID_REVERSE$OriginAirportID <- ROUTE_ID$DestAirportID ; ROUTE_ID_REVERSE$DestAirportID  <- 
ROUTE_ID$OriginAirportID 
ROUTE_ID <- rbind(ROUTE_ID, ROUTE_ID_REVERSE) 
rm(ROUTE_ID_REVERSE) 
ROUTE_ID <- ROUTE_ID[,1:3] ; names(ROUTE_ID) <- c("OriginAirportID", "DestAirportID", "coderoute") 
codeshare <- data.frame() 
for(i in year){ 
  for(j in quarter){ 
    file.name <- paste("DB1B_MARKET_20", i ,"_", j,".RData") 
    file.name <- gsub(" ","", file.name) 
    load(file.name) 
    t <- t[!(t$TkCarrier=="--" | t$OpCarrier=="--" | t$TkCarrier=="99" | t$OpCarrier=="99"),] 
    t <- subset(t, select=c(Year, Quarter,OriginAirportID, DestAirportID, TkCarrier, OpCarrier, Passengers)) 
    t <- aggregate(Passengers ~ Year + Quarter + OriginAirportID + DestAirportID + TkCarrier + OpCarrier, t,sum,na.rm=TRUE)   
    t <- merge(t,ROUTE_ID,by=c("OriginAirportID","DestAirportID"),all.x=TRUE) 
    t <- aggregate(Passengers ~ Year + Quarter + coderoute + TkCarrier + OpCarrier, t,sum,na.rm=TRUE) 
    codeshare <- rbind(codeshare,t) 
    rm(t)  
  } 
} 
rm(file.name,i,year,quarter,j) 
codeshare$date <- gsub(" ","", paste(codeshare$Year,"/0",codeshare$Quarter)) 
library(zoo) 
codeshare$date <- format(codeshare$date, format = "%y/0%q") 
codeshare <- subset(codeshare,select=-c(Year,Quarter)) 
save(codeshare,file="codeshare.RData") 
rm(codeshare) 
 
# ROUTES WITH PASSENGERS EACH MONTH 
load("mytrans2.RData") 
nn <- unique(subset(mytrans,select=c(year, quarter))) ; nn <- nrow(nn)              
myroute <- unique(subset(mytrans,select=c(coderoute,year,quarter))) 
myroute <- as.data.frame(table(myroute$coderoute)) ; names(myroute) <- c("coderoute","freq") 
myroute <- myroute$coderoute[myroute$freq==nn] 
rm(nn) 
mytrans <- mytrans[mytrans$coderoute %in% myroute,]  
rm(myroute) 
save(mytrans,file="mytrans3.RData")  
nrow(mytrans) ; length(unique(mytrans$coderoute)) 
rm(mytrans) 
 
# DATE  
memory.limit() ; memory.size(max = TRUE) ; memory.limit(size = 100000) 
load("mytrans3.RData") 
mytrans$date <- gsub(" ","", paste(mytrans$year,"/0",mytrans$quarter)) 
library(zoo) 
mytrans$date <- format(mytrans$date, format = "%y/0%q") 
mytrans <- subset(mytrans,select=-c(year,quarter)) 
save(mytrans,file="mytrans4.RData") 
 
# REMOVE NEGLIGIBLE CARRIERS 
neglect <- function(xx) { 
  qroute <- as.data.frame(aggregate(xx$qcomp,by=list(xx$coderoute,xx$pp),FUN=sum,na.rm=TRUE)) 
  names(qroute) <- c("coderoute","pp", "qroute") 
  qcomp <- as.data.frame(aggregate(xx$qcomp,by=list(xx$coderoute,xx$pp,xx$comp),FUN=sum,na.rm=TRUE)) 
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  names(qcomp) <- c("coderoute","pp", "comp","qcomp") 
  qshare <- merge(qcomp,qroute,by=c("coderoute","pp"),all.x=TRUE) 
  rm(qroute,qcomp) 
  qshare$qshare <- round(qshare$qcomp / qshare$qroute,2) 
  qshare <- unique(subset(qshare,select=-c(qcomp,qroute))) 
  xx <- merge(xx,qshare,by=c("coderoute","comp","pp"),all.x=TRUE) ; xx <- xx[xx$qshare>=0.01,] 
  xx <- subset(xx,select=-c(qshare)) 
  rm(qshare) 
  return(xx) 
} 
 
