The origin of tones in Viet-Muong
Michel Ferlus

To cite this version:

HAL Id: halshs-00927222
https://halshs.archives-ouvertes.fr/halshs-00927222v2
Submitted on 22 Sep 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THE ORIGIN OF TONES IN VIET-MUONG

Michel Ferlus
National Center for Scientific Research, Paris

1. Introduction

The problem of the origin of tones in Vietnamese was first discussed by the famous sinologist Henri Maspero (1912). He demonstrated, with the help of Sino-Vietnamese (the Vietnamese pronunciation of Chinese characters), that the six tones of Vietnamese could be analysed into two series: ngang-sắc-hỏi corresponding to ancient voiceless initials and huyền-nặng-ngã corresponding to ancient voiced initials.

A further contribution was made by André G. Haudricourt in his seminal article *De l'origine des tons en vietnamien* (1954). He showed masterly that the three tones of Ancient Vietnamese originated from ancient laryngeal finals. In short, sách-nặng tones derived from an ancient final glottal stop and hỏi-ngã tones from an ancient final spirant, while, by contrast, ngang-huyền tones developed in final vowel context. Haudricourt's model was developed and extended by James A. Matisoff (1973) to account for much of the tonogenesis phenomena in Southeast Asia.

Gérard Diffloth (1989), contra Haudricourt, proposed to reconstruct an earlier Proto-AA creaky voice to account for Vietnamese sách-nặng tones, contrasting with a Proto-AA clear voice. This theory solves several tonogenesis problems within the VM group; on the other hand, it raises many new problems within the AA family.

I this paper, I suggest that the Vietnamese tone contrast, sách-nặng vs ngang-huyền and its cognates in other VM languages, reflects an earlier tense vs lax contrast that results from the influence of the Chinese language during the Han
times (206 B.C.—220 A.D.). In the end, this hypothesis reinforces Haudricourt’s ideas.

This hypothesis leads us to divide PVM into an Early PVM, the stage just before the first Chinese influence, and a significantly different Late PVM, or traditional PVM.

2. The state of affairs in Proto-VM (henceforth Late PVM)

We can safely assert that all tone systems in modern VM languages derive from a fundamental three-way contrast of Proto-VM between -Ø (unmarked voiced ending rhyme), -ʔ (constricted voiced ending rhyme) and -h (laryngeal spirant ending rhyme). Checked syllabes in -C (voiceless ending rhyme) are apart.

<table>
<thead>
<tr>
<th>-Ø</th>
<th>-ʔ</th>
<th>-h</th>
<th>-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>vowel</td>
<td>vowel</td>
<td>vowel</td>
<td>vowel</td>
</tr>
<tr>
<td>semi-vowel nasal lateral</td>
<td>semi-vowel nasal lateral</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This implies that Proto-VM was a toneless language. The constriction -ʔ in vowel ending derives from a Proto AA final glottal stop -ʔ.

3. Tonogenesis in Viet-Muong

To put the case simply, tones in VM were generated by two major phenomena:

- Loss of laryngeal features in rhymes with -ʔ and -h in two phases. The first phase is the change of -ʔ into a pitch/contour melody, presumed rising and slightly constricted, that contrasts with -Ø in a two-tone system. The second phase is the loss of the laryngeal spirant -h, creating a third pitch/contour melody that contrasts with the two previous ones in a three-tone system.

- Devoicing of plosive initials (confusion of voiced into voiceless) associated with tone splitting.

The relative chronology of these two major phenomena for each language led to different types of tone systems (Ferlus 1998a).
• If the devoicing of plosive initials took place after the complete loss of the two laryngeal features \(-^2 \) and \(-h \), then the language developed a six-tone basic system as in northern VM languages (Vietnamese, Mường, Thổ).

• If the devoicing took place after the change of the laryngeal constriction \(-^2 \), while final spirant \(-h \) was still preserved, then the language developed a four-tone basic system as in southern VM languages (Maleng, Arem, Sách/Rục, Thavung).

