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Abstract 
 
In this paper we compare two approaches of model selection methods for linear 

regression models: classical approach - Autometrics (automatic general-to-specific 

selection) – and statistical learning - LASSO ( ℓ𝓁! -norm regularization) and 

adaLASSO (adaptive LASSO). In a simulation experiment, considering a simple 

setup with orthogonal candidate variables and independent data, we compare the 

performance of the methods concerning predictive power (out-of-sample forecast), 

selection of the correct model (variable selection) and parameter estimation. The case 

where the number of candidate variables exceeds the number of observation is 

considered as well. Finally, in an application using genomic data from a high-

throughput experiment we compare the predictive power of the methods to predict 

epidermal thickness in psoriatic patients. 

 

Key Words: model selection, general-to-specific, adaptive LASSO, sparse models, 

Monte Carlo simulation, genetic data. 

 

1. Introduction 

The importance of automatic specification of statistical models has been growing 

exponentially with the progress and dissemination of data modeling. One important 

instance of this problem is the specification of multiple regression models. Presently, 

there are several statistical packages proposing different methodologies for selecting 
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the explanatory variables from a set of candidates and estimating regression 

coefficients. 

 In this paper, we compare two of these methodologies among the most 

representatives of the two main approaches - traditional (Classical Approach) and 

shrinkage (Statistical Learning) - for this problem.  

 The Classical Approach uses mostly OLS, hypothesis testing and information 

criteria to compare different models. However, the total number of models to evaluate 

increases exponentially as the number of candidate variables increases. Moreover, the 

traditional OLS fails if the number of candidate variables is larger than the number of 

observations. 

 There are two main strategies to overcome combinatory problem of choosing 

the right set variables: specific-to-general and the general-to-specific. Some examples 

of specific-to-general methods are stepwise regression, forward selection and, the 

more recent, RETINA (Perez-Amaral et al., 2003) and QuickNet (White, 2006). In the 

general-to-specific (GETS) category the most important methods are based on a 

model selection strategy developed by the LSE school (‘LSE' approach), revised in 

PcGets (Hendry and Krolzig, 1999, and Krolzig and Hendry, 2001), and more 

recently in Autometrics (Doornik, 2009), which will examined in this paper. 

   A competing approach – we will refer to it as ‘shrinkage approach’ - is mostly 

based on mathematical programming techniques and their conveniences. Those 

methods handle high dimensional data betting on sparsity, shrinking coefficients of 

irrelevant variables to zero during the estimation process. One of the first and most 

popular proposals of this type is the Least Absolute Shrinkage and Selection Operator 

(LASSO), introduced by Tibshirani (1996). A partial list of generalizations and 

adaptations of LASSO method to a variety of problems proposed in recent years can 

be found in Tibshirani (2011). Among these, the adaptive LASSO (adaLASSO), 

proposed by Zou (2006), has received particular attention.    

 Although the extensive recent literature in this field, no work has been done 

comparing Autometrics, which is a development of PcGets, with LASSO, or 

adaLASSO. These methods, based on two different approaches, have been broadly 

applied in the linear regression framework, for which their statistical properties have 

been already theoretically proven, as discussed in next section. Therefore, the aim of 

this paper is to compare selection and forecasting performances of these methods for 

linear regression models. In a simulation experiment we compare the predictive power 
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(forecast out-of-sample) and the performance in the selection of the correct model and 

estimation (in-sample). The case where the number of candidate variables exceeds the 

number of observations is considered as well. In order to analyze different situations 

the model selection methodologies were compared varying the sample size, the 

number of relevant variables and the number of candidate variables. Finally, we apply 

the methods to predict psoriasis in a genetic study. 

 The paper is organized as follows. Model selection techniques are presented in 

Section 2. Section 3 presents the Monte Carlo experiment and simulation results. 

Section 4 is devoted to the application to epidermal thickness forecasting in psoriatic 

patients and results. Finally, Section 5 concludes. 

 

2. The model selection techniques 

2.1. Autometrics 

The main pillar of this approach is the concept of GETS modeling: starting from a 

general dynamic statistical model which captures the main characteristics of the 

underlying data set, standard testing procedures are used to reduce its complexity by 

eliminating statistically insignificant variables, checking the validity of the reductions  

at every stage to ensure the congruence1 of the selected model. 

 Hendry and Krolzig (1999), and Krolzig and Hendry (2001) proposed an 

algorithm for automatic model selection, called PcGets. Using Monte Carlo 

simulation they studied the probabilities of PcGets recovering the data generating 

process (DGP), and they achieved good results. Campos et al. (2003) established the 

consistency of PcGets procedure.  

 Doornik (2009) introduced a third-generation algorithm, called Autometrics, 

based on the same principles. The new algorithm can also be applied in the general 

case of more variables than observations. Autometrics uses a tree-path search to detect 

and eliminate statistically insignificant variables. Such algorithm does not become 

stuck in a single-path, where a relevant variable is inadvertently eliminated, retaining 

other variables as proxies (e.g., as in stepwise regression). 
                                                
1 A congruent model should satisfy: (1) homoscedastic, independent errors; (2) strongly exogenous 
conditioning variables for the parameters of interest; (3) constant, invariant parameters of interest; (4) 
theory-consistent, identifiable structures; (5) data admissible formulations on accurate observations. 
For more details see Hendry and Nielsen (2007). 
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2.1.1. Methodology 

Autometrics has five basic stages: The first stage concerns the formulation of a linear 

model called the General Unrestricted Model (GUM); the second determines the 

estimation and testing of the GUM; the third is a pre-search process; the fourth is the 

tree-path search procedure; and the fifth is the selection of the final model.  

 The algorithm is described in detail in Doornik (2009). The main idea is to 

begin modeling with a linear model containing all candidate variables (GUM). The 

GUM is estimated by ordinary least squares and subjected to diagnostic tests. If there 

is statistically insignificant coefficient estimates, simpler models are estimated using a 

tree-path reduction search, and validated by diagnostic tests. If several terminal 

models are found, Autometrics tests them again their union. Rejected models are 

removed, and the union of the ‘surviving’ terminal models becomes a new GUM for 

another tree-path search iteration; then this entire search process continues and the 

terminal models are again tested against there union. If more than one model survives 

the encompassing tests, final choice is made by a pre-selected information criterion. 

 In the case where the number of candidate variables exceeds the number of 

observations, Autometrics applies the cross-block algorithm proposed in Hendry and 

Krolzig (2004), as described in the Appendix.  