# MERGER IMPACT FUNCTION 
impact <- function(xx){ 
  n0 <- length(unique(xx$date[xx$pp==0])) ; n1 <- length(unique(xx$date[xx$pp==1])) 
  myqsd <- as.data.frame(aggregate(xx$qcomp, by=list(xx$comp, xx$coderoute, xx$pp), FUN=sd,na.rm=TRUE))  
  names(myqsd) <- c("comp", "coderoute", "pp", "qsd")   
  qpp <- as.data.frame(aggregate(xx$qcomp, by=list(xx$comp, xx$coderoute, xx$pp), FUN=sum))  
  names(qpp) <- c("comp", "coderoute", "pp", "qcomp") 
  xx <- unique(subset(xx,select=-c(qcomp,date))) 
  xx <- merge(xx, myqsd, by=c("comp", "coderoute", "pp"), all.x=TRUE) ; rm(myqsd) 
  xx <- merge(xx, qpp, by=c("comp", "coderoute", "pp"), all.x=TRUE) ; rm(qpp) 
  xx$pt <- xx$pp * xx$tt 
  xx$coefvar[xx$pp==0] <- xx$qsd[xx$pp==0] / (xx$qcomp[xx$pp==0] / n0) 
  xx$coefvar[xx$pp==1] <- xx$qsd[xx$pp==1] / (xx$qcomp[xx$pp==1] / n1) 
  load("myfuel.RData") 
  xx <- merge(xx,FUEL,by=c("pp","comp"),all.x=TRUE) 
  rm(FUEL) 
  load("mycost.RData") 
  xx <- merge(xx,COST,by=c("pp","comp"),all.x=TRUE) 
  rm(COST) 
  return(xx) 
} 
 
# CLUSTERED REGRESSIONS 
clse.f <- function(dat,fm, cluster){   
  require(sandwich)   
  require(lmtest)   
  not <- attr(fm$model,"na.action")   
  if( ! is.null(not)){      
    cluster <- cluster[-not]     
    dat <- dat[-not,]     
  }   
  with(dat,{     
    M <- length(unique(cluster)) ;  N <- length(cluster) ;  K <- fm$rank     
    dfc <- (M/(M-1))*((N-1)/(N-K))     
    uj <- apply(estfun(fm),2, function(x) tapply(x, cluster, sum))     
    vcovCL <- dfc*sandwich(fm, meat=crossprod(uj)/N)     
    coeftest(fm, vcovCL)})   
} 
 
# DL/NW MERGER 
M1 <- "DL" ; M2 <- "NW" ; t0in <- "2003/01" ; t0fin <- "2007/04" ; t1in <- "2010/02" ; t1fin <- "2015/01"  
 
# PERIOD 
load("mytrans4.RData") 
mytrans$pp <- NA 
mytrans$pp[(mytrans$date>=t0in) & (mytrans$date<=t0fin)] <- 0 
mytrans$pp[(mytrans$date>=t1in) & (mytrans$date<=t1fin)] <- 1 
mytrans <- mytrans[is.na(mytrans$pp)==FALSE,] 
save(mytrans,file="mytrans4.RData") 
 
# REMOVE NEGLIGIBLE CARRIERS  
load("mytrans4.RData") 
mytrans <- neglect(mytrans) 
save(mytrans,file="mytrans4.RData") 
rm(mytrans) 
 