I give examples of tone systems for written standard Vietnamese and Sách/Rục (Nguyễn Văn Lợi 1993; personal data).

Vietnamese: The tone system of Vietnamese can be presented as follows (in quốc ngữ spelling):

<table>
<thead>
<tr>
<th>voiced finals</th>
<th>voiceless finals</th>
</tr>
</thead>
<tbody>
<tr>
<td>voiceless initials</td>
<td>ngang</td>
</tr>
<tr>
<td>voiced initials</td>
<td>huyễn</td>
</tr>
</tbody>
</table>

• Within syllables ending in vowels, all of the six tones can occur.

• Within syllables in nasal finals (-m -n -nh/-ng) and ancient lateral final (-l > Việt -i/-y), only tones derived from \(-O \) (ngang-huyễn) and \(-^2 \) (sác-nangkan) can occur in genuine VM words. Tones corresponding to \(-h \) (hỏi-ngã) only exist in borrowings from Chinese, or in words of expressive origin (as was already noted by Maspero).

• Tones deriving from rhymes with final \(-h \) exist on syllables that are either vowel-final or with the ancient final fricative \(-s \) (> \(-l^h \) > Việt -i/-y).

• The tones in syllables \(-C \) with final plosives \((-p -t -ch/-c) \) are realized with the same contour as sác-nangkan tones, but they constitute a subsystem that contrasts, as a whole, with the subsystem in voiced final syllables.

• In some dialects the confusion of two tones (usually nangkan-ngã but sometimes hỏi-ngã) reduced the number of tones from six to five.
Sách/Rúc: The Sách and Rúc dialects show very tiny differences and are practically the same language. They form the Chứt subgroup spoken in Tuyên Hóa district, Quảng Bình province.

<table>
<thead>
<tr>
<th>voiceless initials</th>
<th>voiced initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>v̂</td>
</tr>
<tr>
<td>v̄</td>
<td>v̂</td>
</tr>
<tr>
<td>voiceless finals</td>
<td>voiced finals</td>
</tr>
<tr>
<td>vh</td>
<td>v̂h</td>
</tr>
<tr>
<td>vC</td>
<td>v̂C</td>
</tr>
</tbody>
</table>

Tones:
- **clear voice:** v [44] v̄ [45] vh / vC [45]

A fifth tone [423] is found exclusively in borrowings from the Nguồn language.

Comparative vocabulary:

<table>
<thead>
<tr>
<th></th>
<th>Viet</th>
<th>Sách/Rúc</th>
</tr>
</thead>
<tbody>
<tr>
<td>three</td>
<td>ba</td>
<td>pa [44]</td>
</tr>
<tr>
<td>zebu</td>
<td>bö</td>
<td>pɔ [11]</td>
</tr>
<tr>
<td>fish</td>
<td>cá</td>
<td>ka [45]</td>
</tr>
<tr>
<td>mother</td>
<td>me</td>
<td>mɔɛ [11]</td>
</tr>
<tr>
<td>bird</td>
<td>chim</td>
<td>iʃi:m [44]</td>
</tr>
<tr>
<td>wear out</td>
<td>mɔn</td>
<td>mɔn [11]</td>
</tr>
<tr>
<td></td>
<td>tongue</td>
<td>lʊɔi</td>
</tr>
</tbody>
</table>

4. **Haudricourt's theory**

As was mentioned in the introduction, the origin of Vietnamese tones was clearly explained by André G. Haudricourt (1954). According to the author, sâc-nâng tones derive from an ancient final glottal stop, hôi-ngâ tones from an ancient final spirant while, by contrast, ngang-huyèn tones developed within vowel-final contexts. He reconstructed Vietnamese tonogenesis in terms of three stages:

1. Ancient Vietnamese was a toneless language.
2. The final glottal stop -ʔ changed into a rising contour. The final spirant -h changed into a falling contour. The final -Ø remained at an even pitch. The result was a three-tone system made up of the ancestors of the three pairs, ngang-huyèn (from -Ø), sâc-nâng (from -ʔ) and hôi-ngâ (from -h).
3. The confusion of voiced initial obstruents into voiceless split the three-tone system into two series. The result was a six-tone system. The same type of explanation can be extended to all VM languages, including those that show a four-tones system with the final -h preserved, as well as so-called "register languages".