 Autometrics is partially a black box. However, it allows the user to choose a 

number of settings to define modeling strategy, as the “target size” and the “tie-

breaker”. These will be briefly discussed in Section 3.  

 

2.2. LASSO and adaLASSO 

Shrinkage methods have become popular in the estimation of large dimensions 

models. Among these methods, the Least Absolute Shrinkage and Selection Operator 

(LASSO), proposed by Tibshirani (1996), has received particular attention because of 

the ability to shrink some parameters to zero, excluding irrelevant regressors. In other 

words, LASSO is a popular technique for simultaneous estimation and variable 

selection for linear models.  

 LASSO is able to handle more variables than observations and produces sparse 

models (Zhao and Yu, 2006, Meinshausen and Yu, 2009), which are easy to interpret. 

Moreover, the entire regularization path of the LASSO can be computed efficiently, 
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as shown in Efron et al. (2004), or more recently in Friedman et al. (2010).  

 Despite all these nice characteristics, Zhao and Yu (2006) noted that the LASSO 

estimator can only be consistent if the design matrix2 satisfies a rather strong 

condition denoted “Irrepresentable Condition”, which can be easily violated in the 

presence of highly correlated variables. Moreover, Zou (2006) noted that the oracle 

property in the sense of Fan and Li (2001)3 does not hold for LASSO. To amend these 

deficiencies, Zou (2006) proposes the adaptive LASSO (adaLASSO). 

 

2.2.1. The LASSO and adaLASSO estimators 

The LASSO technique is inspired in ridge regression, which is a standard technique 

for shrinking coefficients. However, contrarily to the latter, LASSO can set some 

coefficients to zero, resulting in an easily interpretable model. 

 Consider model estimation and variable selection in a linear regression 

framework. Suppose that y = (𝑦!,… ,𝑦!)!  is the response vector, and 

x! = (𝑥!!,… , 𝑥!")!, with 𝑗 = 1,… ,𝑝, are the predictor variables, possibly containing 

lags of y. 

 The LASSO estimator, introduced by Tibshirani (1996), is given by 

 

𝛽!"##$ = 𝑎𝑟𝑔min
!

y− x!𝛽!

!

!!!

!

+ 𝜆 𝛽!

!

!!!

, (1) 

where .  denotes the standard ℓ𝓁! -norm, and 𝜆  is a nonnegative regularization 

parameter. The second term in (1) is the so-called “ℓ𝓁! penalty”, which is crucial for 

the success of the LASSO. The LASSO continuously shrinks the coefficients towards 

0 as 𝜆 increases, and some coefficients are shrunk to exact 0 if 𝜆 is sufficiently large.

 Zou (2006) showed the LASSO estimator does not enjoy the oracle property, 

and proposed a simple and effective solution, the adaptive LASSO, or adaLASSO. 

While in LASSO the coefficients are equally penalized in the ℓ𝓁!  penalty in the 

adaLASSO each coefficient is assign with different weights. Zou (2006) showed that 

                                                
2 Design matrix: matrix of values of explanatory variables. 
3 Oracle property: the method both identifies the correct subset model and the estimates of non-zero 
parameters have the same asymptotic distribution as the ordinary least squares (OLS) estimator in a 
regression including only the relevant variables. 
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if the weights are data-dependent and cleverly chosen, then the adaLASSO can have 

the oracle property. 

 The adaLASSO estimator is given by 

 

𝛽!"!#$%%& = argmin
!

y− x!𝛽!

!

!!!

!

+ 𝜆 𝑤! 𝛽!

!

!!!

, (2) 

where 𝑤! = 1/ 𝛽!∗
!
, γ > 0, and 𝛽!∗ is an initial parameter estimate. As the sample 

size grows, the weights diverge (to infinity) for zero coefficients, whereas, for the 

non-zero coefficients, the weights converge to a finite constant. Zou (2006) suggests 

using the ordinary least squares (OLS) estimate of parameters as the initial parameter 

estimate 𝛽!∗. However, such estimator is not available when the number of candidate 

variables is larger than the number of observations. In this case, ridge regression can 

be used as an initial estimator. Recently, others estimators have been used as pre-

estimators for adaLASSO. In their study, Medeiros and Mendes (2016) used elastic 

net procedure, proposed by Zou and Hastie (2005), as pre-estimator, showing good 

results for adaLASSO performance. Although we also tested OLS (when available), 

ridge and LASSO as pre-estimator, elastic net delivered the most robust results in our 

simulation exercise as well.  

 A critical point in LASSO and adaLASSO literature is the selection of the 

regularization parameter  𝜆 and the weighting parameter  γ. Traditionally, one employs 

cross-validation maximizing some predictive measure. However, using information 

criteria, such as Bayesian Information Criterion (BIC), has shown good results. Zou et 

al. (2007), Wang et al. (2007) and Zhang et al. (2010) studied such method. Wang et 

al. (2007) compared LASSO with tuning parameters selected by cross-validation and 

BIC, and showed that the LASSO with BIC selector performs better in the 

identification of the correct model. Furthermore, using BIC as selection criteria for the 

LASSO and adaLASSO performs remarkably well in Monte Carlo simulations 

presented in the Section 3. 

 

2.3. Theoretical comparison 

To compare the two approaches present in this paper, we focus on estimator bias and 

the average mean squared error (MSE). If the methodologies correctly select the true 
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model, some results are expected concerning parameters estimates: 

 

1. The MSE and bias of Autometrics estimators should be close to zero, as 

Autometrics model is the ordinary least squares (OLS) estimation for the selected 

final model.  

2. LASSO and adaLASSO estimates should be smaller, in absolute values, than the 

population parameters, as they are shrinkage methods.  

3. Bias of LASSO estimators tends to be larger in absolute value than the bias of 

adaLASSO estimators, which are expect to be close to the ones produced by OLS. 

The weighting strategy of adaLASSO makes the penalty term small for the 

relevant variables.  

  

 Therefore, in theory, when the true model is included, Autometrics is expected 

to be slightly superior to adaLASSO and a lot to LASSO, due to its oracle property.  

The differences between methods will appear in their variable selection performances. 

  

3. Simulation experiment 

We aim to analyze and compare variable selection and forecasting performance of 

Autometrics, LASSO and adaLASSO methods in different scenarios based on the 

same linear model, varying three parameters: numbers of observations, relevant 

variables and candidate variables. The scenarios and comparison statistics follow 

Medeiros and Mendes (2016).  

