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I Introduction

Why do people spread rumors? Rumors are opinions spread from person to person with no dis-

cernible source.1 In a recent book Cass Sunstein (2009) documents the pervasiveness of rumors,

their public benefits, and their perils. Rumors abound concerning the efficacy of vaccines, the

birthplace of presidential candidates, the propriety of politicians, the fabrication of data in aca-

demic research, and the impact of fracking on the water table. This paper studies why rumors

are spread—by rational agents who seek the truth.

In a simple model people communicate to neighbors and friends. Agents’ individual payoffs

depend on a collective decision, such as election of a candidate or authorizing the use of new

technology. Collective-decision making is modeled as a stylized “vote” that reflects each agent’s

expected utility from the decision. Some agents are unbiased and prefer that the decision correctly

matches the true state of the world. Other agents are biased and prefer a particular decision

regardless of the true state. (Such agents might personally benefit, say, from the decision.) Agents

have prior beliefs as to the true state. One agent, selected random, receives precise information

about the true state. This agent, whose identity is not known, can create a message, a rumor,

to send to her friends about the state; the message may or may not convey the true state, and

biased agents have the incentive to create a false message. Agents who receive a message decide

whether or not to pass it along. Agents strategically spread the message, in order to influence

how others will vote on the collective outcome.

The paper derives network conditions for a full communication equilibrium, where all unbiased

agents transmit messages and, therefore, spread possibly false rumors. They do so because there

is a sufficiently large probability the rumor is true. The equilibrium conditions rely on the

distribution of biased and unbiased agents in the network. For any agent, the set of possible

senders of a message must contain sufficiently few biased agents.

When this condition fails so that full communication is not possible, there is an equilibrium in

which communication is maximized. We construct an algorithm (which runs in finite time) that

precisely identifies subgraphs of the network where communication takes place. A main feature

of this equilibrium is that information can flow from one part of the network to another but not

in the reverse direction. Unbiased agents maintain the credibility of messages by blocking those

1Webster’s English dictionary definition.
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that come from a part of the network that contains too many biased agents. This same agent,

however, will transmit messages coming from another direction. These maximal equilibria yield

the highest expected payoffs of all perfect Bayesian equilibria of the game.

We have two main economic insights. First, networks can serve as a filter and aid commu-

nication. We contrast the network outcomes to a situation where agents can communicate to

everyone simultaneously. In this public broadcast model, there are only two equilibrium outcomes:

one with full communication and one with no communication. Full communication arises if and

only if there are sufficiently few biased agents in the population. The network can replicate the

full communication outcome when biased agents are evenly distributed in the network. While all

biased agents send only messages that match their bias, there are enough unbiased agents sending

truthful messages that agents are willing to transmit to their neighbors. The network, however,

can allow partial communication when no communication is the only outcome in the public broad-

cast model. In a network, agents can block messages that originate in parts of the network that

contain many biased agents. The messages that do circulate contain sufficient information for

agents to take them into account when voting on the collective decision.

Second, biased agents wishing to influence a population could be better off limiting their

numbers. As unbiased agents are strategic, they block the transmission of opinions that originate

in a part of the network that contains many biased agents. Hence, it can serve biased agents

to limit their numbers and to spread themselves throughout the network, so as to maximize the

transmission of messages between agents.

Relative to previous literature, the innovation of this paper is to study the strategic decision

to create and transmit rumors in order to influence general opinions. In a large literature, agents

somewhat mechanically adopt the opinions of their neighbors and eventually the population

converges on a set of beliefs, which could be unduly influenced by a set of well-located biased

agents. In some models, opinions spread like diseases; i.e., individuals become infected (adopt an

opinion) by contact with another agent with that disease (see e.g. Chapter 7 of Jackson (2008)).

Such diffusion processes are being studied also in computer science, physics, and sociology. For

a review article in physics, see for example, Castellano, Fortunato & Loreto (2009) For complex

contagion where agents need multiple exposure to become infected see Centola & Macy (2007) and

Romero, Meeder & Kleinberg (2011). In such models, biased agents are always better off when
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there are more biased agents, in contrast with the present paper. Another strand of literature of

opinion formation in social networks builds on DeGroot (1974) model of beliefs’ exchange. Agents,

with possibly different initial priors, repeatedly exchange their beliefs with their neighbors and

adopt some statistic (the weighted average, say) of their neighbors’ opinions. Such agents fail to

take into account the repetition of information that can propagate through a network, leading to

a persuasion bias as referred to by DeMarzo, Vayanos, & Zweibel (2003). Golub & Jackson (2010)

find sufficient network conditions under which such a naive rule leads to convergence to the truth—

there can be no prominent groups, for example, that have disproportionate influence. Research

on Bayesian learning in networks (e.g. Gale & Kariv (2003), Bala & Goyal (1998), Acemoglu,

Dahleh, Lobel & Ozdaglar (2011)) characterizes convergence or not to common opinions for

different network architectures. In our model, there is a single unknown source of information and

agents are bayesian, but due to differences in their preferences and the possibility of falsification

and blocking, they may end up with different beliefs and choose different actions.

A large economic literature also studies the transmission and communication of information

through the observation of other agents’ actions. Observation helps them to discern the true

state of the world Knowledge or information costlessly spreads (Banerjee (1992), Bikhchandani,

Hirshleifer & Welch (1992), or spills over, to others, as occurs when people observe others’ use of

a new technology (e.g., Foster & Rosensweig (1995), Conley & Udry (2010)). In these models,

though individuals influence others through their actions, they derive no benefit in influencing

them and, contrary to this paper, the decision to communicate is not strategic.

A new literature studies the incentive to communicate private information to others. In

a recent advance, Niehaus (2011) adds a cost to sharing information; an agent will weigh the

benefits to her friends and neighbors against the personal cost. Other papers analyze influence

in networks where agents all have private information and have an since, for example, agents

derive a benefit from adopting the same action as others (Calvó-Armengol, de Mart́ı & Prat

(2011), Hagenbach & Koessler (2011), Galeotti, Ghiglino, and Squintani (2013)). In contrast to

this work, the present paper features a situation in which information is not disseminated and

strategic agents may possibly falsify information with the desire to influence public opinion.

In its foundation, the model in this paper combines two classic elements of information games:

“cheap talk” (Crawford & Sobel (1982)) in the decision of the initial receiver of the signal as
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to whether or not to create a truthful message, and “persuasion” (Milgrom (1981), Milgrom

& Roberts (1986)) in the decision of agents who subsequently choose whether to transmit the

message, which they cannot transform. We draw on insights from both in the analysis. On

one hand, it is well known that cheap talk games have multiple equilibria (e.g., babbling, fully

revealing, and mixed). On the other hand, in persuasion games, agents send truthful (verifiable)

information to individuals with similar preferences. In our model, there are multiple equilibria,

along the lines of cheap talk games. However, as in persuasion games, at the transmission stage in

the present model, agents have an incentive to pass on credible information to other agents. Our

analysis features these information game elements in a network setting, and the network plays a

primary role in the outcomes. The analysis focuses on the network conditions that allow fully

revealing strategies by unbiased agents and identifies the paths in a network along which agents

are willing to listen to messages and persuade others.

The rest of the paper is organized as follows. Section II specifies the two benchmark models of

communication: public broadcast and network. Section III studies full communication equilibria

in both settings, where all unbiased agents create truthful messages. Section IV studies maximal

communication equilibria in networks, building the algorithm that yields the maximal paths along

which unbiased agents are willing to transmit messages. Section V studies, from the point of view

of biased agents, the tradeoffs between more or less biased agents in the population. Section VI

considers extensions to the basic network. Section VII concludes.

II Benchmark Models of (Possibly Biased) Communication

A Utility and Agents’ Types

There is a population of |N | = n agents, and two possible states of nature, θ ∈ {0, 1}. Individual

agents earn payoffs from a collective decision, or outcome, which can be understood, for example,

as a public policy, a verdict, or election of a particular candidate. Let x ∈ {0, 1} denote the

outcome. There are two types of agents, with different preferences. Unbiased agents, set U ,

prefer the outcome to match the state of nature and have utility

w(x, θ) = −(x− θ)2.
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Biased agents, set B, prefer outcome x = 1 to be implemented, regardless of the state of nature.

The utility for a biased agent is

v(x, θ) = −(x− 1)2.

The number of biased and unbiased agents in the population is common knowledge. For any

subset of agents S, bS denotes the fraction of biased agents in S and uS the fraction of unbiased

agents, where necessarily bS + uS = 1. For any unbiased individual, let b ≡ |B|
|N |−1denote the

fraction of biased agents in the remainder of the population.

B Prior Beliefs, Signals, and Communication

Agents have a common prior belief that θ = 1 with probability π. This common prior is common

knowledge. We assume π < 1/2 so that agents initially believe the true state is 0 with higher

probability. With probability p < 1, one agent is randomly selected and receives a perfect signal

s ∈ {0, 1} of the state of nature. This agent – and this agent only – has the opportunity to create

a message m ∈ {0, 1}.

We consider two benchmark models of communication.

The public broadcast model represents an environment where agents are anonymous and,

while the number of biased and unbiased agents are known, individual agents’ types are private

information. The agent who receives the signal can send a message to the public at large; i.e.,

the message simultaneously and anonymously reaches all other agents. Formally, the agent who

receives the signal chooses an action M(s) ∈ {∅, 0, 1}, where M(s) = ∅ denotes that the agent

chooses not to create any message.

