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Abstract

We study a stochastic model of influence where agents have “yes” or “no” inclinations on
some issue, and opinions may change due to mutual influence among the agents. Each agent
independently aggregates the opinions of the other agents and possibly herself. We study
influence processes modeled by ordered weighted averaging operators, which are anonymous:
they only depend on how many agents share an opinion. For instance, this allows to study
situations where the influence process is based on majorities, which are not covered by the
classical approach of weighted averaging aggregation. We find a necessary and sufficient
condition for convergence to consensus and characterize outcomes where the society ends
up polarized. Our results can also be used to understand more general situations, where
ordered weighted averages are only used to some extent. Furthermore, we apply our results
to fuzzy linguistic quantifiers, i.e., expressions like “most” or “at least a few”.

Keywords: Influence, anonymity, ordered weighted averaging operator, convergence,
consensus, fuzzy linguistic quantifier
JEL: C7, D7, D85

1. Introduction

In the present work we study an important and widespread phenomenon which affects
many aspects of human life – the phenomenon of influence. Being undoubtedly present,
e.g., in economic, social and political behaviors, influence frequently appears as a dynamic
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process. Since social networks play a crucial role in the formation of opinions and the diffu-
sion of information, it is not surprising that numerous scientific works investigate different
dynamic models of influence in social networks.1

Grabisch and Rusinowska (2010, 2011) investigate a one-step deterministic model of in-
fluence, where agents have “yes” or “no” inclinations (beliefs) on a certain issue and their
opinions may change due to mutual influence among the agents. Grabisch and Rusinowska
(2013) extend it to a dynamic stochastic model based on aggregation functions, which deter-
mine how the agents update their opinions depending on the current opinions in the society.
Each agent independently aggregates the opinions of the other agents and possibly herself.
This aggregation determines the probability that “yes” is her updated opinion after one step
of influence (and otherwise it is “no”). The other agents only observe this updated opin-
ion. Since any aggregation function is allowed when updating the opinions, the framework
covers numerous existing models of opinion formation. The only restrictions come from the
definition of an aggregation function: unanimity of opinions persists (boundary conditions)
and influence is positive (nondecreasingness). Grabisch and Rusinowska (2013) provide a
general analysis of convergence in the aggregation model and find all terminal classes, which
are sets of states the process will not leave once they have been reached. Such a class could
only consist of one single state, e.g., the states where we have unanimity of opinions (“yes”-
and “no”-consensus) or a state where the society is polarized, i.e., some group of agents
finally says “yes” and the rest says “no”.

Due to the generality of the model of influence based on arbitrary aggregation functions
introduced in Grabisch and Rusinowska (2013), it would be difficult to obtain a deeper insight
into some particular phenomena of influence by using this model. This is why the analysis
of particular classes of aggregation functions and the exhaustive study of their properties
are necessary for explaining many social and economic interactions. One of them concerns
anonymous social influence which is particularly present in real-life situations. Internet,
accompanying us in everyday life, intensifies enormously anonymous influence: when we
need to decide which washing machine to buy, which hotel to reserve for our eagerly awaited
holiday, we will certainly follow all anonymous customers and tourists that have expressed
their positive opinion on the object of our interest. In the present paper we examine a
particular way of aggregating the opinions and investigate influence processes modeled by
ordered weighted averaging operators (ordered weighted averages), commonly called OWA
operators and introduced in Yager (1988), because they appear to be a very appropriate tool
for modeling and analyzing anonymous social influence. Roughly speaking, OWA operators
are similar to the ordinary weighted averages (weighted arithmetic means), with the essential
difference that weights are not attached to agents, but to the ranks of the agents in the input
vector. As a consequence, OWA operators are in general nonlinear, and include as particular
cases the median, the minimum and the maximum, as well as the (unweighted) arithmetic
mean.

We show that OWA operators are the only aggregation functions that are anonymous

1For an overview of the vast literature on influence we refer, e.g., to Jackson (2008).

2



in the sense that the aggregation does only depend on how many agents hold an opinion
instead of which agents do so. Accordingly, we call a model anonymous if the transitions
between states of the process do only depend on how many agents share an opinion. We
show that the concept is consistent: if all agents use anonymous aggregation functions, then
the model is anonymous. However, as we show by example, a model can be anonymous
although agents do not use anonymous functions. In particular, anonymous models allow to
study situations where the influence process is based on majorities, which means that agents
say “yes” if some kind of majority holds this opinion.2 These situations are not covered by
the classical (commonly used) approach of weighted averaging aggregation.

In the main part, we consider models based on OWA operators. We discuss the different
types of terminal classes and characterize terminal states, i.e., singleton terminal classes. The
condition is simple: the OWA operators must be such that all opinions persist after mutual
influence. In our main result, we find a necessary and sufficient condition for convergence to
consensus. The condition says that there must be a certain number of agents such that if at
least this number of agents says “yes”, it is possible that after mutual influence more agents
say “yes” and if less than that number of agents says “yes”, it is possible that after mutual
influence more agents say “no”. In other words, we have a cascade that leads either to
the “yes”- or “no”-consensus. Additionally, we also present an alternative characterization
based on influential coalitions. We call a coalition influential on an agent if the latter follows
(adopts) the opinion of this coalition – given all other agents hold the opposite opinion – with
some probability.3 Furthermore, we generalize the model based on OWA operators and allow
agents to use a (convex) combination of OWA operators and general aggregation functions
(OWA-decomposable aggregation functions). In particular, this allows us to combine OWA
operators and ordinary weighted averaging operators. As a special case of this, we study
models of mass psychology (also called herding behavior) in an example. We find that
this model is equivalent to a convex combination of the majority influence model and a
completely self-centered agent. We also study an example on important agents where agents
trust some agents directly that are important for them and otherwise follow a majority
model. Furthermore, we show that the sufficiency part of our main result still holds.4

As an application of our model we study fuzzy linguistic quantifiers, which were in-
troduced in Zadeh (1983) and are also called soft quantifiers. Typical examples of such
quantifiers are expressions like “almost all”, “most”, “many” or “at least a few”; see Yager
and Kacprzyk (1997). For instance, an agent could say “yes” if “most of the agents say
‘yes’ ”.5 Yager (1988) has shown that for each quantifier we can find a unique corresponding
OWA operator.6 We find that if the agents use quantifiers that are similar in some sense,

2Examples are simple majorities as well as unanimity of opinions, among others.
3Note that although Grabisch and Rusinowska (2013) have already studied conditions for convergence

to consensus and other terminal classes in the general model, our results are inherently different due to our
restriction to anonymous aggregation functions.