 The procedure used to solve LASSO is the glmnet package for Matlab, also 

used for ridge regression and elastic net. The glmnet procedure implements a 

coordinate descent algorithm. For more details, see Friedman et al. (2010). For 

Autometrics we used the procedure in OxMetrics package. 

 Regarding variable selection performance, our goal is to compare ‘size’ and 

‘power’ of model selection process, namely the probability of inclusion in the final 

model of variables that do not (do) enter the DGP, i.e. retention frequency of 

irrelevant variables, and retention frequency of relevant variables.  

 We also analyze and compare the parameters estimates for each methodology. 

Finally, we compare the forecasting accuracy of models selected by each technique 
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and by the Oracle model, which is the ordinary least squares (OLS) estimator in a 

regression including only the relevant variables. 

 To illustrate our purpose we chose to use a simple statistical model with 

orthogonal regressors and independent data, for which the compared methods have 

already proved to work well and their asymptotic properties have already been proven, 

as mentioned in Section 2. The data generating process (DGP) used is a Gaussian 

linear regression model, where the strongly exogenous variables are Gaussian white-

noise processes:  

𝑦! = 𝛽!𝑥!,!

!

!!!

+ 𝜀! , 𝜀!~N 0,0.01 , 

𝒙! = 𝝊! , 𝝊!~N! 0, 𝐼!     for  𝑖 = 1,… ,𝑁, 

(3) 

where 𝜷 is a vector of ones of size 𝑞 and 𝒙! is a vector of 𝑞 relevant variables. 

 The GUM is a linear regression model, which includes the intercept, the q 

relevant variables of the DGP (3), and p-q irrelevant variables, which are also 

Gaussian white-noise processes. The GUM, given by (4), has p candidate variables 

and the constant,  

𝑦! = 𝜋! + 𝜋!!𝑥!!,!

!

!!!!

+ 𝜋!!𝑥!!,!

!!!

!!!!

+ 𝑢! , 𝑢!~N 0,𝜎! , (4) 

where 𝑘! is the index of relevant variables and 𝑘! is the index of irrelevant variables. 

 We simulate N = 50, 100, 300, 500 observations of DGP (4) for different 

combinations of number of candidate (p) and relevant (q) variables. We consider p = 

100, 300 and q = 5, 10, 15, 20. In other words, 32 different scenarios were evaluated 

in a Monte Carlo experiment with 1000 replications, combining parameters N, p and q. 

 Models are estimated by Autometrics, LASSO and adaLASSO methods. The 

tuning parameters of LASSO and adaLASSO, 𝜆 and γ, are selected by BIC, and 

elastic net is used as pre-estimator for adaLASSO. As to Autometrics, we compared 

two model strategies: Liberal and Conservative, i.e., “target size”, which means “the 

proportion of irrelevant variables that survives the simplification process” (Doornik, 

2009) was set to 5% (Liberal) and 1% (Conservative). For the final selection, BIC is 

used as “tie-breaker”, and the rest of Autometrics’s settings are defined by default. 
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3.1. Simulation results  

Results of the simulated scenarios are presented in Tables 1 to 6. For a descriptive 

statistics of the parameters estimates, Table 1 shows the average bias and the average 

mean squared error (MSE) for Autometrics (Liberal), Autometrics (Conservative), 

LASSO and adaLASSO estimators over the simulations and across candidate 

variables, i.e., 

 

Bias =
1

MC ∗ 𝑝 𝛽!,! − 𝛽!,!

!"

!!!

!

!!!

 (5) 

 

MSE =
1

MC ∗ 𝑝 𝛽!,! − 𝛽!,!
!

!"

!!!

!

!!!

, (6) 

where  

𝛽!,! =
1,                 if  1 ≤ 𝑖 ≤ 𝑞
0, if  𝑞 + 1 ≤ 𝑖 ≤ 𝑝                  ,∀𝑗 = 1…MC, (7) 

is the vector of size p of “true” values of the parameters of the model; p and q are the 

numbers of candidate and relevant variables, respectively; and MC is the number of 

Monte Carlo replications. In this experiment MC=1000.  

 Table 1 presents very low variance (MSE) and bias in most of scenarios. This is 

explained by the large number of zero estimates as the table shows an average value 

across coefficients (relevant and irrelevant). Empirical results are in agreement with 

the theory in results 1 to 3 of Section 2.3, as well as the bias (absolute values) and 

MSE decrease with the sample size (N). The bias of LASSO and adaLASSO are 

negative because the two shrinkage methods underestimate the 𝛽 ’s that, in the 

simulation experiment, are positives. The bias (absolute values) and MSE of LASSO 

and adaLASSO estimators increase with q. When 𝑝 > 𝑁, the average bias (absolute 

values) and variance of estimators increase, especially for LASSO and adaLASSO. 

However, the estimates are very precise in large samples, for all methods. 
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TABLE 1. PARAMETER ESTIMATES: DESCRIPTIVE STATISTICS 

Average bias and the average mean squared error (MSE), for each model selection technique, over all 
Monte Carlo simulations and parameter estimates, for each different sample size. p is the number of 
candidate variables and q is the number of relevant variables. 

 
N=50 

 
N=100 

 
N=300 

 
N=500 

q\p 100 300 
 

100 300 
 

100 300 
 

100 300 

 

average BIAS x 10-3 - Autometrics (Liberal) 
5 0.052 0.001 

 
-0.025 -0.022 

 
0.027 0.006 

 
-0.008 0.006 

10 0.007 -0.008 
 

-0.007 -0.011 
 

-0.010 -0.006 
 

-0.007 -0.002 
15 0.025 0.014 

 
0.005 0.018 

 
-0.005 -0.006 

 
-0.002 0.001 

20 -1.365 -5.758 
 

0.042 -0.018 
 

-0.005 0.005 
 

0.020 0.004 

 

average MSE x 10-3 - Autometrics (Liberal) 
5 0.205 0.055 

 
0.061 0.076 

 
0.011 0.017 

 
0.007 0.006 

10 0.256 0.063 
 

0.062 0.083 
 

0.013 0.017 
 

0.008 0.006 
15 0.322 0.072 

 
0.073 0.088 

 
0.015 0.018 

 
0.009 0.006 

20 3.052 10.892 
 

0.086 0.093 
 

0.016 0.018 
 

0.009 0.007 

 

