J. Aracena, J. Demongeot, and E. Goles, On limit cycles of monotone functions with symmetric connection graph, Theoretical Computer Science, vol.322, issue.2, pp.237-244, 2004.
DOI : 10.1016/j.tcs.2004.03.010

C. Asavathiratham, The influence model, IEEE Control Systems Magazine, vol.21, issue.6, 2000.
DOI : 10.1109/37.969135

V. Bala and S. Goyal, Conformism and diversity under social learning, Economic Theory, vol.17, issue.1, pp.101-120, 2001.
DOI : 10.1007/PL00004094

V. Bala and S. Goyal, Learning from Neighbours, Review of Economic Studies, vol.65, issue.3, pp.595-621, 1998.
DOI : 10.1111/1467-937X.00059

A. V. Banerjee, A Simple Model of Herd Behavior, The Quarterly Journal of Economics, vol.107, issue.3, pp.797-817, 1992.
DOI : 10.2307/2118364

A. V. Banerjee and D. Fudenberg, Word-of-mouth learning, Games and Economic Behavior, vol.46, issue.1, pp.1-22, 2004.
DOI : 10.1016/S0899-8256(03)00048-4

C. Berge, Graphs and Hypergraphs. North-Holland, 1976.

B. Büchel, T. Hellmann, and M. Pichler, The dynamics of continuous cultural traits in social networks, Journal of Economic Theory, vol.154, 2011.
DOI : 10.1016/j.jet.2014.09.008

B. Büchel, T. Hellmann, and S. Klößner, Opinion dynamics under conformity. Institute of Mathematical Economics Working Paper 469, 2012.

A. Calvó-armengol and M. O. Jackson, Like Father, Like Son: Social Network Externalities and Parent-Child Correlation in Behavior, American Economic Journal: Microeconomics, vol.1, issue.1, pp.124-150, 2009.
DOI : 10.1257/mic.1.1.124

M. H. Degroot, Reaching a Consensus, Journal of the American Statistical Association, vol.38, issue.345, pp.118-121, 1974.
DOI : 10.1287/mnsc.15.2.B61

P. Demarzo, D. Vayanos, and J. Zwiebel, Persuasion Bias, Social Influence, and Unidimensional Opinions, The Quarterly Journal of Economics, vol.118, issue.3, pp.909-968, 2003.
DOI : 10.1162/00335530360698469

G. Ellison, Learning, Local Interaction, and Coordination, Econometrica, vol.61, issue.5, pp.1047-1072, 1993.
DOI : 10.2307/2951493

D. Gale and S. Kariv, Bayesian learning in social networks, Games and Economic Behavior, vol.45, issue.2, pp.329-346, 2003.
DOI : 10.1016/S0899-8256(03)00144-1

A. Galeotti and S. Goyal, Influencing the influencers: a theory of strategic diffusion, The RAND Journal of Economics, vol.40, issue.2, pp.509-532, 2009.
DOI : 10.1111/j.1756-2171.2009.00075.x

B. Golub and M. O. Jackson, Na??ve Learning in Social Networks and the Wisdom of Crowds, American Economic Journal: Microeconomics, vol.2, issue.1, pp.112-149, 2010.
DOI : 10.1257/mic.2.1.112

M. Grabisch and A. Rusinowska, A model of influence in a social network, Theory and Decision, vol.53, issue.1, pp.69-96, 2010.
DOI : 10.1007/s11238-008-9109-z

URL : https://hal.archives-ouvertes.fr/halshs-00344457

M. Grabisch and A. Rusinowska, Influence functions, followers and command games, Games and Economic Behavior, vol.72, issue.1, pp.123-138, 2011.
DOI : 10.1016/j.geb.2010.06.003

URL : https://hal.archives-ouvertes.fr/halshs-00344823

M. Grabisch, J. Marichal, R. Mesiar, and E. Pap, Aggregation Functions. Number 127 in Encyclopedia of Mathematics and its Applications, 2009.
URL : https://hal.archives-ouvertes.fr/halshs-00445120

X. Hu and L. S. Shapley, On authority distributions in organizations: equilibrium, Games and Economic Behavior, vol.45, issue.1, pp.132-152, 2003.
DOI : 10.1016/S0899-8256(03)00130-1

X. Hu and L. S. Shapley, On authority distributions in organizations: controls, Games and Economic Behavior, vol.45, issue.1, pp.153-170, 2003.
DOI : 10.1016/S0899-8256(03)00023-X

M. O. Jackson, The Economics of Social Networks, 2008.
DOI : 10.1017/CBO9781139052269.003

D. Krackhardt, Cognitive social structures, Social Networks, vol.9, issue.2, pp.109-134, 1987.
DOI : 10.1016/0378-8733(87)90009-8

D. López-pintado, Diffusion in complex social networks, Games and Economic Behavior, vol.62, issue.2, pp.573-590, 2008.
DOI : 10.1016/j.geb.2007.08.001

D. López-pintado, Influence networks, Games and Economic Behavior, vol.75, issue.2, 2010.
DOI : 10.1016/j.geb.2012.01.008

D. López-pintado and D. J. Watts, Social Influence, Binary Decisions and Collective Dynamics, Rationality and Society, vol.20, issue.4, pp.399-443, 2008.
DOI : 10.1177/1043463108096787

S. Morris and . Contagion, The Review of Economic Studies By symmetry (see Lemma 5), (iii') is also necessary. 3. We prove that (iv) is necessary for S. Define K 0 the (possibly empty) set of elements of K which are connected to S by some path. Suppose that K \ K 0 = ?, i.e., there are elements in K not connected to S. We claim that there is no transition from some T in [S, S ? K 0 ] to some T ? in [S, S ? K] containing an element of K \ K 0 , which suffices to prove that [S, S ? K] is not a class. Indeed, if such a transition would exist, by (4) there would be an arc j ? k with j ? K 0 and k ? K \ K 0, iv) is also necessary for N \ (S ? K), pp.57-78, 2000.