4When applying the condition to the OWA operators in the convex combinations.
5Note that the formalization of such quantifiers is clearly to some extent ambiguous.
6With the only restriction that, due to our model, the quantifier needs to represent positive influence.
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then they reach a consensus. Moreover, this result holds even if some agents deviate to
quantifiers that are not similar in that sense. Loosely speaking, quantifiers are similar if
their literal meanings are “close”, e.g., “most” and “almost all”. We also give examples to
provide some intuition.

We terminate this section with a very brief overview of the related literature. One of the
main differences between our work and the existing models on opinion formation lies in the
way agents are assumed to aggregate the opinions. Except, e.g., Grabisch and Rusinowska
(2013) many related works assume a convex combination as the way of aggregating opinions.
Additionally, while we consider “yes”/“no” opinions, in some models of influence, like in the
seminal model of opinion and consensus formation due to DeGroot (1974), the opinion of
an agent is a number in [0, 1]. Moreover, in DeGroot (1974) every agent aggregates the
opinions (beliefs) of other agents through an ordinary weighted average. The interaction
among agents is captured by the social influence matrix. Several scholars have analyzed the
DeGroot framework and proposed different variations of it, in which the updating of opinions
can vary in time and along circumstances. However, most of the influence models usually
assume a convex combination as the way of aggregating opinions. Golub and Jackson (2010)
examine convergence of the social influence matrix and reaching a consensus, and the speed
of convergence of beliefs, among other things. DeMarzo et al. (2003) consider a model where
an agent may place more or less weight on her own belief over time. Another framework
related to the DeGroot model is presented in Asavathiratham (2000) and López-Pintado
and Watts (2008). Büchel et al. (2011) introduce a generalization of the DeGroot model
by studying the transmission of cultural traits from one generation to the next one. Büchel
et al. (2012) analyze an influence model in which agents may misrepresent their opinion
in a conforming or counter-conforming way. Calvó-Armengol and Jackson (2009) study an
overlapping-generations model in which agents, that represent some dynasties forming a
community, take yes-no actions.

López-Pintado (2008, 2012) study the spreading of behavior in society and investigate
the role of social influence therein. While these papers focus on the social network and use
simple diffusion rules that are the same for all agents, we do not impose a network structure
and allow for heterogeneous agents. Van den Brink and his co-authors study power measures
in weighted directed networks, see, e.g., van den Brink and Gilles (2000); Borm et al. (2002).
A different approach to influence, i.e., a method based on simulations, is presented in Mäs
(2010). Morris (2000) analyzes the phenomenon of contagion which occurs if an action can
spread from a finite set of individuals to the whole population.

Another stream of related literature concerns models of Bayesian and observational learn-
ing where agents observe choices over time and update their beliefs accordingly, see, e.g.,
Banerjee (1992), Ellison (1993), Bala and Goyal (1998, 2001), Gale and Kariv (2003) and
Banerjee and Fudenberg (2004). This literature differs from the influence models mentioned
above as in the latter the choices depend on the influence of others. Mueller-Frank (2010)
considers continuous aggregation functions with a special property called “constricting” and
studies convergence applied to non-Bayesian learning in social networks. Galeotti and Goyal
(2009) model networks in terms of degree distributions and study influence strategies in the
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presence of local interaction.
The literature on OWA operators comprises, in particular, applications to multi-criteria

decision-making. Jiang and Eastman (2000), for instance, apply OWA operators to geo-
graphical multi-criteria evaluation, and Malczewski and Rinner (2005) present a fuzzy lin-
guistic quantifier extension of OWA in geographical multi-criteria evaluation. Using ordered
weighted averages in (social) networks is quite new, although some scholars have already
initiated such an application; see Cornelis et al. (2010) who apply OWA operators to trust
networks. To the best of our knowledge, ordered weighted averages have not been used to
model social influence yet.

The remainder of the paper is organized as follows. In Section 2 we present the model
and basic definitions. Section 3 introduces the notion of anonymity. Section 4 concerns the
convergence analysis in the aggregation model with OWA operators. In Section 5 we apply
our results on ordered weighted averages to fuzzy linguistic quantifiers. Section 6 contains
some concluding remarks. The longer proofs of some of our results are presented in the
appendix.

2. Model and Notation

Let N := {1, . . . , n}, n ≥ 2, be the set of agents that have to make a “yes” or “no” deci-
sion on some issue. Each agent i ∈ N has an initial opinion xi ∈ {0, 1} (called inclination)
on the issue, where “yes” is coded as 1. Let us denote by 1S the characteristic vector of
S ⊆ N , i.e., (1S)j = 1 if j ∈ S and (1S)j = 0 otherwise. We can represent the vector of
initial opinions by such a characteristic vector. We say that S is the initial state or coalition
if 1S is the vector of initial opinions. In other words, the initial state consists of the agents
that have the inclination “yes”. We sometimes denote a state S = {i, j, k} simply by ijk and
its cardinality or size by s. During the influence process, agents may change their opinion
due to mutual influence among the agents. They update their opinion simultaneously at
discrete time instants.

Definition 1 (Aggregation function). An n-place aggregation function is any mapping
A : {0, 1}n → [0, 1] satisfying

(i) A(0, . . . , 0) = 0, A(1, . . . , 1) = 1 (boundary conditions) and

(ii) if x ≤ x′ then A(x) ≤ A(x′) (nondecreasingness).

To each agent i we assign an aggregation function Ai that determines the way she reacts
to the opinions of the other agents and herself.7 Note that by using these functions we model
positive influence only. Our aggregation model A = (A1, . . . , An)

T is stochastic,8 the output
Ai(1S) ∈ [0, 1] of agent i’s aggregation function is her probability to say “yes” after one step

7Note that we use a modified version of aggregation functions by restricting the opinions to be from
{0, 1} instead of [0, 1]. We discuss this issue later on in Example 1.

8Superscript T denotes the transpose of a vector.
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of influence when the current state is 1S. The other agents do not know these probabilities,
but they observe the realization of the updated opinions. Note that we do not explicitly
model the realization of the updated opinions, which is for agent i a (biased) coin toss with
probability Ai(1S) of “yes” and probability 1−Ai(1S) of “no”. Therefore, we can represent
the realized and observed opinions (after one step of influence) again by a state S ′ ⊆ N such
that i ∈ S ′ with probability Ai(1S).

The aggregation functions our paper is mainly concerned with are ordered weighted av-
eraging operators or simply ordered weighted averages. This class of aggregation functions
was first introduced by Yager (1988).