average BIAS x 10-3 - Autometrics (Conservative) 
5 0.020 0.003 

 
-0.013 -0.001 

 
0.013 0.003 

 
-0.003 0.004 

10 0.000 -0.008 
 

0.014 -0.002 
 

0.002 -0.008 
 

-0.011 -0.005 
15 0.009 0.008 

 
0.006 0.006 

 
-0.010 -0.004 

 
0.001 0.002 

20 -4.973 -3.047 
 

0.014 -0.009 
 

0.005 -0.002 
 

0.018 0.000 

 

average MSE x 10-3 - Autometrics (Conservative) 
5 0.036 0.038 

 
0.016 0.020 

 
0.005 0.003 

 
0.003 0.002 

10 0.059 0.055 
 

0.020 0.015 
 

0.007 0.004 
 

0.004 0.003 
15 0.089 0.074 

 
0.028 0.019 

 
0.009 0.005 

 
0.005 0.003 

20 9.769 6.800 
 

0.036 0.026 
 

0.010 0.006 
 

0.006 0.003 

 

average BIAS x 10-3 - LASSO 
5 -1.561 -0.716 

 
-1.141 -0.476 

 
-0.648 -0.263 

 
-0.516 -0.204 

10 -4.337 -7.186 
 

-2.199 -0.984 
 

-1.231 -0.509 
 

-0.971 -0.387 
15 -16.571 -30.851 

 
-3.961 -1.763 

 
-2.813 -0.958 

 
-2.720 -0.910 

20 -66.433 -47.215 
 

-6.150 -3.191 
 

-4.547 -1.536 
 

-4.420 -1.476 

 

average MSE x 10-3 - LASSO 
5 0.079 0.048 

 
0.035 0.017 

 
0.011 0.005 

 
0.007 0.003 

10 0.372 5.353 
 

0.070 0.039 
 

0.020 0.009 
 

0.012 0.005 
15 8.476 34.590 

 
0.147 0.088 

 
0.061 0.021 

 
0.054 0.018 

20 66.917 58.235 
 

0.276 0.290 
 

0.117 0.040 
 

0.105 0.035 

 

average BIAS x 10-3 - adaLASSO 
5 -0.614 -0.423 

 
-0.315 -0.194 

 
-0.302 -0.103 

 
-0.302 -0.099 

10 -2.546 -5.428 
 

-0.947 -0.472 
 

-0.777 -0.257 
 

-0.647 -0.200 
15 -12.710 -24.434 

 
-2.749 -0.914 

 
-2.654 -0.883 

 
-2.573 -0.816 

20 -58.327 -38.909 
 

-4.289 -1.606 
 

-4.329 -1.455 
 

-4.245 -1.361 

 

average MSE x 10-3 - adaLASSO 
5 0.138 0.295 

 
0.008 0.004 

 
0.004 0.001 

 
0.003 0.001 

10 1.303 5.558 
 

0.025 0.012 
 

0.011 0.003 
 

0.007 0.002 
15 9.914 29.961 

 
0.089 0.030 

 
0.058 0.019 

 
0.051 0.016 

20 64.345 51.362 
 

0.166 0.130 
 

0.112 0.038 
 

0.101 0.032 
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 Tables 2 to 5 present variable selection results for each model selection 

technique. Several related statistics are reported: Panel (a) presents the fraction of 

replications where the correct model has been selected, i.e., all relevant variables 

included and all irrelevant regressors excluded from the final model; Panel (b) shows 

the fraction of replications where the relevant variables are all included; Panel (c) 

presents the fraction of relevant variables included; Panel (d) shows the fraction of 

irrelevant variables excluded; Panel (e) presents the average number of included 

variables; Panel (f) shows the average number of included irrelevant variables. The 

following comments point out the main results in Tables 2 to 5: 

 

1. adaLASSO presents the best performance in finding the correct sparsity pattern in 

most of the simulated scenarios. When N=300 and N=500, adaLASSO selects the 

correct model every time.  

2. When 𝑝 > 𝑁, LASSO and adaLASSO performance decreases dramatically as q 

increases. In some extreme cases, adaLASSO includes more variables than 

observations. 

3. Autometrics (Conservative) shows better performance than Autometrics (Liberal). 

As expected by definition of “target size”, the former includes less irrelevant 

variables than the latter. 

4. Autometrics (Conservative) shows best variable selection performance when 

N=50. 

5. Performance of all methodologies improves with the sample size (N) and gets 

worse as the number of candidate variables (p) increases.  

6. In most scenarios, performance of model selection methodologies gets worse as 

the number of relevant variables (q) increases, especially when 𝑝 > 𝑁. However, 

when 𝑝 < 𝑁, LASSO and adaLASSO show an improvement in their performance 

for q=15 and q=20, explained by a feature of glmnet algorithm4.  

  

 Figure 1 shows the plot for Panel (a), (b), (c) and (c) of Tables 2 to 5: correct 

                                                
4 The glmnet algorithm estimates different models for a decreasing sequence of λ’s. Values of λ are 
data driven and the maximum λ is the minimum value for which all coefficients estimates are zero. 
Different models are estimated for the entire sequence of λ and we use the BIC for the final model 
selection. The glmnet algorithm has also stopping criteria that can reduce the number of estimated 
models. When q=15 and q=20 the algorithm do not estimate models for the entire sequence of λ 
preventing the selection of over fitted models that minimize the BIC. For more details see glmnet 
vignette by Hastie, T. and Qian, J. (http://www.stanford.edu/~hastie/glmnet/glmnet_alpha.html). 
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sparsity pattern, true model included, fraction of relevant variables included and 

fraction of irrelevant variables excluded. It is clear the superiority of adaLASSO to 

others model selection methods, except the case of N=50, where the best method is 

Autometrics (Conservative).  

 Finally, in order to compare predictive performance of the model selection 

methods, Table 6 reports the root mean squared error for out-of-sample forecasts 

(RMSFE) for Autometrics (Liberal and Conservative), LASSO, adaLASSO and 

Oracle models. We consider a total of 100 out-of-sample observations. Main results of 

Table 6 are summarized in the following comments: 

 

1. As expected, all methodologies improve their performance as the sample size 

increases, and the number of relevant (q) and candidate (p) variables decreases.  

2. When 𝑝 < 𝑁 and q is small, adaLASSO and Autometrics (Conservative) present 

similar performance to the Oracle model.  