Chart: Vietnamese tonogenesis according to Haudricourt.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nowadays</td>
<td>(no tone)</td>
<td>(3 tones)</td>
</tr>
<tr>
<td>pa</td>
<td>pa-</td>
<td>pa-</td>
<td>ba</td>
</tr>
<tr>
<td>ba</td>
<td>ba-</td>
<td>pa-</td>
<td>bả</td>
</tr>
<tr>
<td>paʔ</td>
<td>pa’</td>
<td>pa’</td>
<td>bả</td>
</tr>
<tr>
<td>baʔ</td>
<td>ba’</td>
<td>pa-</td>
<td>bả</td>
</tr>
<tr>
<td>pah</td>
<td>pa`</td>
<td>pa`</td>
<td>bà</td>
</tr>
<tr>
<td>bah</td>
<td>ba`</td>
<td>pa`</td>
<td>bà</td>
</tr>
</tbody>
</table>

But this elegant presentation, while meaningful as an overview, cannot account for some points of VM and Vietnamese tonogenesis. In particular:

- When checking the origin of the three primary tones (through the comparison of Vietnamese with some Mon-Khmer languages), some discrepancies in correspondences come up. William A. Gage (1985) remarked that a final glottal stop -ʔ in Mon-Khmer languages can be related with Vietnamese words in sáč-nành (expected correspondences) as well as with ngang-huyên (unexpected correspondences). Let us examine correspondences between Khmu, a genetically related neighbouring language, and Vietnamese:

<table>
<thead>
<tr>
<th>Expected correspondences</th>
<th>Unexpected correspondences</th>
</tr>
</thead>
<tbody>
<tr>
<td>sőʔ</td>
<td>chó</td>
</tr>
<tr>
<td>kaʔ</td>
<td>cá</td>
</tr>
<tr>
<td>rŋkoʔ</td>
<td>gao</td>
</tr>
</tbody>
</table>

It could be argued that an unknown phonetic change took place during the long separation between Khmu and Vietnamese (and VM in general) since the times of Proto-AA. But it will appear in the course of the article that far from being an
anomaly, these two-way correspondences are in fact a result of the first stage of Viet-Muong tonogenesis.

- The existence of ăc-năng tones on rhymes with nasal/lateral endings presupposes an ancient glottalization, a phenomenon which is little represented in such rhymes within the Mon-Khmer family.
- The hypothesized changes of a final glottal stop into a rising contour, and a final spirant into a falling contour, is a pure speculation. It can be inferred from various observations that the two changes are not simultaneous: the final glottal stop shifted before the final spirant did. Within the VM subgrouping, Southern languages (Maleng, Arem, Sách/Rúc and Thavung) have a four-tone system with final -h preserved. As far as we know, no language that shifted -ʔ before -ʔ has ever been observed. In general, at the first stage of laryngeal changes, the constriction derived from -ʔ seems to be more significant than the contour that evolves later toward a rising or a falling tone (depending on phonological coercion within the system at the moment of the change). At the second stage, the result of the change of final -h tends toward a new constriction instead of the previous glottal stop: a secondary constriction.

5. The hypothesis of a Proto-Austroasiatic creaky voice

Gérard Diffloth (1989) made the hypothesis that Proto-AA had a two-way contrast, creaky voice vs clear voice, that he reconstructed in Proto-Katuic, Proto-Pearic and Proto-Vietic (= Proto-Viet-Muong). I will examine briefly the cases of Vietnamese and Talan (Katuic) languages, and then analyse the theory.

Vietic: According to Diffloth, in Proto-Vietic there was no final glottal stop -ʔ. Vietnamese rhymes in voiced endings with present day ăc-năng tones reflect the earlier creaky voice; those with ngang-huyễn tones reflect the clear voice. Diffloth's reanalysis allows one to eliminate the problem of the correspondence between these two pairs of tones and final -ʔ in Khmu. It also provides a satisfactory answer to the existence of ăc-năng tones with nasal/lateral finals.
Chart: Reflects of the earlier voice contrast *creaky vs *clear in Vietnamese.