The network model represents an environment where agents communicate with friends, family,

colleagues, etc. When a pair of agents i and j have a link, denoted ij, they can communicate, and

we say agent i is agent j’s neighbor and vice versa. To distinguish the direction of communication

(i, j) denotes the directed link from i to j, and (j, i) the directed link from j to i, and G denotes

the set of all directed links. We assume G and individual agents’ types are common knowledge.2

Communication in a network proceeds as follows: The agent who (possibly) receives the

signal s chooses a message M(s) ∈ {∅, 0, 1}. Subsequently, agents who receive a message m

2We discuss extensions of the model where agents have incomplete information about the network in Section
VII.
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cannot transform it but they can choose whether or not to transmit the message to all their

neighbors,3 i.e., agent i who receives a messagem from neighbor j, denotedm(j), chooses an action

ti(m(j)) ∈ {∅,m(j)}. Notice that for any strategies, the event ∅ occurs with positive probability

because every agent could receive no message since no signal is received with probability 1−p > 0.

We suppose throughout the paper that agents are connected in such a way that a message

can reach any individual through only one route. That is, the network is a tree, where there is

a unique path from any agent a to any agent b. With a tree, we can neatly parse the network

and study agents’ posterior beliefs as to the veracity of a received message. Section VII discusses

general networks.

C Collective Outcome

We abstract from time and use a reduced-form decision-making process to allow us to focus

on agents’ incentives to create and transmit possibly false messages. Suppose after all possible

communication is exhausted, agents each “vote” for an outcome, and the more agents who vote

for an outcome, the more likely it is to be implemented. When z agents vote for outcome 1,

let f(z) be the probability that outcome 1 is implemented, with 1 − f(z) the probability that

outcome 0 is implemented. We will assume here probabilistic voting: f(z) = z/n, to simplify

the analysis as it precludes strategic voting (Lemma 1).

Agents vote for the outcome that maximizes their expected utility. Biased agents always vote

for x = 1, but unbiased agents vote given their posterior beliefs about the true state of nature.

Let ρi denote agent i’s posterior belief that θ = 1. Given z other agents vote for x = 1, an

unbiased agent’s expected utility from voting for x = 1 is

Ew(x, θ) = −ρi (1− f(z + 1))− (1− ρi) f(z + 1).

The expected utility from voting for x = 0 is

Ew(x, θ) = −ρi (1− f(z))− (1− ρi) f(z).

3All messages and transmission are assumed to be multi-cast; agents send/transmit messages to either none or
all of their neighbors. As we will see, this assumption is made without loss of generality in our baseline model
where the underlying network is a tree.
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Lemma 1 With probabilistic voting, f(z) = z
n
, it is optimal for unbiased agents to vote according

to their beliefs: An unbiased agent votes for outcome x = 1 if ρi > 1/2, and votes for outcome 0

if ρi <
1
2 . If ρi =

1
2 , we assume agent i votes for 0 and 1 with equal probability

Similarly, if an unbiased agent can influence the beliefs of other unbiased agents in order

to make them vote according to her beliefs by creating or transmitting a message, she has an

incentive to do so.

The same behavior holds under more general increasing functions f if one assumes agents to

be ’naive’, meaning that they do not account for the possible correlation between others’ vote

and their information on the state: for ρi > 1/2 (ρi < 1/2) agent i’s utility is larger when he

votes for 1 instead of 0 (0 instead of 1) for a fixed z, hence also for any distribution of z provided

the correlation between this distribution and the true state is neglected.4

D Equilibrium Concept and Maximal Equilibria in Networks

We consider pure-strategy perfect Bayesian equilibria (henceforth simply equilibria) in each

benchmark model.

Public broadcast model: An equilibrium consists of message creation strategies Mi and

posterior beliefs ρi for each agent i such that each agent’s strategy is sequentially rational given

the beliefs and strategies of others, and beliefs are formed using Bayes rule from the strategies

whenever possible.

Network model: A network equilibrium consists of message creation strategies, transmission

strategies, and beliefs (Mi, ti, ρi) for each agent i such that each agent’s strategy is sequentially

rational given the beliefs and strategies of others, and beliefs are formed using Bayes rule from

the strategies whenever possible. In the analysis below, we make precise the strategies for every

possible history of play and beliefs at every information set. In a network model, let η denote a

collection of strategies and beliefs that constitute an equilibrium.

In both communication games, there are possibly many equilibria where agents do not com-

municate or communication does not contain any information. As in cheap talk games, there

exist babbling equilibria, where messages do not contain any information about the true state

4Such correlation matter in situations such as common values. For example, this correlation is the basis of the
winner’s curse in auctions or of the strategic behavior of a pivotal voter in the Condorcet jury.
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and thus no agents update their priors. Furthermore, even when unbiased agents choose reveal-

ing strategies when they create messages, there exist equilibria where communication fails at the

transmission stage.5 Because of the presence of biased agents, there do not exist equilibria where

all messages reflect the true state of nature.6

Our main interest is equilibria in which unbiased agents create truthful messages, and, in the

network case, transmission of messages is the highest possible. Since biased agents always create

message m = 1, we are interested in equilibria in which unbiased agents are always willing to

transmit such messages. To compare communication in networks with public broadcasting, We

first study full communication. All unbiased agents create truthful messages, and, in a network,

all unbiased agents transmit all messages from all their neighbors. When full communication

is not possible we can characterize an (essentially unique) equilibrium where communication is

maximal. Section IV defines and constructs this equilibrium. We also show that this equilibrium

Pareto dominates all other equilibria for unbiased agents.

III Full Communication

A Full Communication: Public Broadcast

In the public broadcast game, consider the following strategies and beliefs. Strategies: any

unbiased agent who receives the signal sends the message m = s. Any biased agent who receives

the signal sends the message m = 1. Beliefs: Upon receiving a message m = 0, each unbiased

agent i has posterior belief ρi = 0, since m = 0 can only originate from an unbiased agent sending

a truthful message. Upon receiving a message m = 1, following Bayes’ rule each unbiased agent

has posterior belief

ρi =
π

b+ (1− b)π
.

Upon receiving no message, each unbiased agent maintains her prior belief, ρi = π (This event

occurs in equilibrium when no signal is received which occurs with strictly positive probability).

Following Lemma 1 when ρi > 1/2 (ρi < 1/2), agent i votes for outcome 1 (0).

It is easy to see that these strategies and beliefs constitute an equilibrium in this communica-

5See Section V for a discussion of multiplicity of equilibria in our game.
6In a truthful equilibrium, unbiased agents always believe that the state is 1 when they receive message 1. These

beliefs give biased agents an incentive to create message 1 irrespective of the signal they receive.

8



tion structure. No unbiased agent that receives the signal has an incentive to deviate and choose

M(s) 6= s, since, given agents’ posterior beliefs, this will decrease the number of agents that vote

for the outcome corresponding to the true state. No biased agent has an incentive to deviate and

and choose m = ⊘ or m = 0, since these actions will decrease the number of agents that vote for

outcome 1.

It is also easy to see that no other equilibrium can yield higher expected utility for unbiased

agents and that no partial communication equilibria exist. Consider the possibility that in equi-

librium a subset of unbiased agents send truthful messages but others do not. One of the latter

unbiased agents would have an incentive to deviate and send a truthful message, since it will

make the true outcome more likely to be implemented.

These arguments give us our first result concerning communication:

Proposition 1 In a public broadcast game, an equilibrium exists where all unbiased agents broad-

cast truthful messages if and only if
π

1− π
≥ b. (1)

This equilibrium maximizes unbiased agents’ expected payoffs. It is an equilibrium for no unbiased

agents to broadcast messages, but there is no equilibrium where a strict subset of unbiased agents

broadcast truthful messages.

Proof. Proofs of all results are provided in the Appendix.

B Full Communication: Networks

We now consider full communication in a network. Consider the following strategies and beliefs:

Strategies: Upon receipt of the signal, biased agents create a message that matches their

bias, i.e., M(s) = 1. Biased agents only transmit messages that match their bias, i.e., t(0) = ∅,

t(1) = 1. Unbiased agents create true messages upon receiving a signal; i.e., M(s) = s, and

transmit any message they receive, i.e., t(m) = m.
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j

Gi(j)

i

Sj(i)

Figure 1: Decomposition of the tree

Beliefs: Along the equilibrium path, beliefs follow Bayes’ rule. Consider an agent i who has

received a message from a neighbor j. Let an agent i’s belief that θ = 1 be ρ̃i(m(j)). To construct

these beliefs, consider the directed edge (j, i). Since the network is a tree, agents in the network

can be divided into two disjoint subsets, with one subset on either side of the edge. Let Si(j) be

the set of agents whose messages can reach i by going through j (this set includes j). The set

Si(j) corresponds to the nodes in the oriented subgraph of G flowing toward i and ending with

the directed edge (j, i); we denote this oriented subgraph Gi(j). The other set Sj(i) is the set

of agents whose messages can reach j by going through i (this set includes i). Gj(i) is defined

similarly. Figure 1 illustrates Gi(j).