Definition 2 (Ordered weighted average). We say that an n-place aggregation function
A is an ordered weighted average A = OWAw with weight vector w, i.e., 0 ≤ wi ≤ 1 for
i = 1, . . . , n and

∑n
i=1wi = 1, if A(x) =

∑n
i=1wix(i) for all x ∈ {0, 1}n, where x(1) ≥ x(2) ≥

. . . ≥ x(n) are the ordered components of x.

The definition of an aggregation function ensures that the two consensus states – the
“yes”-consensus {N} where all agents say “yes” and the “no”-consensus {∅} where all agents
say “no” – are fixed points of the aggregation model A = (A1, . . . , An)

T . We call them
trivial terminal classes. Before we go on, let us give an example of an ordered weighted
average already presented in Grabisch and Rusinowska (2013), the majority influence model.
Furthermore, we also use this example to argue why we do restrict opinions to be either “yes”
or “no”.

Example 1 (Majority). A straightforward way of making a decision is based on majority
voting. If the majority of the agents says “yes”, then all agents agree to say “yes” after
mutual influence and otherwise, they agree to say “no”. We can model simple majorities as
well as situations where more than half of the agents are needed to reach the “yes”-consensus.
Let m ∈ {⌊n

2
⌋+ 1, . . . , n}. Then, the majority aggregation model is given by

Maj
[m]
i (x) := x(m) for all i ∈ N.

All agents use an ordered weighted average where wm = 1. Obviously, the convergence to
consensus is immediate.

To give some intuition for our restriction to opinions lying in {0, 1}, note that in this
example, allowing for opinions in [0, 1] means that the outcome only depends on x(m). And
the only way to avoid this is the restriction to {0, 1}.9

Furthermore, let us look at some examples apart from the majority model.

Example 2 (Some ordered weighted averages). Consider some agent i ∈ N = {1, 2, . . . , 5}
who uses an ordered weighted average, Ai = OWAw.

9Note that also a change of the used ordered weighted average does not help, e.g., Maj
[m]
i (x) :=

∑m

j=1
1
m
x(j) for all i ∈ N . The reason is that in this case, it is possible that an agent accepts with positive

probability even if less than m agents have the inclination to accept with positive probability.

6



(i) If w =
(

0, 0, 1
3
, 1
3
, 1
3

)T
, then this agent will say “no” for sure if there is not even a

simple majority in favour of the issue. Otherwise, she will say “yes” with a positive
probability, which increases by 1

3
with each additional agent being in favour of the issue.

(ii) If w =
(

1
3
, 2
3
, 0, 0, 0

)T
, then this agent will already say “yes” if only one agent does so

and she will be in favour for sure whenever at least two agents say “yes”. This could
represent a situation where it is perfectly fine for the agent if only a few of the others
are in favour of the issue.

(iii) If w =
(

1
2
, 0, 0, 0, 1

2

)T
, then this agent will say “yes” with probability 1

2
if neither all

agents say “no” nor all agents say “yes”. This could be interpreted as an agent who is
indifferent and so decides randomly.

We have already seen that there always exist the two trivial terminal classes. In general,
a terminal class is defined as follows:

Definition 3 (Terminal class). A terminal class is a collection of states C ⊆ 2N that forms
a strongly connected and closed component, i.e., for all S, T ∈ C, there exists a path10 from
S to T and there is no path from S to T if S ∈ C, T /∈ C.

We can decompose the state space into disjoint terminal classes – also called absorbing
classes – C1, . . . , Cl ⊆ 2N , for some l ≥ 2, and a set of transient states T = 2N\(

⋃l
k=1 Ck).

Let us now define the notion of an influential agent (Grabisch and Rusinowska, 2013).

Definition 4 (Influential agent). (i) An agent j ∈ N is “yes”-influential on i ∈ N if
Ai(1{j}) > 0.

(ii) An agent j ∈ N is “no”-influential on i ∈ N if Ai(1N\{j}) < 1.

The idea is that j is “yes”-(or “no”-)influential on i if j’s opinion to say “yes” (or “no”)
matters for i in the sense that there is a positive probability that i follows the opinion that
is solely held by j. Analogously to influential agents, we can define influential coalitions
(Grabisch and Rusinowska, 2013).

Definition 5 (Influential coalition). (i) A nonempty coalition S ⊆ N is “yes”-influential
on i ∈ N if Ai(1S) > 0.

(ii) A nonempty coalition S ⊆ N is “no”-influential on i ∈ N if Ai(1N\S) < 1.

Making the assumption that the probabilities of saying “yes” are independent among
agents11 and only depend on the current state, we can represent our aggregation model by
a time-homogeneous Markov chain with transition matrix B = (bS,T )S,T⊆N , where

bS,T = Πi∈TAi(1S)Πi/∈T (1−Ai(1S)).

10We say that there is a path from S to T if there is K ∈ N and states S = S1, S2, . . . , SK−1, SK = T

such that Ai(Sk) > 0 for all i ∈ Sk+1 and Ai(Sk) < 1 otherwise, for all k = 1, . . . ,K − 1.
11This assumption is not limitative, and correlated opinions may be considered as well. In the latter case,

only the next equation giving bS,T will differ.
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Hence, the states of this Markov chain are the states or coalitions of the agents that currently
say “yes” in the influence process. Thus, bS,T denotes the probability, given the current state
S ⊆ N , that the process is in state T ⊆ N after one step of influence. Note that for each state
S, the transition probabilities to states T are represented by a certain row of B. Notice also
that this Markov chain is neither irreducible nor recurrent since it has at least two terminal
classes – also called communication classes in the language of Markov chains.

3. Anonymity

We establish the notions of anonymous aggregation functions and models. In what
follows, we show that the notions of anonymity are consistent and that anonymous functions
are characterized by OWA operators.

Definition 6 (Anonymity). (i) We say that an n-place aggregation function A is anony-
mous if for all x ∈ {0, 1}n and any permutation σ : N → N , A(x1, . . . , xn) =
A(xσ(1), . . . , xσ(n)).

(ii) Suppose B is obtained from an aggregation model with aggregation functions A1, . . . , An.
We say that the model is anonymous if for all s, t ∈ {0, 1, . . . , n},

∑

T⊆N:

|T |=t

bS,T =
∑

T⊆N:

|T |=t

bS′,T for all S, S ′ ⊆ N of size s.

For an agent using an anonymous aggregation function, only the size of the current
coalition matters. Similarly, in models that satisfy anonymity, only the size of the current
coalition matters for the further influence process. In other words, it matters how many
agents share an opinion, but not which agents do so. Let us now confirm that our notions
of anonymity are consistent in the sense that models where agents use anonymous functions
are anonymous. Moreover, we characterize anonymous aggregation functions by ordered
weighted averages.