3. For q=15 or q=20, Autometrics (Conservative) presents lower RMSFE than 

adaLASSO, especially when 𝑝 > 𝑁. 
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TABLE 2. MODEL SELECTION: DESCRIPTIVE STATISTICS 
Autometrics (Liberal) 

Statistics concerning model selection for each different sample size. Panel (a) - fraction of replications 
where the correct model has been selected. Panel (b) - fraction of replications where the relevant 
variables are all included. Panel (c) - fraction of relevant variables included. Panel (d) - fraction of 
irrelevant variables excluded. Panel (e) - average number of included variables. Panel (f) - average 
number of included irrelevant variables. p is the number of candidate variables and q is the number of 
relevant variables. 

Autometrics (Liberal) 

 N=50  N=100  N=300  N=500 
q\p 100 300  100 300  100 300  100 300 

            
 Panel (a): Correct Sparsity Pattern 

5 0.011 0  0.018 0  0.006 0  0.008 0 
10 0.008 0  0.030 0  0.010 0  0.006 0 
15 0.006 0  0.033 0  0.004 0  0.007 0 
20 0.009 0  0.032 0  0.012 0  0.013 0 

            
 Panel (b): True Model Included 

5 1 1  1 1  1 1  1 1 
10 1 1  1 1  1 1  1 1 
15 1 1  1 1  1 1  1 1 
20 0.980 0.776  1 1  1 1  1 1 

            
 Panel (c): Fraction of Relevant Variables Included 

5 1 1  1 1  1 1  1 1 
10 1 1  1 1  1 1  1 1 
15 1 1  1 1  1 1  1 1 
20 0.994 0.922  1 1  1 1  1 1 

            
 Panel (d): Fraction of Irrelevant Variables Excluded 

5 0.820 0.883  0.910 0.769  0.950 0.912  0.948 0.958 
10 0.810 0.898  0.922 0.771  0.950 0.917  0.946 0.959 
15 0.812 0.914  0.923 0.780  0.946 0.918  0.946 0.958 
20 0.825 0.925  0.918 0.791  0.947 0.923  0.946 0.958 

            
 Panel (e): Number of Included Variables 

5 22.056 39.532  13.544 73.173  9.728 31.041  9.979 17.337 
10 27.103 39.577  17.026 76.438  14.542 34.139  14.870 21.981 
15 30.990 39.526  21.575 77.559  19.551 38.326  19.602 26.905 
20 33.882 39.419  26.595 78.381  24.227 41.518  24.306 31.846 

            
 Panel (f): Number of Included Irrelevant Variables 

5 17.056 34.532  8.544 68.173  4.728 26.041  4.979 12.337 
10 17.103 29.577  7.026 66.438  4.542 24.139  4.870 11.981 
15 15.990 24.526  6.575 62.559  4.551 23.326  4.602 11.905 
20 14.005 20.973  6.595 58.381  4.227 21.518  4.306 11.846 
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TABLE 3. MODEL SELECTION: DESCRIPTIVE STATISTICS 
Autometrics (Conservative) 

Statistics concerning model selection for each different sample size. Panel (a) - fraction of replications 
where the correct model has been selected. Panel (b) - fraction of replications where the relevant 
variables are all included. Panel (c) - fraction of relevant variables included. Panel (d) - fraction of 
irrelevant variables excluded. Panel (e) - average number of included variables. Panel (f) - average 
number of included irrelevant variables. p is the number of candidate variables and q is the number of 
relevant variables. 

Autometrics (Conservative) 

 N=50  N=100  N=300  N=500 
q\p 100 300  100 300  100 300  100 300 

            
 Panel (a): Correct Sparsity Pattern 

5 0.425 0.091  0.447 0.115  0.357 0.201  0.341 0.075 
10 0.398 0.054  0.523 0.206  0.391 0.209  0.365 0.085 
15 0.369 0.029  0.513 0.182  0.378 0.163  0.384 0.068 
20 0.368 0.023  0.529 0.144  0.430 0.147  0.413 0.073 

            
 Panel (b): True Model Included 

5 1 1  1 1  1 1  1 1 
10 1 1  1 1  1 1  1 1 
15 1 1  1 1  1 1  1 1 
20 0.911 0.839  1 1  1 1  1 1 

            
 Panel (c): Fraction of Relevant Variables Included 

5 1 1  1 1  1 1  1 1 
10 1 1  1 1  1 1  1 1 
15 1 1  1 1  1 1  1 1 
20 0.966 0.946  1 1  1 1  1 1 

            
 Panel (d): Fraction of Irrelevant Variables Excluded 

5 0.986 0.966  0.987 0.976  0.988 0.991  0.988 0.989 
10 0.984 0.959  0.990 0.988  0.988 0.991  0.988 0.989 
15 0.983 0.953  0.990 0.987  0.987 0.989  0.988 0.989 
20 0.982 0.955  0.990 0.985  0.988 0.989  0.988 0.989 

            
 Panel (e): Number of Included Variables 

5 6.355 14.977  6.213 12.158  6.169 7.797  6.144 8.293 
10 11.401 21.911  10.883 13.476  11.088 12.753  11.037 13.125 
15 16.452 28.299  15.878 18.707  16.083 18.190  16.056 18.148 
20 20.767 31.550  20.816 24.338  20.937 23.148  20.978 23.142 

            
 Panel (f): Number of Included Irrelevant Variables 

5 1.355 9.977  1.213 7.158  1.169 2.797  1.144 3.293 
10 1.401 11.911  0.883 3.476  1.088 2.753  1.037 3.125 
15 1.452 13.299  0.878 3.707  1.083 3.190  1.056 3.148 
20 1.452 12.628  0.816 4.338  0.937 3.148  0.978 3.142 
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TABLE 4. MODEL SELECTION: DESCRIPTIVE STATISTICS 
LASSO 

Statistics concerning model selection for each different sample size. Panel (a) - fraction of replications 
where the correct model has been selected. Panel (b) - fraction of replications where the relevant 
variables are all included. Panel (c) - fraction of relevant variables included. Panel (d) - fraction of 
irrelevant variables excluded. Panel (e) - average number of included variables. Panel (f) - average 
number of included irrelevant variables. p is the number of candidate variables and q is the number of 
relevant variables. 