Beliefs are as follows. Consider first information sets which can be reached using these strate-

gies: (1) For an agent i who has received a message m = 0 from an unbiased neighbor j,

ρ̃i(0(j)) = 0, since only unbiased agents create and transmit message 0, and they create truthful

messages. (2) Messages m = 1, on the other hand, are created by both biased and unbiased

agents. Following Bayes’ rule, and our discussion above concerning the partition of the graph

into disjoint subsets Si(j) and Sj(i), an agent i who has received message m = 1 from j has the

beliefs

ρi = ρ̃i(1(j)) =
π

bSi(j) + uSi(j)π
, (2)
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where recall bSi(j) is the proportion of biased agents in Si(j) and uSi(j) is the proportion of

unbiased agents. (3) For an agent i who receives no message, her beliefs take into account the

probability that no signal has been sent and the fact that biased agents block messages 0. Hence

the posterior beliefs are surely smaller than π.

The only events with zero probability for which we need to specify beliefs are when an agent

i receives a message zero from a biased agent.We suppose i’s posterior belief is equal to his prior;

ρi(0(j)) = π for all j ∈ B.

These strategies and beliefs constitute an equilibrium of the network game, depending on the

location of biased agents in the network. In particular, an unbiased agent will only pass on a

message m(j) = 1 when ρ̃i(1(j)) ≥ 1/2; that is, the message could induce the agent to vote for

outcome 1. This condition will be true for all unbiased agents i with neighbors j only when there

are sufficiently few biased agents in all subgraphs of the network Si(j). We have the following

result which is illustrated in Example 1.

Theorem 1 In the network model, a full communication equilibrium (FCE) exists if and only if

for each unbiased agent i and each of his neighbors j:

bSi(j) ≤
π

1− π
. (3)

Example 1 Consider 8 agents in a line, as shown in Figure 2, with 7 unbiased agents and 1

biased agent, and the biased agent is 5th from the left. The equilibrium condition is then tightest

for agent 4, since the subset S4(5) has the highest proportion of biased agents of all such subsets.

In order for agent 4 to transmit messages to agent 3, π must satisfy π
1−π

≥ 1
4 , which implies a

bound of π ≥ 1
5 . Thus, for 1

2 > π ≥ 1
5 , there exists a FCE in this network.

U1 U2 U3 U4 B5 U6 U7 U8

Figure 2: Eight Agent Line with One Biased Agent

C Full Communication: Public Broadcast vs. Network

Comparing public broadcast to a network, we see that full communication is possible in both

structures, depending on the number and distribution of biased agents in the network. In public
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broadcast, full communication exists for π
1−π

≥ b. In the network, in contrast, biased agents must

be dispersed so that no subset Si(j) violates the condition π
1−π

≥ bSi(j) for any unbiased agent i

with neighbor j. Let max(j,i) bSi(j) be the subgraph with the highest proportion of biased agents.

Necessarily, max(j,i) bSi(j) ≥ b. We then have the following result which is illustrated in Example

2.

Proposition 2 • If π
1−π

≥ max(j,i) bSi(j) full communication is an equilibrium in both the

public broadcast and the network models.

• If max(j,i) bSi(j) ≥ π
1−π

≥ b, full communication is an equilibrium in the public broadcast

model, but not in a network.

• If b ≥ π
1−π

, no communication occurs in equilibrium in the public broadcast model.

Example 2 Consider a population of 8 agents with one biased agent. A FCE exists in the public

broadcast model if and only if π ≥ 1
8 . Consider again the network of 8 agents in Figure 2. For

1
5 ≥ π ≥ 1

8 , full communication is possible in the public broadcast setting but not in this network.

The next section shows that communication is possible in a network when it is not possible in

the public broadcast setting. In a network, agents can block messages that originate in parts of

the network with higher concentrations of biased agents. The messages that do circulate, then,

are sufficiently credible.

IV Maximal Communication Equilibria in Networks

In this section we construct strategies allowing for maximal communication among unbiased

agents and prove that they form an equilibrium. Of course, these strategies coincide with those

of the full communication equilibrium when it exists.

Here, we parse the network and construct an algorithm to find the subgraphs within which

communication can occur. These subgraphs are directed and represent paths along which agents

are willing to transmit messages, since the agents believe the message with sufficiently high

probability. The algorithm eliminates directed edges from G, and we denote the remaining set

of directed edges G∗. In the strategies constructed below, unbiased agents transmit messages

from a neighbor j if and only if the directed link (j, i) is contained in G∗. We show that these
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strategies maximize the possible communication in the graph at an equilibrium and yield the

highest possible expected utility for unbiased agents.

A Algorithm to Identify Subgraphs of Transmission

When a full communication equilibrium does not exist, bSi(j) > π
1−π

for at least one unbiased

agent i and directed edge (j, i) (Theorem 1). Consider the following algorithm in this case. Let

V be the (non-empty) set of all directed edges in G that violate the condition bSi(j) ≤
π

1−π
. The

algorithm will eliminate such violating edges. In the process, some violating edges may become

non-violating and some edges in V will not be eliminated; on the other hand all non-violating

edges will remain non-violating, so that V is the maximal set of edges that can be eliminated.

A directed edge (j, i) ∈ V is said to be of level 1 in G if there is no directed edge (k, l) such

that (k, l) 6= (j, i) in V ∩ Gi(j).
7 A directed edge (j, i) ∈ V is a level ℓ edge in G if all violating

directed edges in Gi(j) ∩ V , distinct from (j, i) are of level less than ℓ.

Pick one level 1 edge (j, i) ∈ V . Remove (j, i) from G and let

G1 = G \ (j, i),

Γ1 = G \Gi(j).

For each unbiased agent l and directed edge (k, l) in Γ1, let S1
l (k) be the set of agents whose

message 1 can reach l through k in Γ1. Compute the proportion bS1
l
(k) of biased agents in that

set, bS1
l
(k) =

|B∩S1
l
(k)|

|S1
l
(k)|

, and define V 1 to be the set of directed edges in Γ1 such that bS1
l
(k) ≤

π
1−π

.

If the set V 1 is empty, the algorithm stops.

Otherwise, pick a directed edge (k, l) of V 1 which is of level 1 in the graph Γ1.8 Remove (k, l)

from G1 to obtain G2 and let Γ2 = Γ1 \Gl(k), and search for violating edges (if any) in Γ2.

In the general step t+ 1 of the algorithm, given directed graphs Gt, Γt and a non-empty set

V t of violating edges in Γt, pick a level 1 violating edge (a, b). Eliminate this edge from Gt to

obtain Gt+1. Define Γt+1 = Γt \Gb(a) and accordingly the proportions b
St+1
b

(a) of biased agents

in Γt+1. Let V t+1 be the set of edges (j, i) in Gt+1 such that b
St+1
i (j) >

π
1−π

.

If the set V t+1 is empty, the algorithm stops and define G∗ = Gt+1. Let W be the set of

7There is always at least one level 1 edge because the graph G is finite.
8Notice that the level of an edge in Γ1 may differ from the level in G.
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directed edges that have been eliminated by the algorithm, G∗ = G \W .

Lemmas in the Appendix show (i) that the sequence {V t} is decreasing, (ii) the set W does

not depend on the order links are chosen to be eliminated and (iii) for any (j, i) ∈ W , j is biased

(and i is unbiased by definition of a violating edge). That is, the algorithm parses the network

into directed links of biased and unbiased agents. We illustrate the output of the algorithm in

the following example:

U1

U3

U4

U11

B12
xU2U5U13

B6

x

B14

U15
U16

U7

U17

B8

U18

U19

B9
x

U20

U10

Figure 3: Complex Network and Algorithm

Example 3 Subgraphs of Communication. The network in Figure 3 was generated by a random

process for 20 agents, with an overall target fraction of 0.3 biased agents. Let the initial belief be

π = 2
7 . Given π, the threshold for the proportion of biased agents is b = π

1−π
= 2

5 . The edges in

bold are the violating edges in G. They are all of level 1 except (U3-U1) which is of level 2. The

edges which are crossed out are the edges in W which are eliminated by the algorithm. G∗ does

not contain the edges (B9-U3) (B12-U4) and (B6-U3), since messages flowing from these biased

agents would not be believed. The edge (U3-U1) is violating in the original graph but not in the

final graph because the proportion of biased agents whose messages would flow through U3 to the

rest of the graph decreases from 4
9 to 2

7 .
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B Maximal Communication Equilibrium Strategies and Beliefs

We next construct the strategies in which communication flows along all edges except those in

W ; i.e. along edges in G∗.

Consider the following strategies and beliefs.

Strategies: Biased agents, upon receipt of the signal, create a message that matches their

bias, i.e., M(s) = 1. Biased agents only transmit messages that match their bias, i.e., t(0) = ⊘,

t(1) = 1. Unbiased agents, upon receipt of a signal, create true messages; i.e., M(s) = s. All

unbiased agents i transmit message 1 received from agent j if (j, i) ∈ G∗, otherwise agent i does

not transmit the message. All unbiased agents transmit messages m = 0 received from any agent.