# CONTROL  
load("mytrans4.RData") 
m1route <- unique(mytrans$coderoute[mytrans$comp==M1]) 
m2route <- unique(mytrans$coderoute[mytrans$comp==M2]) 
mroute <- unique(union(m1route,m2route)) 
rm(m1route,m2route) 
cont <- unique(mytrans$coderoute[!(mytrans$coderoute %in% mroute)]) 
load("codeshare.RData") 
codeshare <- codeshare[codeshare$coderoute %in% cont,] 
TkPassengers <- aggregate(Passengers ~ TkCarrier + coderoute + date, codeshare, sum, na.rm=TRUE) 
names(TkPassengers) <- c("TkCarrier", "coderoute", "date", "TkPassengers") 
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codeshare <- merge(codeshare,TkPassengers,by=c("TkCarrier", "coderoute", "date"),all.x=TRUE) 
rm(TkPassengers) 
codeshare <- codeshare[(codeshare$OpCarrier==M1 | codeshare$OpCarrier==M2),] 
codeshare <- codeshare[!(codeshare$TkCarrier==M1 | codeshare$TkCarrier==M2),] 
codeshare <- aggregate(Passengers ~ TkCarrier + coderoute + date + TkPassengers, codeshare, sum, na.rm=TRUE) 
codeshare$codeshare <- codeshare$Passengers / codeshare$TkPassengers  
codeshare <- codeshare[codeshare$codeshare >= 0.9,] 
codeshare <- unique(codeshare$coderoute) 
cont <- setdiff(cont,codeshare) 
cont <- mytrans[mytrans$coderoute %in% cont,] # Step 1 Routes where DL, NW and their affiliates are inactive 
rm(mroute,codeshare) 
nb <- unique(subset(cont,select=c(coderoute,comp,date))) 
nb <- aggregate(date~coderoute+comp,nb,length) 
nb <- nb[nb$date == length(unique(cont$date)),] 
nb <- unique(nb$coderoute) 
cont <- cont[cont$coderoute %in% nb,] # Step 2 Routes where at least one carrier is active over the whole period 
nb <- unique(subset(cont[cont$date<=t0fin,],select=c(coderoute,comp,date))) 
nb <- aggregate(date~coderoute+comp,nb,length) 
nb <- nb[nb$date == length(unique(cont$date[cont$date<=t0fin])),] 
nb <- aggregate(comp~coderoute,nb,length) 
nb <- nb[nb$comp >= 2,] 
nb <- unique(nb$coderoute) 
cont <- cont[cont$coderoute %in% nb,] # Step 3 routes where at least two carriers are active before the announcement 
rm(nb) 
cont <- unique(cont$coderoute) 
 
# TREATMENT 
m1route <- unique(mytrans$coderoute[mytrans$pp==0 & mytrans$comp==M1]) 
m2route <- unique(mytrans$coderoute[mytrans$pp==0 & mytrans$comp==M2]) 
treat <- mytrans[mytrans$coderoute %in% unique(intersect(m1route,m2route)),]  
treat <- treat[treat$comp==M1 | treat$comp==M2,]  
nb <- unique(subset(treat,select=c(coderoute,comp,date))) 
nb <- aggregate(date~coderoute+comp,nb,length) 
nb <- unique(nb$coderoute[nb$date == length(unique(treat$date))]) 
treat <- treat[treat$coderoute %in% nb,] # Routes where either M1 or M2 are present each quarter during the whole period 
nb <- unique(subset(treat[treat$date<=t0fin,],select=c(coderoute,comp,date))) 
nb <- aggregate(date~coderoute+comp,nb,length) 
nb <- nb[nb$date == length(unique(treat$date[treat$date<=t0fin])),] 
nb <- aggregate(comp~coderoute,nb,length) 
nb <- nb[nb$comp == 2,] 
nb <- unique(nb$coderoute) 
treat <- unique(treat$coderoute[treat$coderoute %in% nb]) # Routes where both M1 and M2 are present each quarter before the 
announcement 
rm(nb) 
 
# tt VARIABLE 
load("mytrans4.RData") 
mytrans$tt <- NA ; mytrans$tt[mytrans$coderoute %in% cont] <- 0 ; mytrans$tt[mytrans$coderoute %in% treat] <- 1 
mytrans <- mytrans[is.na(mytrans$tt)==FALSE,] 
rm(m1route,m2route,cont,treat) 
save(mytrans,file="mytrans5.RData") 
rm(mytrans) 
 