LASSO 

 N=50  N=100  N=300  N=500 
q\p 100 300  100 300  100 300  100 300 

            
 Panel (a): Correct Sparsity Pattern 

5 0.015 0.007  0.076 0.056  0.199 0.147  0.285 0.205 
10 0.001 0  0.007 0.001  0.074 0.035  0.082 0.043 
15 0 0  0.003 0  0.401 0.146  0.865 0.664 
20 0 0  0.001 0  0.522 0.172  0.936 0.828 

            
 Panel (b): True Model Included 

5 1 1  1 1  1 1  1 1 
10 0.999 0.780  1 1  1 1  1 1 
15 0.937 0.049  1 1  1 1  1 1 
20 0.378 0.002  1 1  1 1  1 1 

            
 Panel (c): Fraction of Relevant Variables Included 

5 1 1  1 1  1 1  1 1 
10 1 0.963  1 1  1 1  1 1 
15 0.994 0.740  1 1  1 1  1 1 
20 0.927 0.575  1 1  1 1  1 1 

            
 Panel (d): Fraction of Irrelevant Variables Excluded 

5 0.918 0.960  0.957 0.984  0.976 0.992  0.981 0.993 
10 0.866 0.905  0.920 0.960  0.957 0.982  0.962 0.986 
15 0.780 0.862  0.904 0.938  0.986 0.989  0.998 0.998 
20 0.663 0.859  0.885 0.906  0.991 0.992  0.999 0.999 

            
 Panel (e): Number of Included Variables 

5 12.821 16.934  9.053 9.712  7.235 7.428  6.800 6.930 
10 22.038 37.173  17.164 21.532  13.866 15.243  13.383 14.049 
15 33.579 50.524  23.135 32.535  16.202 18.109  15.170 15.510 
20 45.540 51.067  29.228 46.181  20.719 22.330  20.067 20.200 

            
 Panel (f): Number of Included Irrelevant Variables 

5 7.821 11.934  4.053 4.712  2.235 2.428  1.800 1.930 
10 12.039 27.540  7.164 11.532  3.866 5.243  3.383 4.049 
15 18.674 39.429  8.135 17.535  1.202 3.109  0.170 0.510 
20 26.991 39.565  9.228 26.181  0.719 2.330  0.067 0.200 
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TABLE 5. MODEL SELECTION: DESCRIPTIVE STATISTICS 
adaLASSO 

Statistics concerning model selection for each different sample size. Panel (a) - fraction of replications 
where the correct model has been selected. Panel (b) - fraction of replications where the relevant 
variables are all included. Panel (c) - fraction of relevant variables included. Panel (d) - fraction of 
irrelevant variables excluded. Panel (e) - average number of included variables. Panel (f) - average 
number of included irrelevant variables. p is the number of candidate variables and q is the number of 
relevant variables. 

adaLASSO 

 N=50  N=100  N=300  N=500 
q\p 100 300  100 300  100 300  100 300 

            
 Panel (a): Correct Sparsity Pattern 

5 0.974 0.779  0.987 0.998  1 1  1 1 
10 0.901 0.316  0.982 0.995  1 1  1 1 
15 0.592 0.003  0.999 0.994  1 1  1 1 
20 0.103 0.001  1 0.913  1 1  1 1 

            
 Panel (b): True Model Included 

5 1 1  1 1  1 1  1 1 
10 0.999 0.789  1 1  1 1  1 1 
15 0.909 0.262  1 1  1 1  1 1 
20 0.390 0.226  1 0.997  1 1  1 1 

            
 Panel (c): Fraction of Relevant Variables Included 

5 1 1  1 1  1 1  1 1 
10 1 0.960  1 1  1 1  1 1 
15 0.989 0.762  1 1  1 1  1 1 
20 0.905 0.628  1 1  1 1  1 1 

            
 Panel (d): Fraction of Irrelevant Variables Excluded 

5 0.976 0.788  1 1  1 1  1 1 
10 0.927 0.725  1 1  1 1  1 1 
15 0.861 0.683  1 1  1 1  1 1 
20 0.742 0.686  1 0.998  1 1  1 1 

            
 Panel (e): Number of Included Variables 

5 7.256 67.577  5.050 5.019  5 5  5 5 
10 16.585 89.412  10.032 10.032  10 10  10 10 
15 26.648 101.668  15.001 15.017  15 15  15 15 
20 38.750 100.427  20.000 20.623  20 20  20 20 

            
 Panel (f): Number of Included Irrelevant Variables 

5 2.256 62.577  0.050 0.019  0 0  0 0 
10 6.586 79.813  0.032 0.032  0 0  0 0 
15 11.813 90.234  0.001 0.017  0 0  0 0 
20 20.660 87.860  0 0.627  0 0  0 0 
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FIGURE 1. MODEL SELECTION: COMPARISON 

Panel (a), (b), (c) and (d) for Autometrics-Lib (red), Autometrics-Cons (yellow), LASSO (green) and 
adaLASSO (blue). p is the number of candidate variables, q is the number of relevant regressors and N 
is the sample size. 
 
 

 
 
 

 
 
 

 
 

 
Documents de travail du Centre d'Economie de la Sorbonne - 2013.80R (Version révisée)



 
 

18 

 
 

 

TABLE 6. FORECASTING: RMSFE 

Root mean squared forecast error (RMSFE), for each model selection technique, for each different 
sample size. p is the number of candidate variables and q is the number of relevant variables. 

 N=50  N=100  N=300  N=500 
q\p 100 300  100 300  100 300  100 300 

 RMSFE - Autometrics (Liberal) 
5 0.172 0.163  0.126 0.181  0.105 0.123  0.103 0.108 

10 0.186 0.170  0.127 0.186  0.106 0.122  0.104 0.108 
15 0.203 0.177  0.130 0.190  0.107 0.123  0.104 0.109 
20 0.285 1.002  0.136 0.195  0.107 0.123  0.105 0.110 

 RMSFE - Autometrics (Conservative) 
5 0.116 0.145  0.108 0.126  0.102 0.105  0.101 0.103 

10 0.125 0.165  0.110 0.119  0.103 0.106  0.102 0.103 
15 0.137 0.178  0.113 0.125  0.104 0.107  0.102 0.104 
20 0.427 0.737  0.116 0.132  0.105 0.108  0.103 0.105 

 RMSFE - LASSO 
5 0.133 0.155  0.116 0.123  0.105 0.107  0.103 0.104 

10 0.202 0.875  0.130 0.147  0.110 0.113  0.105 0.107 
15 0.628 3.164  0.157 0.190  0.127 0.127  0.124 0.124 
20 2.330 4.173  0.193 0.280  0.147 0.148  0.143 0.143 