<table>
<thead>
<tr>
<th>Register</th>
<th>*clear [v]</th>
<th>*creaky [v́]</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Finals</td>
<td>voiced finals</td>
<td>stops</td>
<td>*spirant</td>
<td></td>
</tr>
<tr>
<td>*voiceless initials</td>
<td>ngang</td>
<td>sác</td>
<td>sác</td>
<td>hỏi</td>
</tr>
<tr>
<td>*voiced initials</td>
<td>huyền</td>
<td>nảng</td>
<td>nảng</td>
<td>ngã</td>
</tr>
</tbody>
</table>

Examples:
Proto-Vietic clear voice [v]:
- vowel
- semi-vowel
- nasal
- lateral (-l > -i/-y)
- mu "rain"
- tai "ear"
- con "son"
- cǎy "tree"
- bö "zebu"
- ruòi "fly"
- rīng "forest"
- vě "return"

Proto-Vietic creaky voice [v́]:
- chó "dog"
- muội "salt"
- bón "four"
- gòi "knee"
- rītə "machete"
- khoí "smoke"
- năng "heavy"
- bụi "dust"

Proto-Vietic final spirants -h and -s (> -l̬ > i/y)
- có "grass"
- băy "seven"
- gōi "wood"
- mūi "nose"

Katuic: Within the Katuic group, only two languages, Talan and Ong, a closely related language, attest the phonetic features that led Diffloth to reconstruct a voice contrast (*creaky vs *clear) for Proto-Katuic. These features do not exist in any other language of the group.

Chart: Reflects of the early voice contrast *creaky vs *clear in Talan.

<table>
<thead>
<tr>
<th>*Proto finals</th>
<th>m n n̂ n̂</th>
<th>p t c k</th>
<th>Ø w j r l s h</th>
</tr>
</thead>
<tbody>
<tr>
<td>*creaky voice</td>
<td>m̄ n̂ n̂ n̂</td>
<td>p t c k</td>
<td>Ø w j r l s h</td>
</tr>
<tr>
<td>short vowels</td>
<td>m̄ n̂ n̂ n̂</td>
<td>p t c k</td>
<td>Ø w j r l s h</td>
</tr>
<tr>
<td>all vowels</td>
<td>m̄ n̂ n̂ n̂</td>
<td>p t c k</td>
<td>Ø w j r l s h</td>
</tr>
<tr>
<td>long vowels</td>
<td>m̄ n̂ n̂ n̂</td>
<td>p t c k</td>
<td>Ø w j r l s h</td>
</tr>
</tbody>
</table>

In words with final nasals, Diffloth distinguishes what I call here, for the sake of coherence within this paper, a 'strong creakiness' (-m̄, -n̂, ..), realized at the end of rhymes with
short vowels, from a 'weak creakiness' (-'m, -'n...), realized on rhymes with long vowels. The two sets are in complementary distribution and the difference is not relevant phonologically. It should be noted that it doesn't exist in Ong.

The most spectacular effect of the earlier creaky voice is the change of -p -t -c -k into -m^2 -n^2 -j^2 -ʔ.

Clear voice has no effect on finals.

(One may regret that the interaction between creaky voice and the devoicing of initials in Talan has not been investigated yet).

Pearic: The situation in Chong, a Pearic language, is similar to the situation in Katuic.

6. Comments on Diffloth's hypothesis

Let us analyse here the hypothesis concerning a Proto-AA creaky voice:

- One can remark an important difference between on the one hand Vietic, and on the other hand Katuic (and also Pearic). In Vietic, the alleged earlier creakiness has no effect on rhymes in plosives finals (-p -t -c -k > viet -p -t -ch/-c) while it does have an effect on rhymes in voiced finals through tones sác-năng (vs ngang-huyễn). In Katuic, creakiness affects all sorts of rhymes. If creakiness really existed in Proto-AA, it should affect Vietic and Katuic in the same way.