Proposition 1. (i) An aggregation model with anonymous aggregation functions A1, . . . , An

is anonymous.
(ii) An aggregation function A is anonymous if and only if it is an ordered weighted average.

Proof. We omit the proof of (i) as well as the necessity part of (ii). For the sufficiency
part, suppose that A is an anonymous aggregation function, i.e., for all x ∈ {0, 1}n and
any permutation σ : N → N , A(x1, . . . , xn) = A(xσ(1), . . . , xσ(n)). This is equivalent to
A(1S) = A(1S′) for all S, S ′ ⊆ N such that |S| = |S ′|. Hence, there exists w ∈ Rn such that
A(1S) =

∑

i∈N wi(1S)(i) for all S ⊆ N . It follows by the definition of aggregation functions,
that wi ≥ 0 for all i ∈ N (nondecreasingness) and

∑n
i=1wi = 1 (boundary condition), which

finishes the proof.

Note that the converse of the first part does not hold, a model can be anonymous although
not all agents use anonymous aggregation functions as we now show by example. We study
the phenomenon of mass psychology, also called herding behavior, considered in Grabisch
and Rusinowska (2013).
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Example 3 (Mass psychology). Mass psychology or herding behavior means that if at
least a certain number m ∈ {⌊n

2
⌋ + 1, . . . , n} of agents share the same opinion, then these

agents attract others, who had a different opinion before. We assume that an agent changes
her opinion in this case with probability λ ∈ (0, 1). In particular, we consider n = 3 agents
and a threshold of m = 2. This means whenever only two agents are of the same opinion,
the third one might change her opinion. This corresponds to the following mass psychology
aggregation model:

Mass
[2]
i (x) = λx(2) + (1− λ)xi for all i ∈ N.

Agents are “yes”- and “no”-influential on themselves and coalitions of size two or more
are “yes”- and “no”-influential on all agents. The model gives the following digraph of the
Markov chain:

∅

1

2

3

12

13

23

N

λ

1− λ

λ 1− λ

λ

1− λ

1− λ

λ

1− λ λ

1− λ

λ

The aggregation functions are not anonymous since agents consider their own opinion with
weight 1−λ > 0. However, the model turns out to be anonymous, there is no differentiation
between different coalitions of the same size, as can be seen from the digraph.

An immediate consequence of Proposition 1 is that models where agents use OWA op-
erators are anonymous.

Corollary 1. Aggregation models with aggregation functions Ai = OWAwi, i ∈ N , are anony-
mous.

4. Convergence Analysis

In this section, we study the convergence of aggregation models where the influence
process is determined by OWA operators, i.e., by anonymous aggregation functions. In
Grabisch and Rusinowska (2013, Theorem 2), the authors show that there are three different
types of terminal classes in the general model. To terminal classes of the first type, singletons
{S}, S ⊆ N , we usually refer to as terminal states. They represent the two consensus
states, {N} and {∅}, as well as situations where the society is eventually polarized: agents
within the class say “yes”, while the others say “no”. Classes of the second type are called
cyclic terminal classes, their states form a cycle of nonempty sets {S1, . . . , Sk} of any length
2 ≤ k ≤

(

n
⌊n/2⌋

)

(and therefore they are periodic of period k) with the condition that all sets
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are pairwise incomparable (by inclusion).12 In other words, given the process has reached a
state within such a class, the transition to the next state is deterministic. And the period
of the class determines after how many steps a state is reached again.

Terminal classes of the third type are called regular terminal classes. They are collections
R of nonempty sets with the property that R = R1 ∪ · · ·∪Rp, where each subcollection Rj

is an interval {S ∈ 2N | Sj ⊆ S ⊆ Sj ∪Kj}, with Sj 6= ∅, Sj ∪Kj 6= N , and at least one Kj

is nonempty.

Example 4 (Regular terminal class). Consider an aggregation model with three agents
and aggregation functions A1(x) = x2, A2(x) = x1 and A3(x) = (x1 + x2)/2. Then,
{{1}, {1, 3}}∪{{2}, {2, 3}} is a regular terminal class. The model gives the following digraph
of the Markov chain:

∅

3 1

23

12

13

2

N

1
2

1
2

1
2

1
2

If such a class only consists of a single interval R1 = {S ∈ 2N | S1 ⊆ S ⊆ S1 ∪ K1},
where S1 6= ∅ and S1 ∪ K1 6= N , then we can interpret this terminal class as a situation
where agents in S1 finally decided to say “yes” and agents outside S1∪K1 finally decided to
say “no”, while the agents in K1 change their opinion non-deterministically forever. With
more than one interval, the interpretation is more complex and depends on the transitions
between the intervals. Reaching an interval Rj means that the process attains one of its
states, i.e., the agents in Sj say “yes” for sure and with some probability, also some agents
in Kj do so.

Our aim is to investigate conditions for these outcomes under anonymous influence. We
also relax our setup and study the case where agents use ordered weighted averages only to
some extent. Our results turn out to be – due to the restriction to anonymous aggregation
functions – inherently different from those in the general model, see Grabisch and Rusinowska
(2013). We first consider influential coalitions and discuss (non-trivial) terminal classes. In
the following, we derive a characterization of convergence to consensus and finally provide
a generalization of our setting.

Due to anonymity, it is not surprising that the influence of a coalition indeed solely
depends on the number of individuals involved.

Proposition 2. Consider an aggregation model with aggregation functions Ai = OWAwi, i ∈
N .

(i) A coalition of size s, where 0 < s ≤ n, is “yes”-influential on i ∈ N if and only if
min{k ∈ N | wi

k > 0} ≤ s.

12Sets S1, . . . , Sk ⊆ N are called pairwise incomparable (by inclusion) if for any distinct Si, Sj , i, j ∈
{1, . . . , k}, both Si 6⊆ Sj and Si 6⊇ Sj .
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(ii) A coalition of size s, where 0 < s ≤ n, is “no”-influential on i ∈ N if and only if
max{k ∈ N | wi

k > 0} ≥ n + 1− s.

Proof. Let S ⊆ N have size 0 < s ≤ n and be “yes”-influential on i ∈ N , i.e.,

Ai(1S) =

s
∑

k=1

wi
k > 0 ⇔ min{k ∈ N | wi

k > 0} ≤ s.

The second part is analogous.

The result on influential agents follows immediately.

Corollary 2. Consider an aggregation model with aggregation functions Ai = OWAwi, i ∈ N .
Then, all agents j ∈ N are “yes”-(“no”-)influential on i ∈ N if and only if wi

1 > 0 (wi
n > 0).