Beliefs: For information sets which are reached with positive probability, beliefs follow Bayes

rule consistent with the above strategies: (1) For an agent i who has received a message m = 0

from an unbiased neighbor j, ρ̃i(0(j)) = 0, since only unbiased agents create and transmit m = 0,

and they create truthful messages. (2) For an agent i who has received a message m = 1 from

a neighbor j, her beliefs reflect the strategies of agents to only submit messages along edges in

G∗ and to not transmit messages otherwise. Posteriors are then given by ρ̃i(1(j)) ≥ 1/2 for

(j, i) ∈ G∗ and ρ̃i(1(j)) < 1/2 for (j, i) /∈ G∗. (3) For an agent i who receives no message, her

posterior beliefs take into account the probability that no signal has been received and the fact

that biased and unbiased agents block messages that originate in particular parts of the network.

These posteriors are surely less than π.9

The only event for which beliefs need to be specified is when an agent receives a message zero

from a biased agent. As previously, we suppose i’s posterior belief is equal to his prior in this

case; i.e., ρi(0(j)) = π, for all j ∈ B.

These strategies constitute an equilibrium of the network game. Furthermore, communication

is maximal among all equilibria. The intuition as follows. If (i, j) is a violating edge of level 1,

j is surely a biased agent and agent i never believes message 1 received from j10 hence in no

equilibrium communication flows from j to i. Inspection of the algorithm shows that all violating

9To see this, consider first the impact of an agent i who does not transmit a message 1 from j for (j, i) /∈ G∗.
Recall that j is biased. So, not only does i not transmit m = 1 received from j, but i never transmits m = 0 from j
because j, being biased, does not create or transmit 0: all the signals received by an agent in Si(j), be them 0 or 1,
are lost for the other agents, those in N − Si(j). As for biased agents, they block m = 0, which, by the strategies,
is circulated only when the true state is 0. This implies that the posterior can only be lower than π: ρi(∅) < 1

2
.

10Whatever behavior of the unbiased agents in Si(j), the posterior belief is not larger than π
bSi(j)

+uSi(j)
which is

the posterior belief when all unbiased agents transmit the message as seen from (2).

15



edges of level 1 in G are eliminated. Recursively, the edges in W—eliminated by the algorithm—

are edges along which communication surely never flows in any equilibrium.

Theorem 2 The above strategies and beliefs form an equilibrium of the network game. We call

this equilibrium the “maximal communication equilibrium”(MCE) as communication is maximal

among all equilibria in the following sense: in any equilibrium, if (j, i) /∈ G∗ (equivalently (j, i) ∈

W ), then j is biased and i does not transmit m = 1 received from j.

C The network as a filter: public broadcasting vs. network communication

The above analysis shows that when full communication is not possible in the public broadcast

model, communication is still possible in a network. In the network unbiased agents block mes-

sages from certain parts of the network, limiting the influence of localized biased agents. The

network serves as a filter, allowing for credible communication. In particular, two unbiased agents

always communicate between each other in a MCE since the corresponding edges are not in W .

We have the following result.

Proposition 3 If b > π
1−π

, no communication is possible in the public broadcast game whereas

partial communication exists in equilibrium in the network game. For any π > 0, as long as at

least one unbiased agent is linked to another unbiased agent, there is an equilibrium with partial

communication.

V Multiplicity of equilibria and optimality property of an MCE

This section discusses other equilibria in our network model, relates the analysis to cheap talk and

persuasion games, shows that the MCE is Pareto optimal for the unbiased agents and provides a

refinement criterium, referred to as activity that distinguishes these equilibria.

First, as in cheap talk games, there are babbling equilibria in which no valuable information

is created. Suppose each unbiased agent who has not received the signal takes the same action

independent of any message received, and votes for 0 according to his prior. In this case, all

unbiased agents are indifferent between all actions: creating, or not, true or false messages and

transmitting, or not, messages. A simple equilibrium then consists of the following strategies:

16



Unbiased agents never create or transmit any messages, and biased agents always create m = 1

upon receipt of the signal, and transmit any m = 1, but no other message.11 The only messages

that are generated are those from the biased agents, and hence they are not informative. These

strategies form an equilibrium supported by (consistent) posterior beliefs equal to the prior,

except for the agent who has received the signal.

Second, there are equilibria that satisfy sequential rationality where unbiased agents create

truthful messages but do not transmit all messages. These equilibria involve a coordination

failure. The standard perfection argument which generates active transmission in a persuasion

game does not hold in our model. Specifically, assuming that unbiased agents create truthful

messages, one needs to consider only their behavior at a transmission stage. This stage is like

a persuasion game since agents cannot falsify the message. However, because of the presence

of biased agents, messages are not perfectly informative and it may be rational not to transmit

message 1. This is illustrated by the following example.

U1 U2 B3 U4 U5

Figure 4: Five Agent Line with One Biased Agent

Example 4 Consider 5 agents in a line, as shown in Figure 4 above with agents 1 and 2 unbiased,

3 biased, and 4 and 5 unbiased. Consider π ≥ 1/4, in which case there is a full communication

equilibrium. (The largest proportion of biased to unbiased agents in any subgraph Si(j) is 1/3.)

Change the strategies of the FCE as follows: U2 does not transmit message m = 1 received from

U1 to B3; U4 does not transmit any message from B3. Note that all unbiased agents still create

truthful messages. It is easy to check that these strategies form an equilibrium for π ≤ 1/3:

When U4 receives m = 1 from B3, the proportion of biased agents among the initiators is 1/2

(instead of 1/3 in the FCE), so the posterior on the true state being state 1 is lower than 1/2.

U2 has no incentive to transmit m = 1 received from U1 since it will not influence the vote of

U4, who maintains his prior upon receipt of any message from B3. Since for U4 receiving m = 1

from B3 is on the equilibrium path, a perturbation argument does not destabilize this equilibrium.

11More formally consider the following strategies. For message creation, biased agents adopt the strategy M(s) =
1 and unbiased agents adopt the strategy M(s) = ∅. For transmission, biased agents adopt the strategy t(m) = ∅

for m = 0 and t(m) = 1 for m = 1. Unbiased agents have the strategy t(m) = ∅ for all m.
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This equilibrium exhibits a coordination failure, and the equilibrium payoffs of unbiased agents

are lower than the payoffs in an FCE. In the FCE, if a signal that the state is 1 is received by

any agent, all agents receive a message m = 1 and all agents vote for 1. If a signal that the

state is 0 is received by any unbiased agent, an unbiased agent either receives the signal, receives

a message m = 0, or receives no message (as it is blocked by B3). Hence all unbiased agents vote

for 0 and the biased agent votes for 1. The only mismatch between the circulated message and

the state occurs when the state is 0 and a signal is received by B3; all agents vote for 1 in this

case. The expected loss (for p → 1) for unbiased agents is therefore 4
5(1 − π)15 + 1

5(1 − π)55 . In

the above equilibrium with coordination failure, unbiased agents U4 and U5 do not update their

priors in the events that a signal s = 1 is received by agents U1, U2, or B3. They vote for 0 in

these events, and their votes do not match the state. On the other hand, U4 and U5 also do not

change their prior in the event s = 0 is received by B3 (who then sends message m = 1). The

expected loss (for p → 1) for unbiased agents is therefore 3
5π

2
5 +

4
5(1−π)15 +

1
5(1−π)35 . As π ≥ 1

4 ,

the expected payoff of all unbiased agents is higher in the FCE than in the alternative equilibrium.

To refine the equilibrium set, consider restricting attention to the following simple strategies.

A biased agent is active if and only if she creates message M(s) = 1 and only transmits message

1. An unbiased agent is active if and only if she creates a message that matches the signal and

transmits message m if she thinks the probability that the true state is m is higher than 1
2 . This

refinement allows us to single out the MCE.

Proposition 4 The MCE is the only equilibrium where all agents are active.

In an equilibrium where all agents are active, coordination failures are ruled out both at the

message creation and transmission stages. This results in the highest expected payoff for the

unbiased agents.

Theorem 3 Among all equilibria, the MCE yields the highest expected payoffs for unbiased

agents.

It is straightforward to rank the utility of unbiased agents in the equilibria for each commu-

nication structure. By the arguments of Theorem 3, the expected utility of unbiased agents is

higher in any full communication equilibrium than in any partial communication equilibrium and

18



higher in any partial communication equilibrium than in an equilibrium without communication.

Furthermore, biased agents rank the three types of equilibria in the same way. Biased agents

prefer equilibria with communication. Their messages are transmitted and more unbiased agents

are likely to vote for outcome 1. Thus, both biased and unbiased agents would prefer network

communication for lower values of π.

VI Application: number and placement of biased agents.

In this section we apply our analysis to two questions. First, what is the effect of the replacement

of an unbiased agent by a biased agent on the welfare of individuals? Second, from the point of

view of biased agents, what is the optimal number of biased agents in the population and where

should they be placed?

The replacement of an unbiased agent by a biased agent j in the network has three effects:

a direct effect on the number of votes for collective action 1, a direct effect on information

transmission because a message m = 1 is always created when the signal is received by agent

j, and an indirect effect on information transmission as messages m = 1 are more likely to be

blocked by unbiased agents, since the message is less likely to be credible. For unbiased agents

who receive the same message as the unbiased agent whose status has switched, all effects concur

to reduce expected utility.

Proposition 5 Consider two assignments of biased and unbiased agents in the network, σ and

σ′ such that one unbiased agent under σ is replaced by a biased agent in σ′. Then the expected

utility of any unbiased agent at the MCE under σ′ is lower than at the MCE under σ.

