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Emergence Made Ontological?
Computational versus Combinatorial

Approaches

Philippe Huneman†‡

I challenge the usual approach of defining emergence in terms of properties of wholes
“emerging” upon properties of parts. This approach indeed fails to meet the requirement
of nontriviality, since it renders a bunch of ordinary properties emergent; however, by
defining emergence as the incompressibility of a simulation process, we have an ob-
jective meaning of emergence because the difference between the processes satisfying
the incompressibility criterion and the other processes does not depend on our cognitive
abilities. Finally, this definition fulfills the nontriviality and the scientific-adequacy
requirements better than the combinatorial approach, emergence here being a predicate
of processes rather than of properties.

1. Introduction. Defining emergence in philosophy of science has to fulfill
two requisites: first, the concept has to match a great deal of the scientific
practice (i.e., the “scientific adequacy requirement”) and cover some of
the uses of the term; second, the concept has to be such that not too
many things will fall under it (i.e., the “nontriviality requirement”). The
latter is obvious since, if “emergent” actually means something, it is re-
garding issues about novelty, so the concept should not be trivially
instantiated.

In the literature, emergence is often addressed through the question of
emergence of properties (O’Connor 1994; Newman 1996; Crane 2001;
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Silberstein 2002; Chalmers 2006).1 Another trend in approaches is the
focus on whole-parts relationships. Emergence is often considered to be
the problem of understanding properties of the wholes that are irreducible
to properties of the parts, which I call combinatorial emergence. In this
article I challenge the property approach and the dominant combinatorial
understanding of emergence by focusing on the computational definition
of emergence. I argue that this approach (focusing on what is an emergent
process, rather than on the emergence of properties) fulfills the initial
requisites better than the combinatorial/property approach.

2. The Whole-Parts Approach of Emergence and Its Flaws. Traffic jams
(Nagel and Rasmussen 1994), fads (Tassier 2004), temperature, and chro-
mosomes at the time of meiosis exhibit a behavior that is not understand-
able by adding up the considerations of the behavior of their parts. Hence,
one considers them emergent behaviors: this emergence is thought to be
something proper to the whole and irreducible to the parts. Philosophers
such as Bechtel and Richardson (1992), O’Connor (1994), and Silberstein
(2002) addressed the issue of emergence through this scheme of wholes
and parts. Dessalles and Phan (2005) see emergence as a drop in com-
plexity, and Wilson (forthcoming) sees it as a decrease in the degrees of
freedom—contrary to the simple product of the properties of the parts
(where there would be additivity of degrees of complexity/degrees of free-
dom; see also Atay and Jost 2004, 18).

But take Schelling’s model of segregation (1969): in this model, ac-
cording to their color, agents will arrange themselves into some homog-
enous clusters. The behavior “join the cluster” is surely not given in the
rules of behaviors of the agents, but the clusters are not exactly composed
of the agents, since they remain themselves even if some agents are added
and some “die” (Gilbert 2002). So, since the parts are transient relative
to the whole, a simple view of emergence as irreducibility of properties
of the whole to properties of the parts is misguided.

Wimsatt (1997, 2007) defined emergence as the failure of aggregativity;
the point is thereby to provide some criteria of aggregativity—this defi-
nition addresses the emergence problem the other way around. Wimsatt’s
criteria of failure of aggregativity are a more sophisticated formalization
of what is the case when we say that we cannot reduce properties of the
parts to properties of the whole. These criteria are: invariance through

1. Among other options is the emergence of laws. To the extent that laws are conceived
of as theoretical constructs accounting for regularities observed, this makes emergence
epistemological as opposed to ontological. But law itself is such a problem that it is
not a good strategy to address emergence through a notion quite as hard as emergence
to construe (Klee 1984).
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intersubstitution of parts; qualitative similarity under addition/withdrawal
of parts; invariance regarding decomposition/reaggregation of parts; no
cooperative/inhibitory interactions. They are general criteria of invariance;
hence they take into account the case of alternating and changing parts
within a whole. However, it appears that, except for mass, almost nothing
is really aggregative, that is, nothing satisfies all the criteria, for example,
of invariance regarding permutation of parts, and so on. This surely is a
problem if one wants to capture the meaning of emergence by this per-
spective—emergence should surely apply to fewer properties than “ev-
erything but the mass,” so it would then need a supplementary criterion
that is not provided in this analysis. Hence, we are just left with the idea
that emergence comes in degrees (see also Bechtel and Richardson 1992).
However, in this view the meaning of emergence is quite superfluous; that
is, we could talk merely of degrees of aggregativity, but it would make
sense only if we already have this criterion that determines how emergence
is more than some lack of aggregativity—but our combinatorial analysis
will not provide it.