- In the Katuic subgrouping, only Talan and the closely related Ong show effects of the alleged Proto-AA creaky voice. In the Mon-Khmer branch of the AA family (i.e. excluding the Munda branch), only Vietic, Katuic and Pearic show such effects. If a voice contrast *clear vs creaky* [v~ṽ] had existed in Proto-AA, it would be hard to imagine that it got lost in most Katuic and AA languages. If it had happened, such an important contrast would have turned into a new contrast to avoid the risk of numerous semantic confusions. Nothing of the sort has been observed in the well known Katuic branch, the vocalism of which has been reliably reconstructed by Diffloth himself (1982), nor in any other AA language.

- Within Pearic, Diffloth showed a very interesting correspondence between a non-glottalized word base and its
glottalized derivate (note: v clear, v' clear/glott., v_\breath breathy, v'_\breath breathy/glott.).

$kʰeːt$ "to comb" $kəneːt$ "a comb"

$kəːp$ "roast w. sticks" $kɔŋːp$ "roasting sticks"

$pəːk$ "to laugh" $kəŋːk$ "a joke"

One can remark that non-glottalized word bases are monosyllabic while correspondent glottalized derivatives are sesquisyllabic. This opens the way to solve the problem of the origin of constricted rhymes in Vietic (viet $săc-năng$) and the glottalisation/creakiness in Katuic and Pearic. It suggests a relationship between these features and sesquisyllabism.

To sum up, the phonetic features in question can hardly originate from a "Proto-AA creaky voice". I will try to demonstrate that they were generated at a later stage as a consequence of sesquisyllabism, under the influence of the Chinese language of the Han times.

7. The theory of monosyllabization in Ancient Chinese

It may be useful to state here the theory of monosyllabization in Ancient Chinese (Ferlus 1998b), in order to understand the origin of Vietnamese $săc-năng$ tones and subsequent developments. This phenomenon took place between Old Chinese and Middle Chinese. OC is known through the *Shijing* (Book of Odes), compiled around the Vth century BC. Its rhymes have been reconstructed by William A. Baxter (1992). MC is the stage of the lost *Qieyun* (a rhyming dictionary) completed in 601 A.D. by Lu Fayan and known through the later *Yunjing* (a rhyme table).

The reader of the present paper should note that this theory of monosyllabization in Ancient Chinese has not gained wide acceptance yet in the community of sinologists.

Old Chinese was a disyllabic language. That means that one part of its vocabulary was made up of monosyllabic words, while the other part was made up of disyllabic words, more accurately of the sesquisyllabic type (according to Matisoff's definition). This type is still widely represented in many AA languages of Southeast Asia (Ferlus 1996). A sesquisyllable is a type of disyllable made up of a main syllable preceded by a
presyllable. The main syllable is similar to a monosyllabic word, while the presyllabe is a reduced and unstressed syllable without phonemic vowel. The presyllable can be a morphological prefix as well as a neutral element without any individual meaning.

monosyllable: CV(C)

sesquisyllable: C-CV(C)

In short, OC sesquisyllables C-CV(C) developed a tenseness (T). It can be supposed that it was due to the coalescence of the double onset tenseness of the initial cluster C-C-. By contrast monosyllables CV(C) developed a laxness (L). Then, sesquisyllabic words became monosyllabic by losing their presyllables. Therefore, the former contrast of syllabic type C-CV(C) vs CV(C) was replaced by a new contrast tense vs lax (T~L). This phenomenon was associated with a vowel splitting showing vowel lowering in T syllables and vowel rising in L syllables. It is easy to observe these vowel changes when comparing some very interesting reconstructions of OC and MC rhymes, especially those of Baxter (1992). Incidentally, the present theory proves the wellfoundedness of these reconstructions. My hypothesis is that the contrast T~L was generated by the syllabic type, with the ensuing conclusion that MC was a phonation type language.