Note that this means that either all agents are “yes”-(or “no”-)influential on some agent
i ∈ N or none. Next, we study non-trivial terminal classes. We characterize terminal states,
i.e., states where the society is polarized (except for the trivial terminal states), and show
that – due to anonymity – there cannot be a cycle.

Proposition 3. Consider an aggregation model with aggregation functions Ai = OWAwi, i ∈
N .

(i) A state S ⊆ N of size s is a terminal state if and only if
∑s

k=1w
i
k = 1 for all i ∈ S

and
∑s

k=1w
i
k = 0 otherwise.

(ii) There does not exist any cycle.

Proof. The first part is obvious. For the second part, assume that there is a cycle {S1, . . . , Sk}
of length 2 ≤ k ≤

(

n
⌊n/2⌋

)

. This implies that there exists l ∈ {1, . . . , k} such that sl ≤ sl+1,
where Sk+1 ≡ S1. Thus,

sl
∑

j=1

wi
j = 1 for all i ∈ Sl+1

and hence Sl+1 ⊆ Sl+2, which is a contradiction to pairwise incomparability by inclusion,
see Grabisch and Rusinowska (2013, Theorem 2).

For regular terminal classes, note that an agent i ∈ N such that wi
1 = 1 blocks a “no”-

consensus and an agent j ∈ N such that wj
n = 1 blocks a “yes”-consensus – given that

the process has not yet arrived at a consensus. Therefore, since there cannot be any cycle,
these two conditions, while ensuring that there is no other terminal state, give us a regular
terminal class with anonymous aggregation functions.

Example 5 (Anonymous regular terminal class). Consider an aggregation model with
aggregation functions Ai = OWAwi, i ∈ N = {1, 2, 3}. Let agent 1 block a “no”-consensus
and agent 3 block a “yes”-consensus, i.e., w1

1 = w3
3 = 1. Furthermore, choose w2

1 = w2
3 =

1
2
.

Then, {{1}, {1, 2}} is a regular terminal class. We have A(1{1}) = A(1{1,2}) = (1 1
2
0)T .

11



It is left to find conditions that avoid both non-trivial terminal states and regular terminal
classes and hence ensure that the society ends up in a consensus. The following result
characterizes the non-existence of non-trivial terminal classes. The idea is that – due to
anonymity – for reaching a consensus, there must be some threshold such that whenever the
size of the coalition is at least equal to this threshold, there is some probability that after
mutual influence, more agents will say “yes”. And whenever the size is below this threshold,
there is some probability that after mutual influence, more agents will say “no”.

Theorem 1. Consider an aggregation model with aggregation functions Ai = OWAwi, i ∈ N .
Then, there are no other terminal classes than the trivial terminal classes if and only if there
exists k̄ ∈ {1, . . . , n} such that both:

(i) For all k = k̄, . . . , n− 1, there are distinct agents i1, . . . , ik+1 ∈ N such that

k
∑

j=1

wil
j > 0 for all l = 1, . . . , k + 1.

(ii) For all k = 1, . . . , k̄ − 1, there are distinct agents i1, . . . , in−k+1 ∈ N such that

k
∑

j=1

wil
j < 1 for all l = 1, . . . , n− k + 1.

The proof is in the appendix. Note that Theorem 1 implies a straightforward – but very
strict – sufficient condition:

Remark 1. Consider an aggregation model with aggregation functions Ai = OWAwi, i ∈
N . Then, there are no other terminal classes than the trivial terminal classes if wi

1 >
0 for all i ∈ N (k̄ = 1), or wi

n > 0 for all i ∈ N (k̄ = n).

We get a more intuitive formulation of Theorem 1 by using influential coalitions.

Corollary 3. Consider an aggregation model with aggregation functions Ai = OWAwi, i ∈ N .
Then, there are no other terminal classes than the trivial terminal classes if and only if there
exists k̄ ∈ {1, . . . , n} such that both:

(i) For all k = k̄, . . . , n − 1, there are k + 1 distinct agents such that coalitions of size k
are “yes”-influential on each of them.

(ii) For all k = 1, . . . , k̄− 1, there are n− k + 1 distinct agents such that coalitions of size
n− k are “no”-influential on each of them.

In more general situations, the agents’ behavior might only partially be determined
by ordered weighted averages. We consider agents who use aggregation functions that are
decomposable in the sense that they are (convex) combinations of ordered weighted averages
and general aggregation functions.

12



Definition 7 (OWA-decomposable aggregation function). We say that an n-place ag-
gregation function A is OWAw-decomposable, if there exists λ ∈ (0, 1] and an n-place aggre-
gation function A′ such that A = λOWAw + (1− λ)A′.

Such aggregation functions do exist since convex combinations of aggregation functions
are again aggregation functions. Note that these functions are, in general, not anonymous
any more, though. However, the mass psychology influence model presented in Section 3 –
to which we will come back later on – is an example of an anonymous model that uses these
decomposable aggregation functions. To provide some intuition for why these functions are
useful, let us consider the class where ordered weighted averages are combined with weighted
averages.13

Example 6 (OWA-/WA-decomposable aggregation functions). Consider a convex
combination of an ordered weighted average and a weighted average,

A = λOWAw + (1− λ)WAw′,

where λ ∈ (0, 1) and w,w′ are any weight vectors. This allows us to somehow combine our
model with the classical model by DeGroot.14 We can interpret this as follows: to some
extent λ, an agent updates her opinion anonymously to account, e.g., for majorities within
her social group. But she might as well value her own opinion somehow – like in the mass
psychology model – or some agents might be really important for her such that she wants to
put also some weight directly on them, as we show in Example 8.

As it turns out, the sufficiency part of Theorem 1 also holds if agents use such decompos-
able aggregation functions. If the ordered weighted average components of the decomposable
functions fulfill the two conditions of Theorem 1, then the agents reach a consensus.15

Corollary 4. Consider an aggregation model with OWAwi-decomposable aggregation func-
tions Ai, i ∈ N . Then, there are no other terminal classes than the trivial terminal classes
if there exists k̄ ∈ {1, . . . , n} such that both:

(i) For all k = k̄, . . . , n− 1, there are distinct agents i1, . . . , ik+1 ∈ N such that

k
∑

j=1

wil
j > 0 for all l = 1, . . . , k + 1.

(ii) For all k = 1, . . . , k̄ − 1, there are distinct agents i1, . . . , in−k+1 ∈ N such that

k
∑

j=1

wil
j < 1 for all l = 1, . . . , n− k + 1.