Actually, emergence is supposed to cover several features: unpredict-
ability, novelty, and irreducibility (Klee [1984], O’Connor [1994], Hum-
phreys [1997], Crane [2001], Silberstein [2002], Seager [2005], and Chal-
mers [2006] largely agree on those features). Irreducibility construed as
irreducibility of the properties of wholes regarding properties of parts
appears now quite trivial and is too frequent to yield something as “emer-
gence” (see also Bar Yam 2004). Concerning novelty, since properties of
the wholes are quite always novel regarding the properties of the parts—
think of color, or mass, or volume—the problem is to choose which novelty
should count as emergent. We are left here with no objective criterion.
Novel means most of the time something that has yet to be named (Epstein
[1999] 2007). So this inevitably leads to a widely shared conclusion: if
emergence means something, it is restricted to epistemological emergence,
that is, relative to a set of theories and of cognitive abilities—apart perhaps
from the exceptional case of qualia (O’Connor 1994; Silberstein and
McGeever 1995; Crane 2001; Seager 2005; Chalmers 2006).

3. The Incompressibility Criterion and Emergent Processes. In the frame-
work of computer simulations some people have been able to define what
Mark Bedau (1997, 375) called “weak emergence.” According to this
criterion, a state of a computation process is weakly emergent iff there is
no shorthand to get to it except by running the simulation (this defines
an incompressibility criterion of emergence; see Huneman and Humphreys
2008).

Such an approach avoids the subjectivity problem proper to the novelty
issue in the previous approach. Hence we would have a major clue about
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TABLE 1

Step 0 F1(0) F2(0) Fi(0) Fm(0)

Step 1 F1(1) F2(1) Fi(1) Fm(1)

Step k F1(k) F2(k) Fi(k) Fm(k)

Step n F1(n) F2(n) Fi(n) Fm(n)

an emergence that would be, if not ontological, at least objective in the
same way that conceptual truths in mathematics are objective, independent
of our cognitive abilities or epistemic choices. But one could object that
our incompressibility criterion is only provisory, since we cannot assert
that in a distant future, with enlarged computational abilities, we will still
be unable to find analytical shortcuts to get to a final state faster than
by simulation. Yet, there is some evidence that this objection fails.

I will extract arguments for the objectivity of computational criteria
from Buss, Papadimitriou, and Tsisiklis (1992). The basic idea is to con-
strue a set of automata whose values change according to a global rule
R. Each automaton transforms the value of its cells according to an input,
0 or 1. The application of the global rule R is itself dependent on the
numbers of each value (q1, q2, . . .) in the set of automata at step n; the
input function that will determine the input to all automata at step n �

is determined by the global rule. Hence the system is perfectly1
deterministic.

Input function: If , and ifZ p 0, then F(n � 1) p g (F(n)) Z p 1,n 0 n

, where functions g0 and g1 take their valuesthen F(n � 1) p g (F(n))1

in .{q . . . q . . . q }1 j n

Global rule R: Zi takes its values in {0, 1}. Z p M(N (q ) . . .i i 1

, where is the number of times value qj is takenN (q ) . . . N (q )) N (q )i j i n i j

at step i (see table 1).