# FUEL 
FUEL <- data.frame() 
for(i in year){ 
  file.name <- paste("11645618_T_F41SCHEDULE_P12A_20", i ,".csv") 
  file.name <- gsub(" ","", file.name)  
  t <- read.csv(file.name, header=TRUE, sep =",", comment.char="")  
  t <- subset(t,select=c(YEAR,QUARTER,MONTH,UNIQUE_CARRIER,SDOMT_GALLONS,SDOMT_COST))             
  t <- aggregate(cbind(SDOMT_GALLONS,SDOMT_COST)~UNIQUE_CARRIER+YEAR+QUARTER,t,sum,na.rm=TRUE) 
  FUEL <- rbind(FUEL,t) 
  save(FUEL, file="FUEL.RData") 
} 
rm(t,file.name,i,year) 
FUEL$date <- paste(FUEL$YEAR,"/0",FUEL$QUARTER) 
FUEL$date <- gsub(" ","", FUEL$date) 
library(zoo) 
FUEL$date <- format(FUEL$date, format = "%y/0%q") 
FUEL <- subset(FUEL,select=-c(YEAR,QUARTER)) ; names(FUEL) <- c("comp","qfuel","costfuel","date") 
load("mytrans5.RData") 
mydate <- unique(subset(mytrans,select=c(date,pp))) 
rm(mytrans) 
FUEL <- merge(FUEL,mydate,by=c("date"),all.x=TRUE) 
FUEL <- na.omit(FUEL) 
rm(mydate) 
qfuel <- as.data.frame(aggregate(FUEL$qfuel, by=list(FUEL$comp, FUEL$pp), FUN=sum)) 
names(qfuel)<-c("comp","pp","qfuel") 
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costfuel <- as.data.frame(aggregate(FUEL$costfuel, by=list(FUEL$comp, FUEL$pp), FUN=sum)) 
names(costfuel)<-c("comp","pp","costfuel") 
FUEL <- subset(FUEL, select=-c(qfuel,costfuel)) 
FUEL <- merge(FUEL,qfuel,by=c("comp","pp"),all.x=TRUE) 
FUEL <- merge(FUEL,costfuel,by=c("comp","pp"),all.x=TRUE) 
FUEL$pfuel <- FUEL$costfuel/FUEL$qfuel 
FUEL <- unique(subset(FUEL,select=-c(date,costfuel,qfuel))) 
FUEL <- na.omit(FUEL) 
save(FUEL,file="myfuel.RData") 
rm(qfuel,costfuel,FUEL) 
 
# WAGE 
COST <- data.frame() 
for(i in year){ 
  file.name <- paste("6250272_T_F41SCHEDULE_P6_20", i ,".csv") 
  file.name <- gsub(" ","", file.name)  
  t <- read.csv(file.name, header=TRUE, sep =",", comment.char="")  
  t <- subset(t,select=c(SALARIES,LANDING_FEES,UNIQUE_CARRIER,YEAR,QUARTER)) 
  COST <- rbind(COST,t) 
  save(COST, file="COST.RData") 
} 
rm(t,file.name,i,year) 
COST$date <- paste(COST$YEAR,"/0",COST$QUARTER) 
COST$date <- gsub(" ","", COST$date) 
library(zoo) 
COST$date <- format(COST$date, format = "%y/0%q") 
COST <- subset(COST,select=-c(YEAR,QUARTER)) 
COST <- COST[is.na(COST$SALARIES)==FALSE,] 
COST$SALARIES[COST$SALARIES<=0] <- -COST$SALARIES[COST$SALARIES<=0] 
load("mytrans5.RData") 
mytrans <- unique(subset(mytrans,select=c(date,pp))) 
COST <- merge(COST,mytrans,by=c("date"),all.x=TRUE) 
COST <- unique(COST[is.na(COST$pp)==FALSE,]) 
COST <- aggregate(SALARIES~UNIQUE_CARRIER+pp,COST,sum,na.rm=TRUE) 
load("EMP.RData") 
EMP$QUARTER <- 1 ; EMP$QUARTER[EMP$MONTH %in% c(4,5,6)] <- 2 ; EMP$QUARTER[EMP$MONTH %in% c(7,8,9)] <- 
3 ;  EMP$QUARTER[EMP$MONTH %in% c(10,11,12)] <- 4 
EMP$date <- paste(EMP$YEAR,"/0",EMP$QUARTER) 
EMP$date <- gsub(" ","", EMP$date) 
library(zoo) 
EMP$date <- format(EMP$date, format = "%y/0%q") 
EMP <- subset(EMP,select=-c(YEAR,QUARTER,MONTH)) 
EMP <- aggregate(EMPFTE~UNIQUE_CARRIER+date,EMP,sum,na.rm=TRUE) 
EMP <- EMP[is.na(EMP$EMPFTE)==FALSE,] 
EMP <- merge(EMP,mytrans,by=c("date"),all.x=TRUE) 
EMP <- unique(EMP[is.na(EMP$pp)==FALSE,]) 
EMP <- aggregate(EMPFTE~UNIQUE_CARRIER+pp,EMP,sum,na.rm=TRUE) 
COST <- merge(COST,EMP,by=c("pp","UNIQUE_CARRIER"),all=TRUE) 
rm(mytrans,EMP) 
COST$SALARIES <- COST$SALARIES / COST$EMPFTE 
COST <- subset(COST,select=-c(EMPFTE)) 
names(COST) <- c("pp","comp","wage") 
COST <- na.omit(COST) 
save(COST,file="mycost.RData") 
rm(COST) 
 