13We say that an n-place aggregation function A is a weighted average A = WAw with weight vector w,
i.e., 0 ≤ wi ≤ 1 for i = 1, . . . , n and

∑n

i=1 wi = 1, if A(x) =
∑n

i=1 wixi for all x ∈ {0, 1}n.
14With the restriction that, differently to the DeGroot model, opinions are in {0,1}.
15It is clear that, in general, the necessity part does not hold since convergence to consensus may as well

be (partly) ensured by the other component.
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Let us finally apply the concept of decomposable aggregation functions to more specific
examples. As it turns out, the example on mass psychology combines the majority influence
model and a completely self-centered agent.

Example 7 (Mass psychology, continued). We have seen in Example 3 that for pa-
rameters n = 3, m = 2 and λ ∈ (0, 1), we get the following mass psychology aggregation
model:

Mass
[2]
i (x) = λx(2) + (1− λ)xi for all i ∈ N.

This aggregation function is OWAw-decomposable with w2 = 1 and by Corollary 4, taking
k̄ = 2, we see that the group eventually reaches a consensus. This example is a particular
case of Example 6 and furthermore, it is equivalent to a convex combination of the majority
influence model and a completely self-centered agent:

Mass
[2]
i (x) = λMaj

[2]
i (x) + (1− λ)xi for all i ∈ N.

Hence, λ could be interpreted as a measure for how “democratically” – or, to put it the other
way, “egoistically” – an agent behaves.

Finally, we study an example where agents use the majority influence model, but also
put some weight directly on agents that are important for them. We study a case that turns
out to be as well anonymous and furthermore, it is in some sense equivalent to the example
on mass psychology.

Example 8 (Important agents). Although agents might follow somehow a majority in-
fluence model, there might still be some important agents, e.g., very good friends or agents
with an excellent reputation, whom they would like to trust directly as well. In particular,
we consider n = 3 agents and that each agent follows to some extent λ ∈ (0, 1) the sim-
ple majority model. Moreover, for each agent, the agent with the next higher index has a
relative importance of 1 − λ for her.16 This corresponds to the following important agents
aggregation model:

Imp
[2;i+1]
i (x) = λMaj

[2]
i (x) + (1− λ)xi+1 for all i ∈ N.

Agent i + 1 is “yes”- and “no”-influential on agent i for all i ∈ N and coalitions of size
two or more are “yes”- and “no”-influential on all agents. The model gives the following
digraph of the Markov chain:

∅

1

2

3

12

13

23

N

λ

1− λλ

1− λ

λ 1− λ

λ1− λ

λ

1− λ λ

1− λ

16We consider 4 ≡ 1.
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From the digraph, we can see that the model is anonymous although the aggregation functions
are not.17 Furthermore, when abstracting from the identity of the agents, i.e., considering
only the size of a state, this digraph is identical to the one of the mass psychology example.
Therefore, we can say that the two models are anonymously equivalent: starting in a state
of size one or two, both models stay within the set of states of the same size with probability
1− λ and converge to the “no”- or “yes”-consensus, respectively, with probability λ.

We also analyze the speed of convergence to terminal classes as well as the probabilities
of convergence to different classes in the general model studied by Grabisch and Rusinowska
(2013) and in our case of anonymous models. For the latter, we find that the computational
demand reduces a lot compared to the general case. For details on this we refer to the
working paper (Förster et al. (2012)).

5. Applications to fuzzy linguistic quantifiers

Instead of being sharp edged, e.g., as in the majority model, the threshold of an agent
initially saying “no” for changing her opinion might be rather “soft”. For instance, she could
change her opinion if “most of the agents say ‘yes’ ”. This is called a soft majority and
phrases like “most” or “many” are so-called fuzzy linguistic quantifiers. Furthermore, soft
minorities are also possible, e.g., “at least a few of the agents say ‘yes’ ”. Our aim is to apply
our findings on ordered weighted averages to fuzzy linguistic quantifiers. Mathematically,
we define the latter by a function which maps the agents’ proportion that says “yes” to the
degree to which the quantifier is satisfied, see Zadeh (1983).

Definition 8 (Fuzzy linguistic quantifier). A fuzzy linguistic quantifier Q is defined by
a nondecreasing function

µQ : [0, 1] → [0, 1] such that µQ(0) = 0 and µQ(1) = 1.

Furthermore, we say that the quantifier is regular if the function is strictly increasing on
some interval (c, c̄) ⊆ [0, 1] and otherwise constant.

Fuzzy linguistic quantifiers like “most” are ambiguous in the sense that it is not clear
how to define them exactly mathematically. For example, one could well discuss which
proportion of the agents should say “yes” for the quantifier “most” to be fully satisfied.
Nevertheless, let us give some typical examples, see Yager and Kacprzyk (1997).

Example 9 (Typical quantifiers). We define

(i) Qaa = “almost all” by

µQaa
(x) :=







1, if x ≥ 9
10

5
2
x− 5

4
, if 1

2
< x < 9

10

0, otherwise
,

17Note that this is a consequence of our choice of important agents. For most choices, the model would
not be anonymous, e.g., if two agents would be important for each other and one of them would as well be
important for the third one.
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(ii) Qmo = “most” by

µQmo
(x) :=







1, if x ≥ 4
5

5
2
x− 1, if 2

5
< x < 4

5

0, otherwise
,

(iii) Qma = “many” by

µQma
(x) :=







1, if x ≥ 3
5

5
2
x− 1

2
, if 1

5
< x < 3

5

0, otherwise
,

(iv) Qaf = “at least a few” by

µQaf
(x) :=

{

1, if x ≥ 3
10

10
3
x, otherwise

.

Note that these quantifiers are regular. For every quantifier, there exists a corresponding
ordered weighted average in the sense that the latter represents the quantifier.18 We can
find its weights as follows.

Lemma 1 (Yager, 1988). Let Q be a fuzzy linguistic quantifier defined by µQ. Then, the
weights of its corresponding ordered weighted average OWAQ are given by

wk = µQ

(

k

n

)

− µQ

(

k − 1

n

)

, for k = 1, . . . , n.

In other words, the weights wk of the corresponding ordered weighted average are equal
to the increase of µQ between (k− 1)/n and k/n, i.e., since µQ is nondecreasing, all weights
are nonnegative and by the boundary conditions, it is ensured that they sum up to one. We
are now in the position to apply our results to regular quantifiers. We find that if all agents
use such a quantifier, then under some similarity condition, the group will finally reach a
consensus. This condition says that there must be a common point where all the fuzzy
quantifiers are strictly increasing. This implies that there is a common non-zero weight of
the corresponding OWA operators, which turns out to be sufficient to satisfy the condition
of Theorem 1. Moreover, we show that the result still holds if some agents deviate to a
quantifier that is not similar in that sense. In the following, we denote the quantifier of an
agent i by Qi.