Some global rules are constant free, meaning that they can be enunciated
with no reference to some of the actual values qi . . . of the constants, and
others are not. “If there is as much as , for each value of i and j,q qi j

; else ” would be an example of a constant-free rule. Buss etZ p 0 Z p 1
al. (1992) show that if the global rule is non–constant free, then the
problem of predicting the state of the system at time T is PSPACE com-
plete; hence the problem cannot be solved in polynomial time (since we
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assume that no 2 and NP problems are included in PSPACEP p NP
problems, so that being PSPACE complete entails being such that all NP
problems can be translated into that problem, which makes it at least
harder than NP complete). The detail of the proof relies on the fact that
constant-free global rules are preserved through permutation of the qi,
which makes a major difference concerning the pattern of computation
of the prediction.

This result perfectly illustrates the fact that some computational devices
are objectively incompressible. As the authors write: “If the prediction
problem is PSPACE complete, this would mean essentially that the system
is not easily predictable, and that there seems to be no better prediction
method other than simulation” (Buss et al. 1992, 526). Even with infinite
cognitive abilities, there would still be a genuine difference between
PSPACE complete prediction problems and others, so the computational
definition of emergence is objective.

Weak emergence defined as inaccessibility except by simulation is
thereby not something trivial, since, in this framework, all global rules
that are constant free are computable in polynomial time, so we have a
clear delimitation between some weakly emergent cases and some other
cases.

4. Patterns, Order, and Unpredictability. Now, speaking of computational
emergence, what precisely is emergent? Humphreys (2004, 2008) talks
about emerging patterns in cellular automata; the robust pattern, not
computable except by simulation, is then an emergent property in a cel-
lular automaton (CA). But for Dennett (1991), a pattern is an array of
traits that can be easily distinguished from others and recognized; hence
it should have a high level of redundancy. A pattern (D-pattern) in this
sense is easily deducible from one of its parts (contrary to Humphreys
[H-patterns]). So defined, D-patterns seem rather mind-dependent, since
Dennett addresses patterns through their recognition, while recognition
is linked to our cognitive abilities. Nevertheless, we can specify those
redundancy patterns by some purely internal properties, like redundancy,
symmetry, or any case of invariance through homeomorphisms: this ren-
ders D-patterns mind-independent.

It seems that there will be no way to understand through the compu-
tational approach some of the instances of “emergent D-patterns” iden-
tified by combinatorial approaches. Basically, if someone draws a D-

2. Even if this assumption turns out to be false, the fact that NP is strictly included
in PSPACE implies that being PSPACE complete makes the prediction problem for
non-constant-free rules incommensurably harder for any cognitive ability than the one
for constant-free rules that is solvable in polynomial time.
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pattern on an grid, there will be some symmetries, and so forth,n # n
so it will need less than n2 pieces of information to be described. Thereby,
the whole is not the aggregation of the parts. But in precisely this case
the final pattern seems to contradict the incompressibility criterion, be-
cause the symmetries provide shorthand to figure out the total pattern.

Therefore, there are two poles included in the vernacular idea of emer-
gent patterns: order (mostly instantiated by D-patterns) and unpredict-
ability. Segregation clusters, traffic jams, and fads (Nagel and Rasmussen
1994; Gilbert 2002; and Tassier 2004) reveal some order instead of the
pure heterogeneity that we should have expected. They exhibit a clear
drop in complexity (e.g., a segregation cluster can be defined in n zones
rather than points). This “order” aspect easily raises the objectionp 111 n
that it is epistemological (Dessalles and Phan 2005): emergent orders al-
ways depend on our epistemic abilities since they are relative to an “ex-
pected” complexity.

On the other hand, the “unpredictability” aspect is captured by the
incompressibility criterion. Yet there is a similarity between Chaitin’s def-
inition of randomness of a random sequence of numbers and the incom-
pressibility criterion of weak emergence, but if this criterion includes ran-
domness, how could weak emergence be reconciled with the “order”
aspect? I must now explicate such a similarity.

