1d-SAX: A Novel Symbolic Representation for Time Series

Simon Malinowski 1, * Thomas Guyet 1 René Quiniou 1 Romain Tavenard 2
* Auteur correspondant
1 DREAM - Diagnosing, Recommending Actions and Modelling
Inria Rennes – Bretagne Atlantique , IRISA-D7 - GESTION DES DONNÉES ET DE LA CONNAISSANCE
Abstract : SAX (Symbolic Aggregate approXimation) is one of the main symbolization techniques for time series. A well-known limitation of SAX is that trends are not taken into account in the symbolization. This paper proposes 1d-SAX a method to represent a time series as a sequence of symbols that each contain information about the average and the trend of the series on a segment. We compare the efficiency of SAX and 1d-SAX in terms of goodness-of-fit, retrieval and classification performance for querying a time series database with an asymmetric scheme. The results show that 1d-SAX improves performance using equal quantity of information, especially when the compression rate increases.
Type de document :
Communication dans un congrès
International Symposium on Intelligent Data Analysis, 2013, United Kingdom. pp.273-284, 2013, <10.1007/978-3-642-41398-8_24>
Liste complète des métadonnées


https://halshs.archives-ouvertes.fr/halshs-00912512
Contributeur : Romain Tavenard <>
Soumis le : lundi 2 décembre 2013 - 11:29:24
Dernière modification le : jeudi 9 février 2017 - 16:04:39
Document(s) archivé(s) le : lundi 3 mars 2014 - 09:10:09

Fichier

paper_IDA.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Simon Malinowski, Thomas Guyet, René Quiniou, Romain Tavenard. 1d-SAX: A Novel Symbolic Representation for Time Series. International Symposium on Intelligent Data Analysis, 2013, United Kingdom. pp.273-284, 2013, <10.1007/978-3-642-41398-8_24>. <halshs-00912512>

Partager

Métriques

Consultations de
la notice

432

Téléchargements du document

380