For biased agents, there is a tradeoff. Both direct effects result in an increase in expected

utility, but the indirect effect may induce a decrease in the number of unbiased agents who receive

and believe message m = 1. As the following example shows, the indirect effect may dominate

the two direct effects so that the replacement of an unbiased agent by a biased agent may reduce

the utility of biased agents.

Example 5 Placement of Biased Agents on a Line. As in Figure 2, consider eight agents be

arranged on a line. Under the assignment σ, agents 1, 2, 3, 4, 6, 7, 8 are unbiased and agent 5 is
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biased. Under the assignment σ′, agents 1, 2, 3 and 6, 7, 8 are unbiased and agents 4, 5 are biased.

Suppose that the prior π satisfies 1
5 ≤ π < 2

7 . Then, in the MCE under σ, message m = 1 is

believed and transmitted by all unbiased agents – the MCE is a FCE, whereas in the MCE under

σ′, message m = 1 received from agent 4 is not believed by agent 3 and message m = 1 received

from agent 5 is not believed by agent 6. A simple computation shows that the expected loss of a

biased agent under σ (as p → 1) is

L =
7

8

7(1− π)

8
=

49(1− π)

64
,

whereas the expected loss of a biased agent under σ′ is

L′ =
3

8

6π

8
+

6

8

2 + 6(1− π)

8
=

48− 18π

64
.

For values π ∈ [15 ,
2
7), L

′ > L.

The negative effect of adding biased agents stands in sharp contrast to models of rumors

and opinion formation based on fixed laws of diffusion or adoption. In such models, it is always

beneficial for biased agents to increase their numbers. Here, where agents strategically transmit

messages from others, the introduction of a biased agents can reduce their expected utility,

depending on where the agent is located in the network.

This observation in turn raises the following question: How can a biased operator select k

nodes in the network to implant biased agents in order to maximize the expected probability

that collective action 1 is taken? We analyze this problem in the simple case where n agents are

located along a line.

Proposition 6 Consider n agents on a line. Let k∗ = nπ
1−π

+ 2π − 1. In the MCE, unbiased

agents will transmit a message from a subset of agents that contains at most k∗ biased agents.

If k ≤ k∗, there is a full communication equilibrium when biased agents are spaced evenly at

locations: {xn−k
k+1 + 1y, x2(n−k)

k+1 + 2y, ..., xk(n−k)
k+1 + ky}. If k > k∗, there is a maximal equilibrium

with partial communication when k − k∗ biased agents are located at the end of the line, and the

remaining k∗ biased agents are spaced evenly along the line at locations {k− k∗ + x
n−k
k+1 + 1y, k−

k∗ + x
2(n−k)
k+1 + 2y, k − k∗ + x

k(n−k)
k+1 + ky}.
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Proposition 6 provides an upper bound on the number of biased agents on a line for full

communication, and characterizes uniform spacing as an optimal way for an operator to implant

biased agents in the network. The uniform spacing may not be the only optimal location strategy

of the operator. For example, if k = 1 and π is close to 1
2 , all unbiased agents will transmit a

message that could have originated from the biased agent wherever she is located, except at the

end of the line. But, as π decreases, unbiased agents are less likely to transmit a message that

could have been created by a biased agent, and in the end, the only way to guarantee that the

biased agent’s message is transmitted is to locate the biased agent exactly in the middle of the

line.

VII Extensions

A Two Types of Biased Agents

This section considers a tree and two types of biased agents: 0-biased and 1-biased. The network

and all agents’ types are common knowledge. We adapt the strategies for the base case and find

conditions for existence of a full communication equilibrium. The conditions mirror those for the

1-type case; unbiased agents must be sufficiently confident in the content of a message in order to

transmit it to their neighbors. Here this confidence depends on the message and the proportions

of agents of both biases, as they are distributed in the network.

Consider the following strategies and beliefs.

Strategies: Biased agents create messages that match their bias, and only transmit messages

that match their bias. That is, each β-biased agent has the strategy M(s) = β and t(m) = m

only if m = β, otherwise t(m) = ∅. Unbiased agents create true messages upon receiving a signal;

i.e., M(s) = s transmit any message they receive, i.e., t(m) = m and vote for m..

Beliefs: Agents base their beliefs on the strategies and on their knowledge of the paths through

the network. They know that message 1 will never be transmitted by 0-biased agents and message

0 by 1 biased agents. This leads us to construct two subgraphs from the original network , one

subgraph is free of 1-biased agents, the other is free of 0-biased agents. Formally, consider the

network G and remove all the 1-biased agents together with their links. This defines the subgraph

G−1, which contains all the 0-biased, all the unbiased agents, and contains no 1-biased agents.
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Note that G−1 is typically formed of several components. For any directed edge (j, i) in G−1, let

S−1
i (j) be the set of agents whose path to i goes through j in G−1 that is S−1

i (j) is the set of

agents who reach i through j and the path does not contain any 1-biased agent. Define similarly

G−0 and S−0
i (j). If there is no 0-biased agent, G−1 s a collection of components only containing

unbiased agents and G−0 is the entire graph G.

We now define the beliefs. Consider first information sets which are reached with positive

probability. Let agent i receive message 0 from a neighbor j in G−1. By Bayes rule her belief

that the true state is 0 is
(1− π)

b
S−1
i (j) + u

S−1
i (j)(1− π)

where b
S−1
i (j) and uSm

i (j) denote the proportions of 0-biased and unbiased agents in S−1
i (j), since,

according to the strategies, the message has traveled along a path of non 1-biased agents who

access i through j. Similarly, if agent i receives message 1 from neighbor j in G−0 her posterior

belief that the state is 1 is
π

b
S−0
i (j) + u

S−0
i (j)π

.

If an unbiased agent receives no message, either no signal was received or a messagem was blocked

by a non-m biased agent. The exact computation of the posterior belief depends in a nontrivial

way of the location of 0 and 1 biased agents in the network.

The only events with zero probability are event where agent i receives message m from a

non-m biased agent. We make the same assumption on beliefs as in the one bias case. When an

unbiased agent receives m = 1 from a 0-biased agent or m = 0 from a 1-biased agent, she keeps

her prior belief π.

The equilibrium conditions, then, involve the proportions of biased agents in each subgraph

G−0 and G−1. We adapt the arguments used with one type of biased agent to prove that these

strategies form a full communication equilibrium under simple conditions on the proportions of

β-biased agents.

Theorem 4 There exists a full communication equilibrium when there are two types of biased

agent if for each unbiased player i and directed edge (j, i) in G−1

b
S−1
i (j) ≤

1− π

π
(4)
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and for any directed edge (j, i) in G−0

b
S−0
i (j) ≤

π

1− π
. (5)

If one inequality in (4) or (5) does not hold, the strategies and beliefs do not constitute an

equilibrium.

A difference between the one and two biased agents cases is the interpretation of the absence

of a message. With one type of biased agents, the absence of a message signals that message 0 was

blocked by a 1-biased agent, and hence the posterior belief that the state is 1 is lower than the

prior belief. Unbiased agents always vote for zero when they don’t receive any message. When

there are two types of biased agents, in the absence of message, the posterior belief that the state

is 1 may increase or decrease. In addition, this depends on the location of the unbiased agent in

the network. When they do not receive any message, different unbiased agents may update their

beliefs in different directions and vote for different outcomes.

Example 6 Consider the graph depicted in the following figure with five unbiased agents, 3 0-

biased agents (green diamonds) and one 1-biased agent (pink square). We first check the con-

ditions under which an FCE exists. Agents U1, U2 and U3 can only receive message 0 from

their neighbor, and the fraction of 0-biased agents in S−1
i (j) is 3

6 = 1
2 . Agent U4 can receive

message 1 from his 1-biased neighbor (the proportion of biased agents in S−0
i (j) is then 1

2) and

can receive message 0 from his 0-biased neighbors (the proportion of biased agents in S−1
i (j) is

then 1
2). Agent U5 can only receive message 1 from his 1-biased neighbor B4 and the fraction of

biased agents in S−0
i (j) is 1

2 . Hence an FCE exists if and only if π
1−π

≥ 1
2 and 1−π

π
≥ 1

2 , that is

1
3 ≤ π ≤ 2

3 .

In an FCE, if the unbiased agents do not receive any msessage, they update their prior beliefs

using Bayes rule. Agents U1, U2 and U3 form a posterior that the state is 1 (for p → 1) equal to

5π
2+3π > π. Agent U4 forms a posterior equal to 3π

2π+1 > π and agent U5 a posterior 6π
7−pi

< π.
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U4

B1

B2

B3

U1

U2

U3

B4 U5

If either condition (4) or condition (5) fails, we cannot easily extend the algorithm to compute

the maximal communication equilibrium. In fact, it may be in the interest of a β- biased agent

to transmit message m 6= β, as the posterior probability of an unbiased agent that s occurs may

be higher when no message is received than when message s is sent.

B General Networks

While the base case of a tree allows precise characterization of network subgraphs, a similar

analysis for the full communication equilibrium would apply to more general situations. When a

network contains cycles, an agent may receive a message several times from the same neighbor

or simultaneously from different neighbors, though it would be necessarily be the same message.

The existence, uniqueness and optimality of a full communication equilibrium remains true under

some conditions on how agents process information.