Later on, at a second stage, after these changes have occurred, the softening of medial -r- blurred the situation. It is the stage of MC, characterized by the famous four-division system: the T syllables belong to divisions I/IV (no medial -r- in OC) or to division II (medial -r- in OC), while the L syllables belong to division III (with or without medial -r- in OC) characterized by the famous yod of Karlgren's reconstructions (1957).

<table>
<thead>
<tr>
<th>Old Chinese</th>
<th>Middle Chinese</th>
<th>divisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-CV(C) (tenseness)</td>
<td>CV(C)/T (v. lowering)</td>
<td>I/IV (− r) or II (± r)</td>
</tr>
<tr>
<td>CV(C) (laxness)</td>
<td>CV(C)/L (v. rising)</td>
<td>III (± r)</td>
</tr>
</tbody>
</table>

The important point to remember is the fact that tenseness must have occurred in sesquisyllables C-CV(C) and laxness in monosyllables CV(C). This contrast T~L is suspected to have
spread onto some other languages, such as the ancestor of Vietnamese, that were in close contact with Chinese.

Nota: These assertions call for further explanations. Firstly, it should be noticed that before the extensive, structural phenomenon of monosyllabization that affected the whole sesquisyllabic vocabulary took place, a slow and random monosyllabization could have taken place. Secondly, some type of sesquisyllables with soft elements in the initial cluster could have developed a laxness, as monosyllables did.

8. Proposal for a new hypothesis on VM tonogenesis

I claim that the ancestor language of Vietnamese fell under Chinese influence as a consequence of the Han conquest of Ancient Vietnam. I will call this ancient stage "Early PVM", and use the term "Late PVM" for what is usually called PVM. Because of bilingualism, the tenseness of OC sesquisyllables induced a tenseness on Early PVM sesquisyllables. Similarly, the laxness in OC monosyllables induced a laxness on Early PVM monosyllables. In short, the contrast T~L was transferred from OC into Early PVM.

\[
\begin{array}{ccc}
\text{Old Chinese} & \text{Early PVM} \\
\text{C-CV(C) (tenseness)} & \text{transfered to} & \text{C-CV(C) (tenseness)} \\
\text{CV(C) (laxness)} & \text{transfered to} & \text{CV(C) (laxness)} \\
\end{array}
\]

In historical phonetics one must clearly distinguish the innovation of a phonetic change from its propagation. The innovation occurs in one language, at a precise moment, in a restricted place. It is in general difficult, and indeed often impossible, to locate the cradle of an innovation. The propagation can spread by waves during a very long time on many languages in areal contact. Some changes that occurred in OC more than two millenia ago are now reaching minor languages of Southeast Asia. Another important point is that the effects (in the long run) of the primary phonetic change on the influenced language differ from those that take place in the innovating language.

Here, the innovating language was OC and the influenced language was Early PVM. The effects of the contrast T~L (the primary phonetic change) in OC were mostly vowel splitting
associated with a phenomenon of vowel lowering in T syllables and a vowel rising in L syllables. On the other hand, in Early PVM, the contrast T~L had no effect on vowel height. The tenseness went towards a glottal constriction in certain contexts, giving a marked rhyme, while the laxness remained an unmarked rhyme. The resulting language was Late PVM.

Old Chinese Early PVM > Late PVM
C-CV(C)/T = C-CV(C)/T > C-CV(C) (glottal constriction)
CV(C)/L = CV(C)/L > CV(C) (unmarked)

The effects of tenseness on the rhymes of Early PVM sesquisyllables depend on three principal contexts: 1/ rhymes with voiceless endings, plosives (-p -t -c -k), fricative (-s) and spirant (-h); 2/ rhymes with final glottal stop (-ʔ) and 3/ rhymes with nasal/lateral endings (-m -n -ɲ -ŋ -l). It is commonly agreed that Early PVM is a language without vowel endings. Now, I shall describe those three cases in detail:

1. Tenseness had no effect on Early PVM rhymes that ended with plosives -p -t -c -k (> Viet -p -t -ch/-c). In Vietnamese, the pair of tones written as ăc-năng are attested in this context. But they are not in contrast with the two other pairs of tones; they are only identified with ăc-năng because of a phonetic likeness of contour.