 RMSFE – adaLASSO 
5 0.123 0.216  0.104 0.106  0.102 0.102  0.101 0.101 

10 0.219 0.927  0.112 0.117  0.105 0.105  0.103 0.103 
15 0.609 2.892  0.137 0.137  0.125 0.125  0.122 0.122 
20 2.219 3.858  0.161 0.175  0.145 0.146  0.141 0.140 

 RMSFE - Oracle 
5 0.105 0.105  0.103 0.103  0.101 0.101  0.100 0.100 

10 0.112 0.112  0.105 0.105  0.102 0.102  0.101 0.101 
15 0.120 0.120  0.108 0.108  0.102 0.102  0.101 0.102 
20 0.129 0.130  0.112 0.112  0.103 0.103  0.102 0.102 
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4. Application: Epidermal thickness in psoriatic patients  

Psoriasis is a common chronic inflammatory skin disease, which the cause is not 

entirely understood. Clinically, thickened epidermis is a major factor to measure 

psoriasis severity.  

 With recent evolution of high-throughput technologies devoted to medical and 

translational sciences, genomics databases are increasingly available, and the 

development of high-dimensional statistical models becomes essential. In this 

scenario, variable selection is a significant step, and some methodologies have already 

been applied to genomics. Tian et al. (2012), Tian and Suárez-Fariñas (2013) and 

Correa da Rosa et al. (2017) show applications of regularization algorithms for genes 

selection in Psoriasis’ genomic data. 

 A set of histological measurements of epidermal thickness in a cohort of 609 

psoriatic patients reported in Suárez-Fariñas et al. (2012)5 and a subcohort of 65 

patients in Kim et al. (2015) were analysed and showed evidence of association 

between gene expression levels and thick and thin plaque psoriasis phenotypes. 

Despite the fact that the authors have identified psoriasis pathways with difference 

between these two phenotypes, the quantitative epidermal thickness phenotype was 

not used as an outcome. Additionally, enrichment analysis was only carried out for 

psoriasis pathways. 

 In this section, we propose fill these gaps with the application of the two 

described approaches. The epidermal thickness and microarray gene expressions from 

54675 genes measured in a set of 70 patients analysed in Suárez-Fariñas et al. (2012) 

will be used as dependent and regressors respectively. Due to the fact that Autometrics 

does not support a General Unrestricted Model (GUM) with such a large number of 

candidate variables, we used only a restricted set of 870 gene expressions6 as 

regressors. The GUM is a linear model written in eq. (8). 

                                                
5 We want to thank Mayte Suárez-Fariñas from the Icahn School of Medicine, Mount Sinai, New York, 
USA, for providing the data and all the help with the genetic language. 
6 An initial set of 54675 candidate variables (microarray gene expressions at probesets) was reduced to 
a set of 870 genes by using moderated t-test statistics in linear mixed-effects models as implemented in 
limma package available in R/Bioconductor software. 

𝑦! = 𝛽!𝑥!,!

!

!!!

+ 𝜀! ,          𝑖 = 1,… ,𝑁 

𝜀!~IN 0,𝜎! , 

(8) 
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where 𝑝 is 870 candidate variables. 

 We used 80% of the data for specification and estimation in-sample (56 

patients) and the final 20% for out-of-sample forecasting (14 patients). We evaluated 

1000 permutations on the data observations, creating 1000 different in-sample and 

out-of-sample sets. The results presented next are the average statistics of the 1000 

fitted models. 

 

4.1.  Results 

We considered GUM in eq. (8) for specification and estimation by Autometrics, 

LASSO and adaLASSO methods, and evaluate one-step ahead out-of-sample forecast. 

 Out-of-sample forecasting is evaluated in terms of two measures: root mean 

squared forecast error (RMSFE) and an out-of-sample R2 statistics, defined as: 

 

𝑅!!" = 1−
𝑦! − 𝑦! !

𝑦! − 𝑦 !
!∈!

  , (9) 

where Ο is the out-of-sample observations set and 𝑦 is the historical mean of the in-

sample set. Contrarily to usual R2, the out-of-sample R2 may be negative. If 𝑅!!" is 

positive, then the selected model has lower average mean squared prediction error 

than the historical average. 

 Table 7 presents results concerning estimation (in-sample) and forecasting (out-

of-sample) for model selection methods. With respect to variable selection and 

estimation, Table 7 reports the average number of parameters and the average in-

sample R2, for selected final models. Concerning one-step ahead out-of-sample 

forecasting, Table 7 presents the average root mean squared forecast error (RMSFE), 

and average out-of-sample R2, defined in eq. (9). The following comments point out 

the main results:  

 

1. The out-of-sample forecasting performance of LASSO and adaLASSO models is 

far superior to Autometrics (Liberal and Conservative) models. 

2. The LASSO model presents the best predictive performance, i.e., the lowest 

RMSFE and largest 𝑅!!". 

 

 

 
Documents de travail du Centre d'Economie de la Sorbonne - 2013.80R (Version révisée)



 
 

21 

TABLE 7. PSORIASIS FORECASTING: ACCURACY STATISTICS 

Estimation (in-sample) and forecasting (out-of-sample) accuracy average measures for each model 
selection technique: number of parameters; in-sample R2; one-step ahead root mean squared forecast 
error (RMSFE), and out-of-sample R2. 

 

 In order to measure the statistical significance of the differences between the 

forecast errors of the tested models we employ the modified Diebold-Mariano test, a 

more robust version, proposed by Harvey et al. (1997). We apply the test with 

different functions for the out-of-sample forecast: absolute error and squared error. 

We tested the null hypothesis of "equal accuracy" of models with a reference.  

 The test statistics and the p-value are presented in Table 8. The test shows that 

LASSO and adaLASSO present out-of-sample absolute (p-values 10.5% and 10.1%) 

and squared errors (p-values 13.6% and 13.2%) significantly lower than Autometrics 

(Conservative), and at a significant level of 13.2% and 12.5%, respectively, present 

out-of-sample absolute error lower than Autometrics (Liberal). We can say that 

adaLASSO and LASSO have more predictive power than Autometrics. 