For example, suppose that agents only transmit a message once. That is, suppose agents

react at the first receipt, either by transmitting or not and the second time they receive it, they

refrain from transmitting it, nor make any additional inference. To specify behavior, we would

just modify the sets Si(j) to take into account any additional information obtained about the

probability the message is generated by a biased agent. An agent could, for example, consider

the length of paths. If an agent i receives a message from only one neighbor j, let Ti(j) be the set

of agents k for which the shortest path between k and i goes through j. If i receives the message

from several neighbors, a set J , say, then Ti(J) denotes the set of agents k such that J is the set

of neighbors j of i such that all j lie on the shortest path between k and i. The analysis of the

baseline case can be repeated simply by replacing the sets Si(j) by the sets Ti(J).
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VIII Conclusion

This paper studies why agents purposefully and rationally spread rumors. Biased agents desire a

particular outcome to occur; unbiased agents want the outcome to match the true state of nature.

Both types of agents create and transmit messages in order to influence the common outcome.

The analysis compares two benchmark models of communication. In a public broadcast setting,

agents anonymously send a message about the state of nature to all other agents. In a network

setting, agents send a message to their friends and neighbors, who can then transmit the message

to their friends and neighbors.

The analysis shows when each setting has an advantage in generating truthful communication.

When agents are less sure about the true state, information is valuable and in both structures

full communication is possible. When agents have more confidence in the true state, however,

they are less willing to believe messages that could come from a biased source. In the public

broadcast model, no communication becomes the only outcome, since agents cannot discern at

all the source of the message. In a network, however, agents can discriminate among messages

received from different neighbors. They can choose to not transmit messages that originate in

parts of the network that are heavily populated with biased agents. We construct an algorithm

to identify, in any network, the paths along which messages can flow in an equilibrium.

A feature that emerges in the network maximal equilibria is one-way flow of information. A

message can flow from a part of the network to another, but not in the opposite direction, since

the proportion of biased agents on either side of the link determine the credibility of the message.

Thus, studies of the spread of information and rumors in networks should consider that links are

not always used and not always used in both directions.

We also find that in order to influence outcomes, biased agents might prefer to limit their

numbers and to spread themselves within the population. If there are too many biased agents,

unbiased agents do not believe any messages and do not send them along to their neighbors. With

fewer biased agents located sporadically in the network, unbiased agents transmit all messages,

since the likelihood of the messages being false is sufficiently small. Hence biased agents are

better off since, if they have the opportunity, they can create a false message which then spreads.

Future research would consider situations where agents have some information about the

network but not complete information. For example, agents may know the number and biases of
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their neighbors, but more distantly in the network they know only know the degree distribution

and proportions of biased and unbiased agents. In order to make a judgement about a received

message, agents would need to make inferences about the the fraction of biased agents in different

directions of the nework. Another example would be networks with homophily—biased agents

are more likely to have biased neighbors and unbiased agents are more likely to have unbiased

neighbors. Following the insights of the current paper, agents would use this information to make

inferences about the credibility of a message.
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Appendix

Proof of Lemma 1. Let us consider unbiased agent i at the end of the transmission stage and I her

information: I includes others’ strategies as well as the message/signal i may have received and from

whom, or the absence of message. Others’ votes depend on their own information but not on i’s vote. Let

us denote their number by z̃ and by Proba(θ, z|I) their joint probability with the state as is perceived by

i. Thus i’s expected utility from voting for a, a = 0, 1, is

E[w(x̃, θ̃)|a, I] =
∑

z,θ

[w(1, θ)f(z + a) + w(0, θ)(1− f(z + a))]Proba(θ, z|I) (6)

The incentive to vote for 1 instead of 0 are thus determined by the sign of

∑

z,θ

[w(1, θ)− w(0, θ)](f(z + 1)− f(z))Proba(θ, z|I)

For f(z) = z/n, this expression writes

1

n

∑

z,θ

[w(1, θ)− w(0, θ)]Proba(θ, z|I).

Since [w(1, θ)− w(0, θ)] is equal to 1 for θ = 1 and to −1 for θ = 0 the above expression is equal to

1

n
[2
∑

z

Proba(θ = 1, z|I)− 1]

As
∑

z Proba(θ = 1, z|I) = Proba(θ = 1|I), we finally obtain that the incentives to vote for 1 or 0 only

depends on the sign of 2Proba(θ = 1|I)− 1, i.e. on 2ρi − 1 where ρi is the posterior on the state being 1

at the time of the vote. �

Proof of Proposition 1. The proof is provided in the text. �

Proof of Theorem 1.

Sufficiency. Given bSi(j) ≤
π

1−π
, we consider possible deviations from the specified strategies.

Biased agents. For message strategies, a biased agent’s expected payoff cannot increase by adopting the

strategy M(s) = 0 or M(s) = ∅. Given the strategies of other agents and beliefs consistent with these

strategies, creating message m = 0 rather than m = 1 would decrease the probability that unbiased agents

receive a message m = 1 and thus decrease the number of agents that vote for outcome x = 1. For

transmission strategies, the same argument applies.

Unbiased agents. For message strategies, an unbiased agent who receives a signal s believes with probability

1 that the true state is s. Given other agents’ strategies, creating any message other than s then lowers

the expected number of agents who will vote for outcome x = s. For transmission strategies, all unbiased

agents believe with greater than probability 1/2 that the true state is 1(0) upon receiving a message

m = 1(m = 0). Since any unbiased agent’s expected utility is increasing in the number of agents who

share his beliefs, an agent cannot benefit by not transmitting a message or blocking a message, given other

agents’ transmission strategies and beliefs.
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Necessity. Suppose bSi(j) >
π

1−π
for some unbiased agent i and one of his neighbors j. This agent would

have an incentive to deviate from the specified transmission strategy and adopt the strategy to block a

message m = 1 received from neighbor j. In this case, agent i holds that state 1 is less likely than state 0,

despite having received the message m = 1. Given other agents’ strategies and beliefs, agent i can improve

his expected payoffs by not transmitting the message.�

Proof of Proposition 2. The argument is provided in the text.�

Lemma 2 A If V t 6= ∅, then V t+1 ⊂ V t. Hence, there exists a step T such that V T = ∅ and V T−1 6= ∅.

Proof of Lemma 2.

Consider V t and let (j, i) be the level 1 directed edge in V t that is eliminated in this step. Consider

a directed edge (k, l) ∈ Gt+1 and suppose that (k, l) is not in V t. We show that it is not in V t+1. As

(k, l) ∈ Gt+1, (k, l) cannot belong to Gi(j). Now, consider two possibilities: either (j, i) ∈ Gl(k) or not.

If (j, i) /∈ Gl(k) when k receives message m = 1 from l, the message cannot have traveled through

(j, i): the elimination of (i, j) does not affect Gt
l(k) nor S

t
l (k). Hence,

bSt+1
l

(k) = bSt
l
(k) ≤

π

1− π
,

so that (k, l) does not belong to V t+1.

If (j, i) ∈ Gl(k), then Gi(j) ⊂ Gl(k). Hence, Si(j)
t ⊂ Sl(k)

t. Following the elimination of (j, i), Si(j)
t

has been withdrawn from Sl(k)
t, hence Sl(k)

t+1 = Sl(k)
t − Si(j)

t and

bSt+1
k

(l) =
|B ∩ Sl(k)

t+1|

|Sl(k)t+1|
=

bt
Sl(k)

|Sl(k)
t| − bt

Si(j)
|Si(j)

t|

|Sl(k)t| − |Si(j)t|
. (7)

As bSt
k
(l) ≤

π
1−π

< bSt
i
(j),

bt
Sl(k)

|Sl(k)
t| − bt

Si(j)
|Si(j)

t|

|Sl(k)t| − |Si(j)t|
<

bt
Sl(k)

|Sl(k)
t|

|Sl(k)t|
,

so that

bSt+1
k

(l) < bSt
k
(l) ≤

π

1− π
,

(k, l) is not in V t+1, concluding the proof of the lemma.�

Lemma 3 AThe set W of eliminated edges is independent of the order in which directed edges are chosen

at each step of the algorithm.

Proof of Lemma 3.

The proof is by induction on the initial levels of edges in the set V , that is their levels in G0.

All level 1 directed edges (j, i) ∈ V are always eliminated in the algorithm, irrespective of the order in

which edges are chosen: as the subgraph Gi(j) contains no edge in V , the proportion bt
Si(j)

stays constant

and any level 1 edge (j, i) ∈ V remains level 1.
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Suppose the induction assumption holds for all directed edges (k, l) of initial levels smaller than ℓ:

either (k, l) is eliminated by the algorithm in all possible orders or never. Consider a directed edge (j, i) of

level ℓ. Since Gi(j) only contains edges of initial levels smaller than ℓ, the final graph GT
i (j) obtained when

the algorithm stops is independent of the order. As a result, the proportion of biased agents in GT
i (j) is

independent of the order in which edges are chosen, and we can unambiguously determine whether (j, i)

is eliminated or not, proving the induction step. �

Lemma 4 A For any (j, i) ∈ W , j is biased and i is unbiased.

Proof of Lemma 4.

Recall that i is unbiased by definition of directed edges in V . As for j, j must be biased for any level

1 edge in V (otherwise there would be a violating edge in Gi(j). The same argument holds for any edge

in W because each edge in W is a level 1 edge of V t in Gt at the step t it is eliminated. �

Proof of Theorem 2.