# MERGER IMPACT IN THE FULL SAMPLE 
load("mytrans5.RData") 
t <- mytrans ; t <- impact(t) 
t <- subset(t,select=c(pp,comp,pfuel,wage,coderoute,coefvar,tt,qcomp)) 
ext <- subset(t,select=c(coderoute,comp,pp)) 
ext <- aggregate(pp~coderoute+comp,ext,length) 
names(ext) <- c("coderoute","comp","ext") 
t <- merge(t,ext,by=c("coderoute","comp"),all.x=TRUE) 
rm(ext) 
t$coderoute <- as.factor(t$coderoute) 
t$pt <- t$pp * t$tt 
t <- t[t$comp== M2 | t$ext==2,] # only the carriers active in both periods (except M2) 
lm1A <- lm(log(coefvar+1e-20) ~ pp + tt + pt, data=t) ; lm1A <- clse.f(t, lm1A, t$coderoute)  
lm1B <- lm(log(coefvar+1e-20) ~ coderoute + comp + pp + tt + pt, data=t) ; lm1B <- clse.f(t, lm1B, t$coderoute) 
lm1C <- lm(log(coefvar+1e-20) ~ log(pfuel) + log(wage) + coderoute + comp + pp + tt + pt, data=t) ; lm1C <- clse.f(t, lm1C, t$coderoute)  
  