 Tenseness had no effect on rhymes in -h, represented in Vietnamese by rhymes in vowel with hōi-ngā tones. It also has no effect on rhymes in -s, represented by rhymes ending in -i/-y with hōi-ngā tones.

 As a consequence, within the context of voiceless finals, there is no means of restituting the syllabic status of Early PVM words.

2. The effects of tenseness on Early PVM rhymes that ended with -ʔ are rather problematic and in addition need some further developments. Let us examine successively the two types of correspondences between Khmu and Vietnamese seen above: Khmu -ʔ with Viet ăc-năng (expected correspondences) and Khmu -ʔ with Viet ngang-huyẻn (unexpected correspondences).
Expected correspondences:

Khmu -? Viet sác-nặng
soʔ chó dog
kaʔ cá fish
taʔ dứa individual
bləʔ lá leaf
seʔ chây headlouse
buʔ, breast vú/bú breast / to suck breast
pleʔ trái fruit
boʔ, wear in a clothe bò tie in a bundle
sroʔ [khoai] sọ taro
rŋkoʔ gao husked rice
klŋaʔ < kšl naʔ nh Sisters resin
klmeʔ < kšl meʔ mía sugar cane

This first type of correspondence shows a good correlation between Khmu monosyllables ending in -ʔ and Vietnamese syllables with sác-nặng tones. The two words klŋaʔ "resin" and klmeʔ "sugar cane" are apparently sesquisyllabic, but they must be reanalyzed into kšl naʔ and kšl meʔ, in which kšl (Viet cây) means "tree". The case of rŋkoʔ "husked rice" will be examined later. I presume that the words on this list were monosyllabic in Early PVM like in most cognates in present-day Khmu. By the way, we are here facing again the data that led Haudricourt to formulate his well-known theory on the origin of tones in Vietnamese.

Unexpected correspondences:

Khmu -? Viet ngang-huyên
kmaʔ mufa rain
mpoʔ (chíem) bao to dream
tmpaʔ (con) ba ba tortoise (Trionyx)
lmboʔ bò zebu
sŋiʔ ngay day
cndreʔ chây pestle
ʃruʔ sau deep
ʃriʔ si banian
meʔ mà/mi thou/you

Another example involving Arem can be added:
pdoʔ, yeast do (in Arem) Alcohol
On the other hand, this second type of correspondence shows a perfect correlation between Khmu sesquisyllables ending in -ʔ and Vietnamese syllables with ngang-huyễn tones. The explanation of what seems to be abnormal is, in light of the analysis put forward above, very clear: the tenseness that was developed on Early PVM sesquisyllables caused the loss of the final glottal stop, leaving an open syllable in Late PVM. A model for this is provided by the Sedang language, in which a previous glotto-pharyngeal constriction was dropped, bringing about the loss of final plosives and spirants (Gregerson 1976; Sidwell 1998; Smith 1967).

In short, the final glottal stop -ʔ was not affected by the laxness of monosyllables from Early PVM to Late PVM, and shifted later into Vietnamese sắc-nặng tones. But it was wiped out by the tenseness of Early PVM sesquisyllables, thus creating the new type of open syllable in Late PVM that later rose into Vietnamese ngang-huyễn tones.

3. The effects of tenseness on Early PVM rhymes of sesquisyllables with finals -m -n -ɲ -ŋ (> Viet -m -n -nh/-ng) and -l (Viet -i/-y) are rather simple. It generated (what I suppose to be) a glottal constriction, thus creating a new contrast in Late PVM with unmarked rhymes issued from laxness on Early PVM monosyllables. The glottal constriction shifted into Vietnamese sác-nặng tones contrasting with ngang-huyễn.