Consider first the behavior of a biased agent. A biased agent does not have an incentive to deviate

and either create m = 0 upon receipt of a signal, transmit m = 0, or not transmit a m = 1. Given agents’

beliefs, any of these action would (weakly) increase the probability that an agent votes for outcome 0

instead of outcome 1.

Consider next unbiased agents. An agent i who receives s = 0 or m = 0 has the belief that the true

state is 0. She then does not have an incentive to deviate and create or transmit m = 1, since this action

will (weakly) increase the probability that more agents vote for outcome 1. An agent i who receives s = 1

knows that the true state is 1. She does not have an incentive to deviate and create m = 0 since, given

the beliefs, this will (weakly) increase the number of agents who vote for outcome 0. For transmission

of m = 1, an unbiased agent i who receives m = 1 and places sufficiently high probability that the true

state is 1, cannot gain by blocking the message. For (j, i) ∈ G∗, then, an agent i who receives m = 1

from j cannot gain by blocking the message. If on the other hand, she receives m = 1 from a neighbor j

where (j, i) /∈ G∗, she cannot gain by transmitting the message: her beliefs are ρ̃i(1(j)) < 1
2 , and given

the strategies of others, more agents will then vote for 1 and lower her expected utility.

We now show that there cannot be an equilibrium where m = 1 is transmitted along a directed edge

(j, i) not in G∗. (j, i) is in W hence in V . The proof is by induction on the level of (j, i) in the initial

graph G0.

First suppose that (j, i) is a level 1 edge. In the specified strategies, for any edge (k, l) with l unbiased

in Gi(j) l transmits m = 1 when he receives it from k (this is also the case for l biased by assumption).

Consider an alternative equilibrium.

If for any edge (k, l) in Gi(j), with l unbiased, l behaves as in the original equilibrium, then i’s posterior

ρ̃i(1(j)) is the same as in the original equilibrium, hence is lower than 1/2: i must block the message.

Otherwise, there are edges (k, l) in Gi(j), with l unbiased, for which l does not transmit m = 1 received

from k. Call such an edge deviating and denote D the set of deviating edges. The subgraph G′
i(j) along

which m = 1 can reach i through j in the alternative equilibrium is made of all the paths to i in Gi(j) that

contains no edge in D. We show that the proportion of biased agents in S′
i(j) (with obvious notation) is

larger than π
1−π

.
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Let (k, l) be in D such that Gl(k) contains no edge in D (such a (k, l) surely exists). Since (k, l) is not

in V (because (j, i) is of level 1), the proportion of biased agents in Sl(k) is not larger than π
1−π

. Since

(i, j) is in V the proportion of biased agents in Sl(k) is larger than π
1−π

. Hence the proportion of biased

agents in Si(j)− Sl(k) is strictly larger than π
1−π

.12

Consider the directed tree Gi(j)−Gk(l). If it contains no element in D, G′
i(j) = Gi(j)−Gk(l). The

set of nodes of Gi(j)−Gk(l) is Si(j)− Sl(k), which has a proportion of biased agents strictly larger than
π

1−π
: i’s posterior ρ̃′i(1(j)) is lower than 1/2: i must block the message.

If the directed tree Gi(j)−Gk(l) contains an element in D we can use the previous argument to that

tree (i.e. replacing Gi(j) by Gi(j)−Gk(l)) and obtain a sub-tree by deleting an element of D. Continuing

this way, we obtain a decreasing sequence of subgraphs whose nodes have a proportion of biased agents

larger than π
1−π

by deleting at each step a subgraph containing an edge in D. The process stops when all

deviating elements have been eliminated and the tree G′
i(j) is reached; this proves that S

′
i(j) has surely a

proportion of biased agents larger than π
1−π

so that i’s posterior ρ̃i(1(j)) is lower than 1/2: i must block

message 1 from j at the alternative equilibrium.

Next, at the induction step, suppose that all unbiased agents l with (k, l) /∈ G∗ of level smaller than ℓ

block message 1. Consider a level ℓ edge (i, j) /∈ G∗. Consider the directed subtree G∗
i (j) of Gi(j). G

∗
i (j)

is the subgraph along which m = 1 travels i through j in the original equilibrium and contains violating

edges of level smaller than ℓ. Therefore, by the induction assumption, at an alternative equilibrium, m = 1

can reach i through j only along a path included in G∗
i (j). We can therefore apply exactly the same

argument as above, replacing the tree Gi(j) by G∗
i (j).�

Proof of Proposition 3. The argument is provided in the text.�

Proof of Proposition 4. As the behavior of biased agents and of unbiased agents at the initial stage are

fixed, we only need to consider the transmission of unbiased agents at edges in G∗. If the message is 0,

unbiased agents surely want to transmit the message because they know it is thruthful. Suppose that the

message is 1. We show that the activity rule shows that the message will also be believed and transmitted.

We implement the following coloring of directed edges in G∗. Start by coloring edge (j, i) in green if

i is biased and in white if i is unbiased. Each white edge will be colored in blue if i believes the message

with probability grater than 1
2 . By the activity rule, this implies that i transmits the message as in the

MCE. Uniqueness is proved by coloring all white edges in blue.

Consider all white dangling edge (j, i) with j as a leaf. As (j, i) is in G∗, i believes with probability

greater than 1
2 that the message is truthful (in fact the posterior probability is 1). Color the directed edge

(j, i) in blue. At the end of the first step, all dangling edges are green or blue. Furthermore, there are no

other blue edges in the graph. This initial step shows that whenever the diameter of Gi(j) is equal to one,

all edges are colored in blue or green.

12By a computation similar to (7)

bSi(j)−Sl(k) =
bSi(j)|Si(j)| − bSl(k)|Sl(k)|

|Si(j)| − |Sl(k)|
. (8)

As bSl(k) ≤
π

1−π
and bSi(j) >

π
1−π

, we obtain bSi(j)−Sl(k) >
π

1−π
.
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Suppose now that in all graphs Gi(j) with diameter smaller than d, all directed edges are colored in

blue or green. Pick a white edge (j, i) such that the diameter of Gi(j) is equal to d. As all paths in strict

subgraphs of Gi(j) are either blue or green, agents in Si(j) behave as in the MCE, and the posterior belief

of agent i receiving message 1 from j is the same as in the MCE. As this posterior is larger than 1
2 , by the

activity rule he transmits the message. Hence, the edge (j, i) is colored in blue.�

Proof of Theorem 3. We provide the proof in the case where a biased agent always creates message

m = 1 when he receives the signal. The proof in the general case is more involved, and is available on

request.

We compare the expected utility, or, its opposite, the expected loss of an unbiased agent in the MCE

and in an alternative equilibrium, denoted ′.

A strategy profile determines the number of votes z̃ in each state given who receives the signal or

whether no signal is sent. As each (ex ante) individual loss depends only on these votes z̃, all unbiased

agents derive the same ex ante loss (even if they do not always vote identically as they may not have the

same information). For f(z) = z/n, this common expected loss is directly related to the total number of

votes not matching the state; up to the factor 1
n
it is equal to

π × [number of votes for 0 |θ = 1] + (1− π)× [number of votes for 1 |θ = 0]

Since biased agents always vote for 1, this expression is equal to the sum of the constant (1− π)bN and

π × [number of U-votes for 0 |θ = 1] + (1− π)× [number of U-votes for 1 |θ = 0].

which writes by disaggregating over all U -agents

∑

i∈U

π[number of i-votes for 0 |θ = 1] + (1− π)[number of i-votes for 1 |θ = 0].

i’s term inside the square brackets is the probability she casts a vote that does not match the state. In

what follows, we show that this probability is minimized at the MCE relative to other equilibria. This will

prove the theorem.

To simplify the presentation we take p = 1. Consider an unbiased agent i. Given a strategy profile, i’s

vote is a function of who receives the signal and the state, i.e. the value of the signal (this does not assume

that i has this information). Let v(j, θ) ∈ {0, 1} denote i’s vote when the signal lands on agent j in N and

the state is θ, i.e. j has received signal θ, where we omit index i for simplification. The probability that

i’s vote does not match the state is

Li =
1

n

∑

j∈N\i

[π1v(j,1)=0 + (1− π)1v(j,0)=1].

where 1 is the indicator function.

We will need the following lemma, which follows from the construction and properties of the MCE.

Lemma 5 There is a collection of disjoint sets Sk(ℓ) where (ℓ, k) is in W such that if the signal lands on
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an agent in one of these sets, i receives no message at any equilibrium. Let us denote by N−i the union of

these sets.

Proof of Lemma 5. Let (ℓ, k) be a directed edge in W where k is between ℓ and i. We know from

Theorem 2 that k does not transmit m = 1 from ℓ neither at the MCE nor at any equilibrium. Furthermore

ℓ is biased and k is unbiased, so k never receives m = 0 from ℓ. We thus obtain that no message goes

through the directed edge (ℓ, k) in W . This proves that i receives no message at any equilibrium when the

signal lands on an agent in one of these sets. As the sets are either disjoint or included into one another,

we may pick up the maximal sets and obtain a partition of N−i. (Each maximal set is such that the path

from ℓ to i contains no edge in W .) �

In the MCE, if unbiased agents receive message m they vote for m ; if they receive message ∅ they

vote for 0. Hence, there are two sources of incorrect votes:

1. Agent i does not receive any message and θ = 1

2. Agent i receives message m = 1, the signal is received by ℓ ∈ B and θ = 0.

Consider another equilibrium denoted by ′. We show that if i votes for the correct outcome when i does

not in a MCE, i must vote for the wrong outcome in a sufficiently large number of situations where he is

correct at the MCE so that the incurred loss overweighs the benefit. We deal with each source of incorrect

votes in turn.