In a random sequence, the nth digit and its precursors do not give any
information regarding the digit, x, and this is of course the in-n � 1th
tuitive idea of randomness; that is, there is no reason for x to be something
rather than something else. Chaitin’s idea of the lack of an algorithm that
would save us from this step-by-step examination of the sequence formally
captures this naı̈ve understanding. Hence x is unpredictable relative to
the previous sequence: so if you want to know x you have to read all the

first digits. On the other hand, the incompressibility criterion ofn � 1
emergence formulates the unpredictability of a given state from the knowl-
edge of the rule and initial state—but of course, not of step relativen � 1
to step n, since this is perfectly deterministic and determined. Briefly said,
Kolmogorov/Chaitin randomness requires that there not be a program
whose length is significantly shorter than the length of the sequence of
states. But there can be a short program—the rules of the CA—that
produces an incompressible sequence of states.

The order and the unpredictability aspects seemed to contradict one
another, precisely because we implicitly oppose order and randomness
here. However, given the aforementioned crucial difference between ran-
domness incompressibility criterion and emergence incompressibility cri-
terion, there is no genuine opposition between a computational criterion
of emergence, and order—so that some usual meanings of emergence that
connote “order” are not in principle excluded by the computational view.
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Figure 1. Blinking pattern b.

The problem is then to make sense of those connotations within com-
putational emergence.

5. Triviality and the Randomness Exclusion Issue. The two approaches—
emergence through order in a combinatorial perspective, and computa-
tional emergence—radically diverge on some simple cases. For instance,
take the CA defined by , and the rule: “if at least oneC p 1, 0, 1, 0, etc., 00

neighbor is 1, turn 0 and reciprocally.” The outcome will clearly be the
blinking pattern b shown in Figure 1.

Here, we have a kind of pattern that is not included in each of the
cells, but that can only be given through their relations. No descriptions
of the parts (black, white, etc.) include the figure of the whole, which
clearly exhibits a failure of aggregativity. But there is no incompressibility:
to know the state of the CA at step n, I just need to check whether n is
odd or even.

The computational notion of emergence does not precisely exclude this
pattern as such, but only the CA (rule � initial state) so described. Yet,
in some cases we could consider that this precise pattern emerges; for
example, in Burke, Furnier, and Prasad’s (2006) study about local norms,
we are shown that with simple rules of imitation and fitness enhancement,
and some specific initial patterns of distribution, in an agent-based model
local norms will emerge. A blinking pattern b′ eventually appears as a
final stable state in several configurations when some parameters con-
cerning the initial distribution of signals and the choosing dispositions of
the agents are settled.

Thus, according to the computational view it is never the pattern as
itself that is emergent (since patterns b and b′ are identical), but emergence
is a feature of the whole agent-based simulation process—otherwise there
would be no difference between blinking patterns b and b′. (This makes
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the computational view immune to the triviality proper to the combi-
natorial view.) As Humphreys (2008) points out, emergent patterns are
always token patterns (and not types) since other tokens of the same
types, for example, a photo of our blinking pattern b′, would not be
emergent. What clearly individualizes the pattern token as a token is the
CA process in which it is a part.

Such a consideration allows this approach to meet our initial scientific-
adequation requisite. Actually, if X incompressibly results from an initial
state X0 in a CA, nothing prevents it to be a random number (“randomness
exclusion issue”). In effect: suppose that 10�i is a randomX p S X(ip0, . . .) i

number. Since class IV CA are universal Turing machines (see Wolfram
1984), there must exist a CA noted H with a given rule R and an initial
state X0 whose final state is X. So, given that there are so many CAs
whose outcome is random, we can assume there will be plenty of “emer-
gent states” according to the incompressibility criterion that are random
sequences. Basically, there is no way to warrant that random patterns are
precluded as such to be counted as emergent patterns, since nothing in
the computational definition of emergence distinguishes between random
and nonrandom patterns. Moreover, fishy properties like P “being in state
X, Y, or Z,” where X, Y, and Z are random numbers, are trivially emergent
properties of H.

If our definition allows all those random numbers to count as emergent,
we will lose its connection with the usual meaning of “emergence,” which
seems too high a cost to pay. In this case we should keep calling those
patterns “incompressible” and not mess with emergence any more.

But since emergence is a predicate of processes rather than of properties,
what is primarily said to be emergent is the process, and only secondarily
some properties (states of an emergent process) will be said to be emergent.
So fishy properties (like P) that are not individualized outcomes of a
process cannot satisfy the predicate “emergent.” And since we individu-
alize the emergent items through the processes, if there exist descriptions
allowing us to distinguish various classes of processes, this would involve
a principled distinction—in the set of processes fulfilling the incompress-
ibility criterion—between the noninteresting random patterns and other
ones that better match the usual meaning of emergence.