 

TABLE 8. TEST OF PREDICTIVE ACCURACY 

The table reports the modify Diebold and Mariano test statistic and p-values (in bracket) for all models, 
for absolute error and squared error. Models in columns are compared with models in rows (reference). 

 absolute error squared error	
  
        

 
adaLASSO Aut (lib) Aut (cons) 

 
adaLASSO Aut (lib) Aut (cons) 

LASSO 0.208 -1.166 -1.316 
 

0.245 -0.986 -1.145 
 (0.419) (0.132) (0.105)  (0.405) (0.171) (0.136) 
adaLASSO - -1.202 -1.341 

 
- -1.028 -1.170 

  (0.125) (0.101)   (0.161) (0.132) 

Aut (lib) - - -0.147  - - -0.130 
   (0.443)    (0.449) 

 

 Each fitted model provided us a list of genes ranked by the frequency of 

selection. Biological validation of these lists was performed with Gene Set 

Enrichment Analysis (GSEA) run on a set of 257 Psoriasis pathways curated by the 

 Estimation  Forecasting 
 No. Parameters     𝑅!!"   RMSFE 𝑅!!" 

      
LASSO 54.611 0.998  0.746 0.377 
adaLASSO 51.963 0.998  0.740 0.354 
Autometrics (Liberal) 42.954 1.000  0.931 -0.037 
Autometrics (Conservative) 36.659 0.995  0.963 -0.120 
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Laboratory of Investigative Dermatology at The Rockefeller University. Table 9 

shows the top 3-associated psoriasis’ gene sets in each fitted model as well as the p-

value adjusted by the Benjamini-Hochberg method (FDR). 

 Table 9 shows concordance in the top association for LASSO and adaLASSO 

and the same happened for Autometric’s algorithms. The Autometrics Liberal and 

Conservative have generated ranked gene lists that are significantly enriched in the 

up-regulated genes found in Bowcock (2001). This result agrees with one of the 

pathways reported in Kim (2015) when analyzing differences in thick and thin 

psoriasis.  

 

TABLE 9. BIOLOGICAL VALIDATION OF RANKED GENES 

Top 3-associated Gene Sets with ranked lists of genes obtained by the different fitted models.  
 
 LASSO adaLASSO Autometrics (Lib) Autometrics (Cons) 
 

(1) 
 
Genes down-
regulated in BCC 
and Kaposi’s 
sarcoma (p=0.004*) 

 
Genes down-
regulated in 
psoriasis detected by 
NGS (p=0.136) 

 
Genes up-regulated 
in Psoriasis by 
Bowcock (2001) 
(p=0.026*) 

 
Genes up-regulated 
in Psoriasis by 
Bowcock (2001) 
(p=0.003*) 

 
(2) 

 
Genes down-
regulated in 
psoriasis detected by 
NGS (p=0.118) 

 
Genes down-
regulated in BCC 
and Kaposi’s 
sarcoma (p=1.000) 

 
Genes up-regulated 
in Atopic Dermatitis 
lesional skin vs. 
non-lesional skin  
(p=0.548) 

 
IL-17 and TNF-a 
additive effect in 
keratinocytes 
(p=0.416) 

 
(3) 

 
Genes down-
regulated in 
Psoriasis by 
Bowcock (2001)  
(p=0.742) 

 
Genes down-
regulated in MPH 
LPS and IFNg 
(p=1.000) 

 
Genes down-
regulated in 
Keratinocytes and 
IFNg in Swindell 
(p=0.674) 

 
Genes down-
regulated in 
Keratinocytes and 
IFNg in Swindell 
(p=0.511) 

BCC – Basal Cell Carcinoma 
NGS – Next Generation Sequencing 
* Pathways significantly enriched considering False-Discovery Rate (FDR) <0.05 
 

5. Conclusions 

In this paper we compare two approaches for model selection considering different 

aspects and scenarios: Autometrics, using Liberal and Conservative strategies, and 

LASSO/adaLASSO.  

 Considering a very simple setup, we conduct a Monte Carlo simulation 

experiment where the DGP is a linear regression with orthogonal variables and 

independent data. Three aspects of the performance are considered: variable selection, 
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parameter estimation and predictive power, considering different sample sizes (N), 

different number of relevant variables (q) and candidate variables (p). Simulation 

results show that, as expected, all methods improve their performance as sample size 

increases and the number of relevant and candidate variables decreases. Regarding 

parameter estimation, Autometrics presents the lowest absolute average bias and 

variance, as expected by the definition of OLS estimation when the correct model is 

selected. LASSO and adaLASSO present similar results when N increases, however, 

for small sample sizes, adaLASSO presents lower parameters average absolute bias 

and variance.  

 Regarding variable selection, adaLASSO presents superior performance in most 

of the simulated scenarios, except for N=50, where Autometrics (Conservative) 

presents better results, especially if the number of relevant variables increases. When 

N=300 and N=500, adaLASSO always selects the correct model whereas Autometrics 

(Conservative) tends to include some irrelevant variables.  

 Concerning out-of-sample forecasting, for large values of q, even when 

adaLASSO finds the correct sparsity pattern, Autometrics (Conservative) presents 

better predictive performance. This is explained by the bias generated by the 

penalization term in adaLASSO that has stronger effect in RMSFE as q increases. For 

small values of q and 𝑝 < 𝑁, adaLASSO and Autometrics (Conservative) have similar 

performance to the Oracle model.  

 A general conclusion is that, for a linear regression with orthogonal variables, 

the adaLASSO has superior performance in model selection than LASSO and 

Autometrics for almost every case (N=100, N=300 and N=500). However, for small 

samples (N=50 in our experiment), it is preferable to use Autometrics (Conservative).  

 In the application to psoriasis forecasting, Autometrics cannot handle all the 

genomic expressions as candidate variables in a feasible time. For that reason, the 

initial set of 54675 variables was reduced to a set of 870 genes. Results showed that 

LASSO and adaLASSO are much superior in predictive power than Autometrics.  
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Appendix 

Cross-block algorithm proposed in Hendry and Krolzig (2004) in the case where the 

number of candidate variables exceeds the number of observations in Autometrics: 

 

1.  dividing the set of variables into subsets (blocks), each of which contains less 

than half of the observations, 

2.  applying Autometrics model selection to each combination of the blocks (GUMs). 

The algorithm yields a terminal model for each GUM,  

3.  taking the union of the terminal models derived from each GUM, forming a new 

single union model. 

4.  If the number of variables in this model is less than the number of observations, 

model selection proceeds from this new union model (new unique GUM), 

otherwise, restarts the cross-block algorithm with the new set of variables. 
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