1. Agent i does not receive any message and θ = 1.

At the MCE, everyone creates m = 1 upon the receipt of signal θ = 1. Hence the signal has been

received by some j who has sent message m = 1 but the message has not reached i.13 Thus there must

exist a directed edge (ℓ, k) in W on the path from j to i: j belongs to N−i.

At the ′ equilibrium, no message can go through (ℓ, k) (lemma 5), and i votes for the same outcome

whenever j ∈ Sk(ℓ) (even if i does not know that j ∈ Sk(ℓ)). In the MCE, i votes for 0. In the ′ equilibrium,

i might vote for 1. As (ℓ, k) is in W , bSk(ℓ) >
π

1−π
, so that voting for 0 matches the state more often than

voting for 1 when j ∈ Sk(ℓ).

As the argument works for any set Sk(ℓ) in the partition of N−i, the probability that i’s vote matches

the state when the signal is received by j ∈ N−i is at least as high in the MCE as in any other equilibrium.

2. The signal is received by ℓ in B and v(ℓ, 0) = 1 in the MCE equilibrium.

ℓ is surely in Ni = N −N−i. As biased ℓ creates message m = 1 when he receives the signal 0, either (a)

m = 1 does not reach i and i votes for 0 when m = ∅ or (b) m = 1 reaches i through an agent j; she votes

for 0 because the posterior is less than 1/2.

Assume that in the alternative ′ equilibrium, v′(ℓ, 0) = 0 so that the expected loss when ℓ receives the

signal is less at this ′ equilibrium than at the MCE. Consider the edge (ℓ, k) on the path from ℓ to i (k = i

is possible). Let S∗
k(ℓ) denote the set of agents from which i can receive a message transiting through

(ℓ, k) in the MCE.14 In the ′ equilibrium, i possibly receives a message transiting through (ℓ, k) from these

agents only. We show that the probability that i’s vote matches the state when the signal is received by

j ∈ S∗
k(ℓ) is at least as high in the MCE than in any other equilibrium.

13Or the signal has not been received, which is impossible for p = 1.
14Ni is the component to which i belongs in the graph where all the elements W have been dropped, i.e. it is

the component of the graph Γ obtained at the end of the algorithm. S∗

k(ℓ) is the set corresponding to (ℓ, k) in Γ.
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Assume first that k is unbiased. As m = 0 does not travel through ℓ, i can receive only m = 1 or

m = ∅. If i receives m = 1 it is through j (case (b) above) and this triggers vote 0. If m = ∅, there are

two possible cases :

1- i votes for 0 when ∅. Then, whatever the signal received in S∗
k(ℓ), i votes for 0 at the ′ equilibrium.

At the MCE, k is better off following the messages from strategy than voting constantly for 0.

2- i votes for 1 when ∅. Then, i votes for the wrong outcome when the signal 0 is received by an

unbiased agent in S∗
k(ℓ). Furthermore when a biased agent receives the signal, the vote is constant and the

minimal probability of a wrong outcome is π. Hence, denoting b = bS∗

k
(ℓ), the probability of an incorrect

vote in the ′ equilibrium when the signal lands on S∗
k(ℓ) is at least (1 − b)(1 − π) + bπ. This has to be

compared with b(1 − π) which is the expected loss at the MCE. By construction of the MCE, we have

b < π/(1− π); it is easy to check that this implies (1− b)(1− π) + bπ > b(1− π).15 Hence, the probability

that i’s vote matches the state when the signal is received by j ∈ S∗
k(ℓ) is at least as large in the MCE

than in any other equilibrium.

Assume now k to be biased. Consider the first unbiased agent k′ on the directed path from ℓ to i

(k′ = i is possible): there is a biased agent ℓ′ on this path linked to k′ and all agents between ℓ and ℓ′

are biased. Thus when ℓ sends 1, all these biased agents transmit it. It implies that when ℓ′ sends m = 1

(either transmits or creates), agent i is in the same situation as when ℓ sends m = 1: either (a) message 1

does not reach i or (b) m = 1 reaches i through j. As i cannot distinguish whether ℓ or ℓ′ have sent the

message, he votes 0. We thus have a pair (k′, ℓ′) where k′ is unbiased, ℓ′ is biased and i votes for 0 when

ℓ′ receives the signal and we can apply the previous result.

To conclude, in each situation in which agent j receives the signal and i’s vote does not match the

state in the MCE, there is a set of agents that contains j such that when the signal lands on this set,

the expected number of i’s incorrect votes in the ′ equilibrium is at least as high as in the MCE, and

furthermore the sets are disjoint.�

Proof of Proposition 6. We first show that, in a maximal communication equilibrium, no unbiased

agent can believe message m = 1 received from more than k∗ biased agents. Suppose by contradiction

that there exists an unbiased agent and k > k∗ biased agents such that, whenever message m = 1 is

originated by one of the k biased agents, the unbiased agent switches his prior to ρi >
1
2 . First note that,

as k ≥ k∗ + 1,

k ≥
nπ

1− π
+ 2π − 1 + 1 =

nπ

1− π
+ 2π.

Fix the unbiased agent i and consider two sets Si(j) and Si(j
′). Let 0 ≤ l ≤ k be the number of biased

agents in Si(j) and k − l the number of biased agents in Si(j
′). By Theorem 1,

l(1− π) ≤ |Si(j)|π,

(k − l)(1− π) ≤ |Si(j
′)|π.

15(1− b)(1− π) + bπ > b(1− π) is equivalent to b ≤ (1− π)/(2− 3π). Now π/(1− π) ≤ (1− π)/(2− 3π) (as this
is equivalent to (1− 2π)2 ≥ 0, hence b ≤ π/(1− π), implies b ≤ (1− π)/(2− 3π).
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Summing up,

k ≤
(|Si(j)|+ |Si(j

′)|)π

1− π
<

nπ

1− π
,

yielding a contradiction.

We now show that, in the optimal location described in the Proposition, all unbiased agents believe

message m = 1 received from k̂ = min{k, k∗} biased agents. Pick an unbiased agent i and consider the set

Si(j). By construction, if the set Si(j) contains l biased agents,

|Si(j)| ≥ l + l
n− k̂

k̂ + 1
.

so that the fraction of biased agents in Si(j) satisfies:

bSi(j) =
l

|Si(j)|
≤

k̂ + 1

n+ 1
≤

k∗ + 1

n+ 1
≤

π

1− π
.

By Theorem 1, this implies that a full communication equilibrium among k̂ biased agents and the unbiased

agents exists. �

Proof of Theorem 4 :

Sufficiency:

We consider possible deviations from the specified full communication strategies. Observe first that

the votes for outcome x are (weakly) maximized if message m = x is transmitted. To show this, let m

be created, and contemplate changing m into m′. This change can switch the vote of an unbiased agent i

under two cases. First, i receives now m′ hence votes for m′ whereas she was voting for x = m (because

either she received m or she received nothing and votes for x = m in that case). Second, i receives nothing

and vote for x = m′ whereas she voted for x = m because she received m. In both cases, the change

is in favor of a vote for x = m′. Similarly let m be created, and contemplate not creating any message.

The previous argument applies (only the second case can happen) hence the same result holds. The same

argument also applies at a transmission stage: not transmitting message m can only decrease the number

of votes for x = m. To summarize, creating m or transmitting maximizes the number of votes for outcome

x = m.

Suppose conditions (4) and (5) are satisfied. We show that no possible deviation is beneficial.

Biased agents. For creation strategies, a β−biased agent creates m = β. By the monotonicity of the

votes, he cannot improve the number of votes for his bias by creating a message that does not match his

type or by not creating any message. For transmission strategies, he only transmits a message that does

not match his type; the same argument applies.

Unbiased agents. For creation strategies, an unbiased agent who receives a signal s believes with

probability 1 that the true state is s. Creating any message other than s (s′ or ∅) can only lower the

number of agents who will vote for the true state x = s, which is harmful for an unbiased agent. As for

the vote and transmission strategies, under the conditions (4) and (5), all unbiased agents believe with

probability greater than 1/2 that the true state is 1 (resp. 0) upon receiving a message m = 1 (resp.

m = 0) from any unbiased or 1-biased (resp. 0-biased) neighbor. When the probability is strictly greater

than 1/2, the unbiased agent’s expected utility is increasing in the number of agents who vote for 1 (resp.0)
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so that she cannot benefit by not voting for 1 or by not transmitting the message. When the probability

is just equal to 1/2, she is indifferent hence the specified strategy is optimal as well.

To check perfectness, consider an unbiased agent who received a message m from a non-m-biased agent.

We specified that her posterior that the state is m is larger than 1/2, so the specified strategies are optimal

by the same argument.

Necessity. If (4) does not hold, then agent i believes that the state is 1 with probability strictly greater

than 1
2 , and can improve her expected payoffs by not transmitting the message m = 0. And similarly, if

(5) does not hold not transmitting the message m = 1 from j is optimal. �
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