This is available through the computational mechanics description lan-
guage initiated by Crutchfield and Hanson (Crutchfield and Hanson 1993;
Hordijk, Crutchfield, and Mitchell 1996; Hanson and Crutchfield 1997;
Crutchfield and Shalizi 2001). The basic idea is that we can filter out any
CA in such a way that “domains,” “particles,” and “frontiers” will nat-
urally appear. Processes in the CA can then be described as interactions
between particles, openings, and collisions of domains, and so forth. As
some authors write:
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Figure 2. (1) After filtering, the types of particles (shown by Greek letters) and their
interactions appear in a CA, whose final pattern seems to result from those “mechanics”
(from Crutchfield and Hanson 1993). (2) A CA (rule 22, random initial configuration)
(a) without and (b) with automatic “local sensitivity” filtering—then displaying no real
domains and thereby appears chaotic (from Shalizi et al. 2006).

The early empirical categorization of space-time patterns into four
“classes” [reference to Wolfram]—loosely based on an analogy with
those found in continuous state dynamical systems—has resisted nu-
merous attempts at formalization. In many CA, it is immediately
evident that the system self-organizes into some type of emergent
pattern. In other CA, the structure or even existence of an emergent
pattern is less clear. The question that naturally arises therefore is
how to characterize the spatiotemporal patterns that emerge during
the CA’s evolution. If such a characterization is possible, it can be
used as a basis for numerical and analytical tools that discover, an-
alyze, and filter patterns that emerge in CA. (Hanson and Crutchfield
1997, 170)

In any case, we can define some sets of particles and domains: those
sets will be proper to a CA, and defined by their generative structure
(Figure 2, 1). “Computational mechanics attempts to discover and char-
acterize the typical patterns occurring in a given CA,” wrote Crutchfield
and Hanson (Hanson and Crutchfield 1997, 171). Delimitating the domain
patterns that several CAs use as “building blocks,” and then expressing
them as finite automata, amounts to a possible typology of CAs. Hence
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TABLE 2

Class: Computational Incompressibility

Emergence of Properties:
Kind A. Fishy properties

(disjunctive, etc.)
B. Emergent processes

Species B.1. Random patterns B.2. “Interesting” patterns
(specific subclasses charac-
terized by proper particles-
domains geography, mea-
surable in complexity)

we will get types of elementary processes, which will allow us to define
classes of emergent processes. Thus, as soon as there is a periodic “do-
main,” we are ensured that it will display some regularities, and this
prevents pure randomness; the range of periodic “building blocks” and
their types of entanglement in CAs can thereby be the basis of a char-
acterization and typology of incompressible processes that allows us to
reliably exclude a large class of purely random patterns (not necessarily
all) from what is likely to be emergent according to the mere incompress-
ibility criterion. This amounts to integrate the usual “order” connotation
of emergence into computational emergence. Accordingly, Shalizi et al.
(2006) designed automatic filters that allow us to characterize processes
with no domains and walls, and hence purely chaotic, and whose outcomes
are random (e.g., in rule 22 the local sensitivity filter makes no pattern
salient; see Figure 2). Computational mechanics hence provides a set of
tools—filters—that help us to answer the randomness exclusion problem
(Figure 2).

In the right column of Table 2, labeled B.2, we get an objective, non-
epistemological meaning of emergence in CA (at least) that fulfills the
nontriviality requirement and that is able to confront correctly the usual
meaning of “emergence” (see also Huneman 2008 for biology).