Proposition 4. Consider an aggregation model with aggregation functions Ai = OWAQi, i ∈
N .

(i) If Qi is regular for all i ∈ N and ∩i∈N (ci, c̄i) 6= ∅, then there are no other terminal
classes than the trivial terminal classes.

18Note that this is due to our definition. The conditions in Definition 8 ensure that there exists such an
ordered weighted average. In general, one can define quantifiers also by other functions, cf. Zadeh (1983).
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(ii) Suppose mini∈N ci > 0, then the result in (i) still holds if less than ⌈c̄dn⌉ agents deviate
to a regular quantifier Qd such that c̄d < mini∈N ci.

(iii) Suppose maxi∈N c̄i < 1, then the result in (i) still holds if less than ⌈(1− cd)n⌉ agents
deviate to a regular quantifier Qd such that maxi∈N c̄i < cd.

The proof is in the appendix. Note that this result can be generalized such that the
deviating agents might also use different quantifiers. We can also characterize terminal
states in a model where agents use regular quantifiers. We find that S is a terminal state
if and only if the quantifiers of the agents in S are already fully satisfied at s/n, while the
quantifiers of the other agents are not satisfied at all at this point.

Proposition 5. Consider an aggregation model with aggregation functions Ai = OWAQi, i ∈
N . If Qi is regular for all i ∈ N , then a state S ⊆ N of size s is a terminal state if and
only if

max
i∈S

c̄i ≤
s

n
≤ min

i∈N\S
ci.

Proof. Suppose S ⊆ N of size s is a terminal state. By Proposition 3, we know that this is
equivalent to

s
∑

k=1

wi
k = 1 for all i ∈ S and

s
∑

k=1

wi
k = 0 otherwise

⇔µQi(s/n) = 1 for all i ∈ S and µQi(s/n) = 0 otherwise

⇔max
i∈S

c̄i ≤
s

n
≤ min

i∈N\S
ci.

To provide some intuition, let us come back to Example 9 and look at the implications
our findings have on the quantifiers defined therein.

Example 10 (Typical quantifiers, continued). Consider an aggregation model with
aggregation functions Ai = OWAQi , i ∈ N .

(i) If Qi ∈ {Qaa,Qmo,Qma} for all i ∈ N , then there are no other terminal classes than
the trivial terminal classes. The result still holds if less than ⌈ 3

10
n⌉ agents deviate to

Qaf.

(ii) If Qi ∈ {Qma,Qaf} for all i ∈ N , then there are no other terminal classes than the
trivial terminal classes. The result still holds if less than ⌈1

2
n⌉ agents deviate, each of

them either to Qaa or Qmo.

(iii) A state S ⊆ N of size s is a terminal state if Qi = Qaf for all i ∈ S, Qi = Qaa

(Qi ∈ {Qaa,Qmo}) otherwise and 3
10

≤ s
n
≤ 1

2
(≤ 2

5
).
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6. Conclusion

We study a stochastic model of influence where agents aggregate opinions using OWA
operators, which are the only anonymous aggregation functions. As one would expect, an
aggregation model is anonymous if all agents use these functions. However, our example
on mass psychology shows that a model can be anonymous although agents do not use
anonymous functions.

In the main part of the paper, we characterize influential coalitions, show that cyclic
terminal classes cannot exist due to anonymity and characterize terminal states. Our main
result provides a necessary and sufficient condition for convergence to consensus. It turns
out that we can express this condition in terms of influential coalitions. Due to our restric-
tion to anonymous functions, these results are inherently different to those obtained in the
general case by Grabisch and Rusinowska (2013). We also extend our model to decomposable
aggregation functions. In particular, this allows to combine OWA operators with the classi-
cal approach of ordinary weighted averages. This class of decomposed functions comprises
our example on mass psychology: it is equivalent to a convex combination of the majority
influence model and a completely self-centered agent. We also study an example on impor-
tant agents and show that in some cases, this model is anonymous as well and, additionally,
anonymously equivalent to the example on mass psychology. Moreover, it turns out that our
previous condition on convergence to consensus is still sufficient in this generalized setting.

Furthermore, we apply our results to fuzzy linguistic quantifiers and show that if agents
use in some sense similar quantifiers and not too many agents deviate from these quantifiers,
the society will eventually reach a consensus.

These results rely on the fact that for each quantifier, we can find a unique corresponding
ordered weighted average (Lemma 1), which allows to apply our results on OWA operators.
Note that these corresponding ordered weighted averages clearly depend on the number of
agents in the society. Therefore, we can see a quantifier as well as a more general definition
of an OWA operator (usually called an extended OWA operator ; see Grabisch et al., 2009),
which does not anymore require a fixed number of agents. In other words, assigning to each
agent such an extended OWA operator allows to vary the number of agents n in the society.

Appendix A.

Appendix A.1. Proof of Theorem 1

First, suppose that there exists k̄ ∈ {1, . . . , n} such that (i) and (ii) hold. Let us take
any coalition S ( N of size s ≥ k̄ and show that it is possible to reach the “yes”-consensus,
which implies that S is not part of a terminal class. By choice of S, it is sufficient to show
that there is a positive probability that after mutual influence, the size of the coalition has
strictly increased. That is, it is sufficient to show that there exists a coalition S ′ ⊆ N of size
s′ > s, such that Ai(1S) > 0 for all agents i ∈ S ′. Set k := s, then by condition (i), there
are distinct agents i1, . . . , ik+1 ∈ N such that

Ail(1S) =
k

∑

j=1

wil
j > 0 for all l = 1, . . . , k + 1,
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i.e., setting S ′ := {i1, . . . , ik+1} finishes this part. Analogously, we can show by condition
(ii) that for any nonempty S ⊆ N of size s < k̄ it is possible to reach the “no”-consensus.
Hence, there are only the trivial terminal classes.

Now, suppose to the contrary that for all k̄ ∈ {1, . . . , n} either (i) or (ii) does not hold.
Note that in order to establish that there exists a non-trivial terminal class, it is sufficient to
show that there are k∗, k

∗ ∈ {1, . . . , n− 1}, k∗ ≤ k∗, such that for all S ⊆ N of size s = k∗,

Ai(1S) < 1 for at most n− k∗ distinct agents i ∈ N (C∗[k∗])

and for all S ⊆ N of size s = k∗,

Ai(1S) > 0 for at most k∗ distinct agents i ∈ N. (C∗[k∗])

Indeed, condition C∗[k∗] says that it is not possible to reach a coalition with less than k∗
agents starting from a coalition with at least k∗ agents. Similarly, condition C∗[k∗] says that
it is not possible to reach a coalition with more than k∗ agents starting from a coalition with
at most k∗ agents.19 Therefore, it is not possible to reach the trivial terminal states from
any coalition S of size k∗ ≤ s ≤ k∗, which proves the existence of a non-trivial terminal
class.