# SCORE MATCHING 
load("mytrans5.RData") 
mysample <- unique(data.frame(mytrans$coderoute,mytrans$tt)) ; names(mysample) <- c("coderoute","tt") 
length(unique(mytrans$coderoute[mytrans$tt==0])) ; length(unique(mytrans$coderoute[mytrans$tt==1])) 
load("mytrans3.RData") 
mytrans <- mytrans[mytrans$year=="2000",] 
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mytrans <- subset(mytrans, select=-c(year, quarter)) 
mytrans$pp <- 1 ; mytrans <- neglect(mytrans) 
mytrans <- subset(mytrans, select=-c(pp)) 
herfin <- function(x){ sum((x/sum(x))^2) } 
myherfin <- aggregate(qcomp~comp+coderoute, data=mytrans, FUN=sum) 
myherfin <- aggregate(qcomp~coderoute, data=myherfin, FUN=herfin) 
names(myherfin) <- c("coderoute","herfin") 
qstart <- aggregate(qcomp~coderoute,mytrans,sum) 
names(qstart) <- c("coderoute","qstart") 
mynconc <- unique(subset(mytrans,select=c(coderoute,comp))) 
mynconc <- aggregate(comp~coderoute,mynconc,length) 
names(mynconc) <- c("coderoute", "nconc") 
mytrans <- merge(mysample,mytrans,by=c("coderoute"),all.x=TRUE) 
rm(mysample) 
mytrans <- unique(subset(mytrans, select=-c(comp,qcomp))) 
mytrans <- merge(mytrans,qstart,by=c("coderoute"),all.x=TRUE) 
mytrans <- merge(mytrans,mynconc,by=c("coderoute"),all.x=TRUE) 
mytrans <- merge(mytrans,myherfin,by=c("coderoute"),all.x=TRUE) 
rm(qstart,mynconc,myherfin) 
mytrans <- mytrans[mytrans$dist>0,] 
length(unique(mytrans$coderoute))  
length(unique(mytrans$coderoute[mytrans$tt==0])) ; length(unique(mytrans$coderoute[mytrans$tt==1])) 
require(MatchIt) 
score <- matchit(tt ~ log(dist) + log(qstart) + nconc + herfin, data=mytrans,  
                 method="nearest", replace=TRUE, exact=c("nconc"), ratio=1) ; summary(score) 
score <- match.data(score) 
length(score$coderoute) ; length(score$coderoute[score$tt==0]) ; length(score$coderoute[score$tt==1]) 
load("mytrans5.RData") 
score <- unique(subset(score,select=c(coderoute))) 
mytrans <- mytrans[mytrans$coderoute %in% score$coderoute,] 
save(mytrans, file="mytrans9.RData") 
rm(score) 
 
# ENTRY-EXIT 
load("mytrans9.RData") 
mytrans <- impact(mytrans) 
ext <- subset(mytrans,select=c(coderoute,comp,pp)) 
ext <- aggregate(pp~coderoute+comp,ext,length) 
names(ext) <- c("coderoute","comp","ext") 
mytrans <- merge(mytrans,ext,by=c("coderoute","comp"),all.x=TRUE) 
rm(ext) 
mytrans$coderoute <- as.factor(mytrans$coderoute) 
mytrans <- mytrans[order(mytrans$coderoute,mytrans$tt,mytrans$comp,mytrans$pp),] 
save(mytrans, file="mytrans10.RData") 
 
# CARRIERS ACTIVE BEFORE AND AFTER THE MERGER 
load("mytrans10.RData") 
mytrans <- mytrans[mytrans$comp== M2 | mytrans$ext==2,] # only the carriers active in both periods (except M2) 
mytrans <- subset(mytrans,select=-c(ext)) 
save(mytrans, file="mytrans10.RData") 
 
# MERGER IMPACT IN THE MATCHED SAMPLE 
load("mytrans10.RData") 
lm2A <- lm(log(coefvar+1e-20) ~  pp + tt + pt, data=mytrans) ; lm2A <- clse.f(mytrans, lm2A, mytrans$coderoute)  
lm2B <- lm(log(coefvar+1e-20) ~ coderoute + comp + pp + tt + pt, data=mytrans) ; lm2B <- clse.f(mytrans, lm2B, mytrans$coderoute)  
lm2C <- lm(log(coefvar+1e-20) ~ log(pfuel) + log(wage) + coderoute + comp + pp + tt + pt, data=mytrans) 
lm2C <- clse.f(mytrans, lm2C, mytrans$coderoute)  
library(stargazer) 
stargazer(lm1A,lm1B,lm1C, lm2A,lm2B,lm2C,type="latex", title="A stabilizing impact of the DL/NW merger", style="aer", 
          label="tab:limits", 
          column.labels = c("Full intensive sample", "Matched intensive sample"), 
          column.separate = c(3,3), 
          covariate.labels=c("Constant","PFuel (log)","Wage (log)","Post","Treated", "Post x Treated"), 
          dep.var.labels=c("CoVar"), 
          column.sep.width="5pt", 
          digits=3, 
          font.size="footnotesize", 
          header=FALSE, 
          intercept.bottom=FALSE, intercept.top=TRUE, 
          omit=c("coderoute","comp"), 
          omit.labels=c("Route fixed effect","Carrier fixed effect"), 
          omit.stat=c("adj.rsq","f","ser"), 
          notes.align="l" 
          ) 
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