6. Agent-Based Models and the Triviality Issue. Let’s now widen the scope
of computational emergence by considering simulations other than CAs.
Epstein concludes his ([1999] 2007) investigation with a critique of the
popular use of “emergence” in the discourse of people doing social sim-
ulations. His argument holds against a naı̈ve version of the part-whole
approach of emergence. Concerning social agent–based modeling, the di-
lemma he displays goes against any formulation of weak emergence. He
formulates a comparison with the bee/beehive structure. “Typical of clas-
sical emergentism would be the claim: No description of the individual bee
can ever explain the emergent phenomenon of the hive. . . . The mischievous
piece of the formulation is the phrase ‘description of the individual bee.’
. . . Does ‘the bee’s’ description not include its rules for interacting with
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other bees? . . . My ‘rules of social interaction’ are, in part, what make
me me. And, likewise, the bee’s interaction rules are what make it a bee—
and not a lump. When (as a designer of agent objects) you get these rules
right—when you get ‘the individual bee’ right—you get the hive, too. . . .
Unless the theoretical (model) bees generate the hive when you put a
bunch of them together, you haven’t described ‘the bee’ adequately. Thus,
contrary to the opening emergentist claim, it is precisely the adequate
description of ‘the individual bee’ that explains the hive” (Epstein [1999]
2007, 36–37). So, reciprocally, if you say that the beehive “emerges,” you
must say that any outcome of a complete description of a set of entities is
emergent.

Basically, Epstein argues against emergentists that either

A. There is no emergence since the outcomes of any agent-based
model—although they are obviously not aggregative—are always
proceeding from the behavior of the agents, so there is no novelty
in their so-called emergent pattern compared to the ensemble of all
the behaviors and their consequences (regarding to what this final
state could count as novel since there is no other collective outcome
expected?); or

B. Everything is emergent, since “to emerge from the initial rules and
configurations” in an agent-based model means to be “generated,”
which amounts to proceeding from the activation of the rules of all
the agents, and this is the case of any final state in any agent-based
model.

The trouble here is what “deduction” means: to “deduce” the final state
of a set of agents, according to Epstein, is only to let all those agents act
according to their rules. But “deducibility” in this sense is taken for
granted by everybody, since the very definition of a computer simulation
implies that all the agents behave according to their rules, so the final
state can always be said to be deduced from the initial conditions. Yet,
defending an idea of computational emergence that should contrast with
deducibility, one will highlight another sense of deduction (noted deduc-
tion*), namely, the deduction of one final global state of the system from
previous global states: the incompressibility criterion means precisely that
there is no possibility of such a deduction*. Using the work of Buss et
al. (1992), we just saw (in Section 3) that such cases in general exist.

So all states are trivially deducible, and therefore, in agreement with
Epstein’s claim A, that there is no emergence if emergence means the
opposite of deducibility. But emergence computationally understood ex-
cludes only deducibility*. In essence, Epstein argues: either emergent p

, or emergent is opposed to deducible; because ev-generated p deducible
erything is generated in agent-based models, emergence is either trivial
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or impossible. But since “emergent” is indeed only opposed to “deduci-
ble*,” which is a subset of “deducible,” the alternative fails. It is possible
that some phenomena might be , but not deducible*,deduced p generated
and are thereby emergent; indeed it is the case of many agent-based models
encountered up to now—fashion cycles (Tassier 2004), traffic jams (Ras-
mussen and Nagel 1994), and local norms (Burke et al. 2006). Thus,
emergence in the sense of the incompressibility criterion can be applied
in agent-based modeling.

Reciprocally, if “emergent” were a trivial category, all that in agent-based
models is deducible would be not-deducible*; but this is false. Suppose, for
instance, that we have an initial blinking distribution, and a rule that
states “do the opposite of what your immediate horizontal neighbors do
(and in case they have between them opposite behaviors, don’t move).”
It is clearly the previous case of blinking pattern b (Figure 1)—and so
there exists a shorthand to compute the state of the system at n, which
makes this state deducible*. Thereby, emergence in ABM—deducibility
with no deducibility*—is not trivial.

7. Conclusion. The computational notion of emergence, embedded in the
incompressibility criterion and naturally focusing on processes rather than
properties, meets the two requirements of nontriviality and of scientific
adequacy better than combinatorial views. In both fields of agent-based
modeling and cellular automata, one can formally describe a class of
emergent processes that is limited and broadly corresponds to our lin-
guistic inclination to talk of emergence in those cases.
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