Let now k̄ = 1. Then, clearly condition (ii) is satisfied and thus condition (i) cannot be
satisfied by assumption. Hence, there exists k∗ ∈ {1, . . . , n− 1} such that there are at most
k∗ distinct agents i1, . . . , ik∗ such that

k∗
∑

j=1

wil
j > 0 for l = 1, . . . , k∗.

This implies that condition (i) is not satisfied for k̄ = 1, . . . , k∗. If k∗ ≥ 2 and additionally
condition (ii) was not satisfied for some k̄ ∈ {2, . . . , k∗}, we were done since then there would
exist k∗ ∈ {1, . . . , k∗ − 1} such that there are at most n − k∗ distinct agents i1, . . . , in−k∗

such that
k∗
∑

j=1

wil
j < 1 for l = 1, . . . , n− k∗,

i.e., (C∗[k∗]) and (C∗[k∗]) were satisfied for k∗ ≤ k∗. Therefore, suppose w.l.o.g. that
condition (ii) is satisfied for all k̄ = 1, . . . , k∗. (∗)

For k̄ = n, clearly condition (i) is satisfied and thus condition (ii) cannot be satisfied.
Hence, using (∗), there exists k∗ ∈ {k∗, . . . , n−1} such that there are at most n−k∗ distinct
agents i1, . . . , in−k∗ such that

k∗
∑

j=1

wil
j < 1 for l = 1, . . . , n− k∗,

i.e., (C∗[k∗]) and (C∗[k∗]) are satisfied. We now proceed by case distinction:

19Note that monotonicity of the aggregation function implies that (C∗[k∗]) also holds if we replace S by
a coalition S′ ⊆ N of size s′ > k∗. Analogously for (C∗[k∗]).
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(1) If k∗ = k∗, then we are done.

(2) If k∗ > k∗, then let k̄ = k∗. By assumption, either (i) or (ii) does not hold.

(2.1) If (i) does not hold, then there exists k∗∗ ∈ {k∗, . . . , n− 1} such that there are at
most k∗∗ distinct agents i1, . . . , ik∗∗ such that

k∗∗
∑

j=1

wil
j > 0 for l = 1, . . . , k∗∗,

i.e. (C∗[k∗]) and (C∗[k∗∗]) are satisfied for k∗ ≤ k∗∗ and hence we are done.
(2.2) If (ii) does not hold, then, using (∗), there exists k∗∗ ∈ {k∗, . . . , k∗ − 1} such that

there are at most n− k∗∗ distinct agents i1, . . . , in−k∗∗ such that

k∗∗
∑

j=1

wil
j < 1 for l = 1, . . . , n− k∗∗,

i.e., (C∗[k∗∗]) is satisfied. If k∗∗ = k∗, then we are done, otherwise we can repeat
this procedure using k∗∗ instead of k∗.

Since k∗∗ � k∗, we find k∗∗ = k∗ after a finite number of repetitions, which finishes the proof.

Appendix A.2. Proof of Proposition 4

(i) By assumption, there exists c ∈ ∩i∈N(ci, c̄i). Let us define k̄ := min{k ∈ N | k
n
> c},

then clearly k̄−1
n

≤ c. We show that conditions (i) and (ii) of Theorem 1 are satisfied
for k̄. Since for all i ∈ N , µQi is nondecreasing and, in particular, strictly increasing
on the open ball Bǫ(c) around c for some ǫ > 0, we get by Lemma 1 that

wi
k̄ = µQ

(

k̄

n

)

− µQ

(

k̄ − 1

n

)

≥ µQ

(

k̄

n

)

− µQ (c) > 0 for all i ∈ N.

This implies that for all k = k̄, . . . , n− 1,

k
∑

j=1

wi
j ≥ wi

k̄ > 0 for all i ∈ N

and for all k = 1, . . . , k̄ − 1,

k
∑

j=1

wi
j ≤

∑

j 6=k̄

wi
j = 1− wi

k̄ < 1 for all i ∈ N,

i.e., (i) and (ii) of Theorem 1 are satisfied for k̄, which finishes the first part.
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(ii) Suppose mini∈N ci > 0 and denote by D ⊆ N the set of agents that deviate to the
quantifier Qd. Similar to the first part, there exists c ∈ ∩i∈N\D(ci, c̄i) and we can define
k̄ := min{k ∈ N | k

n
> c}. This implies that for all k = k̄, . . . , n− 1,

k
∑

j=1

wi
j > 0 for all i ∈ N\D (∗)

and for all k = 1, . . . , k̄ − 1,

k
∑

j=1

wi
j < 1 for all i ∈ N\D. (∗∗)

Furthermore, we have by assumption µQd
(k̄/n) = 1, which implies wi

j = 0 for all j =
k̄ + 1, . . . , n and i ∈ D. Thus, for all k = k̄, . . . , n− 1

k
∑

j=1

wi
j =

k̄
∑

j=1

wi
j = 1 > 0 for all i ∈ D,

i.e., in combination with (∗), condition (i) of Theorem 1 is satisfied for k̄. It is left to
check condition (ii). Define for i ∈ D,

k̃ := max{k ∈ N | wi
k > 0} = min{k ∈ N | k/n ≥ c̄d} ≤ k̄.

Hence, for k = 1, . . . , k̃ − 1,

k
∑

j=1

wi
j < 1 for all i ∈ D.

If k̃ = k̄, condition (ii) is – in combination with (∗∗) – satisfied for k̄ and any D ⊆ N .
Otherwise, we have k̃ < k̄ and then, for k = k̃, . . . , k̄ − 1,

k
∑

j=1

wi
j = 1 for all i ∈ D.

This implies in combination with (∗∗) that condition (ii) is only satisfied if maxk=k̃,...,k̄−1(n−

k + 1) = n− k̃ + 1 agents do not deviate, i.e.,

|D| ≤ n− (n− k̃ + 1) = k̃ − 1 ⇔ |D| � k̃ ⇔ |D| � ⌈c̄dn⌉.

Thus, (i) and (ii) of Theorem 1 are satisfied for k̄ if |D| � ⌈c̄dn⌉, which finishes the
proof.

(iii) Analogous to the second part.
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