Chart: The effects of T~L contrast from Early to Late PVM

<table>
<thead>
<tr>
<th>finals</th>
<th>p t c k</th>
<th>s h</th>
<th>?</th>
<th>m n p ɲ w j l</th>
</tr>
</thead>
<tbody>
<tr>
<td>sesquisyll./T</td>
<td>not affected</td>
<td>? > Ø</td>
<td>constriction</td>
<td></td>
</tr>
<tr>
<td>monosyll./L</td>
<td>not affected</td>
<td>? unchanged</td>
<td>not affected</td>
<td></td>
</tr>
<tr>
<td>Viet. tones</td>
<td>sác-nặng</td>
<td>hỏi-ngã</td>
<td>sác-nặng ~ ngang-huyễn</td>
<td>sác-nặng ~ ngang-huyễn</td>
</tr>
</tbody>
</table>

9. **Concluding remarks**

It is difficult to find evidence for the hypothesis put forward here. Evidence for the historical relationship between ancient sesquisyllables and sác-nặng tones (contrasting with the
two other pairs) is difficult to establish. The main reason for this difficulty is that there is a very large scale of time, presumably more than one millennium, between the stage of Early PVM, situated at the beginning of our era, and the crucial stage of the spirantization of medial obstruents (Ferlus 1982), about the XIIth century—a phenomenon that provides us with firm evidence about the sesquisyllabicity of Ancient Vietnamese. The problem is difficult to solve because we do not know accurately how and when monosyllabisation took place. Four types of situations can illustrate the problem of the two stages where phonetic phenomena involved sesquisyllabism.

- A word as gày "to sing (of rooster)", attested by tkal3 in Pong, a VM language, gives evidence for sesquisyllabicity at the two stages. The sá̄c tone presupposes a sesquisyllable in Early PVM and the initial g- is a result of spirantization that was produced at the medial in sesquisyllable. So, one can restitute the chain of changes: Early PVM tkal > Late PVM tkalʔ (tenseness), then in Ancient Viet tkalʔ > tyalʔ (spirantization) > yalʔ (monosyllabization) > modern Viet gày.

- According to my hypothesis, words as bôn "four", tám "eight" and chún "nine" must have been sesquisyllables in Early PVM, but they are monosyllables by the XIIth century. One can note that "eight" and "nine" are attested by sesquisyllables tmham and tmθin in Mang, a neighbouring Austroasiatic language. On the same way, chún "ripe, cooked" and môn "finger nail" are attested by the sesquisyllables psǐn and tmʰmɔːŋ in Khmu.

- The word guōm "sword" seems to be a counter-example. The initial g- proves that this word was a sesquisyllable in Ancient Vietnamese, and it is still attested by tkiɔm in Sách/Rúc. But it does not show either of the expected sá̄c-nǎŋg tones! The reason is that it is an ancient borrowing from Chinese, probably introduced after the Early PVM stage.

- At last, let us look at gao "husked rice", that also looks like a counter-example. It can be reconstructed as rkoʔ in Early PVM, and is regularly attested by a sesquisyllable in VM languages, Arem ʔkɔʔ, Sách/Rúc tko3, Thavung ako3, even in Khmu rŋkɔʔ. The initial g- is regular in Vietnamese but the
nǎng tone is unexpected in an Early PVM sesquisyllable with a final -ʔ that would have been dropped at the stage of Late PVM. The explanation is that the presyllabic trill r- presents a soft articulation, in comparison with the firm articulation of the following plosive initial k-, and in consequence the coalescence of the two units was not sufficient to create a tenseness on the initial cluster.

The difference between Early PVM and Late PVM is of the utmost importance. The changes caused by the intrusion of the contrast T~L into Early PVM are specific of Late PVM and mark the birth of the VM branch. The loss of final glottal stop -ʔ in sesquisyllables, but not in monosyllables, between Early PVM and Late PVM, created the condition for the emergence of the first tonal contrast.

Converted into Unicode, in September 2014.

The bibliography has been improved. In particular, we have reinserted the reference Diffloth 1989, Proto Austroasiatic creaky voice > that had mysteriously vanished in the Proceedings of the 11th SEALS Conference, 2001.
References

