Evaluating Morphological Resources: a Task-Based Study for French Question Answering
Delphine Bernhard, Bruno Cartoni, Delphine Tribout

To cite this version:

HAL Id: halshs-00751068
https://halshs.archives-ouvertes.fr/halshs-00751068
Submitted on 21 Nov 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Evaluating Morphological Resources:
a Task-Based Study for French Question Answering

Delphine Bernhard¹, Bruno Cartoni², Delphine Tribout¹

(1) LIMSI-CNRS, 91403 Orsay, France
(2) Département de linguistique, Université de Genève, Suisse
bernhard@limsi.fr, bruno.cartoni@unige.ch, tribout@limsi.fr

Abstract

Morphology is a key component for many Natural Language Processing applications. In this article, we focus on one prototypical application, namely Question Answering (QA). In QA, morphological relations, especially those relying on the derivation and compounding processes, are often addressed in a superficial manner. Considering that some resources are able to provide deep and precise knowledge about a large spectrum of morphological processes, the issue lies first in determining the morphological phenomena which are most relevant for QA systems and second in evaluating the coverage of existing resources in this respect. To this aim, we describe a manual annotation and analysis of French question-answer pairs, which was performed in order to produce a unique and well-characterised reference dataset. Based on this study, we evaluate five different morphological resources for French and show that some dedicated resources are still lacking, which would cover phenomena such as nominal adjectives and agent deverbal nouns.

1. Introduction

Morphological resources are central to many Natural Language Processing applications. Despite their importance, resources are still lacking for many languages and domains, in particular with regard to constructional morphology, i.e. derivation and compounding. Moreover, they are usually evaluated intrinsically by human evaluators. As for extrinsic evaluations, they focus on the performance gains which can be obtained by using morphological knowledge in a specific application, e.g. speech recognition (Creutz et al., 2007), machine translation (Koehn and Hoang, 2007) or information retrieval (Hahn et al., 2003). In this article, we propose a new method for evaluating resources which consists in manually building a task specific gold-standard in order to measure the coverage and quality of morphological resources. Here we focus on one prototypical application, namely Question Answering (QA).

QA systems aim at providing a precise answer to a given user question. To this aim, they usually rely on an Information Retrieval (IR) component which attempts to match words in the question and words in the text passages containing a potential answer. The major difficulty lies in the lexical gap problem, which occurs when a document is related to a question even though it does not contain the same words as the question. QA and IR systems must thus find a way of retrieving relevant documents without relying only on mere identity between words. In this context, morphology has often been preferred over semantics because the integration of morphological knowledge is easier. Research in IR and QA has thus tried to incorporate morphological knowledge, either by expanding the query, by indexing documents with morphologically motivated units or by using question reformulation or rephrasing patterns to identify the answer.

Most of the research carried out so far made use of simple heuristic-based stemming techniques which cut off word endings (such as (Lennon et al., 1988), (Harman, 1991), (Fuller and Zobel, 1998)). These turned out to be rather inefficient for languages with a “less-rich” morphology, such as English, but they are not available for all languages (McNamee et al., 2009). In most cases, the recall is slightly improved, but these techniques also produce some noise, as shown by the example described in Bilotti et al. (2004): organisation and organ are stemmed to the same form by the Porter Algorithm. Another interesting piece of research, described in Moreau and Claveau (2006), shows that extending the query by morphological knowledge significantly improves the results, in most of the European languages for which they performed the experiment. To acquire morphological knowledge, they made use of a learning method based on analogy techniques. Consequently, they captured only affixation processes, and moreover only transparent affixation processes (that share a rather long character string), leaving aside reduction processes, or affixation on suppletive forms. They also admitted that, even with some precautions (long minimal character string, etc.), some incorrect pairs of morphologically related words are captured (pondre with répondre).

As we have shown, QA applications mostly rely on partial or superficial morphological knowledge. Moreover, only few studies specifically address the role of morphology within such systems. Most of the evaluations are extrinsic (based on the measurement of the improvement of an entire system when a morphological “module” is applied), and globally, the use of morphology (either indexing or query expansion) is very coarse.

However, some morphological resources are now able to provide detailed and precise knowledge about a large spectrum of morphological processes. The issue is more in weighting the relations to be implemented, and in determining the resources to be used – or built if lacking. Hence, we address two specific research questions in this article:

1. What morphological phenomena are most relevant in a QA application?
2. How well do available resources for French morphol-
ogy cover these phenomena?

These two aspects are linked together because we first need to characterize the morphological relations which are relevant in a QA task in order to evaluate the use of existing morphological resources in a QA system. We therefore performed our evaluation of morphological resources for French in two steps. First, we have manually annotated and analysed pairs made of a question on one side, and the snippet containing the answer on the other side, in order to determine the morphological relations involved. Secondly, we used this set of pairs of morphologically related words as a gold-standard to evaluate the coverage of available resources for French. Since the gold-standard has been carefully characterised, precise measures can be computed for different morphological processes.

The contributions of the paper are as follows:

- We present the constitution and the analysis of a unique gold-standard for morphological relations, based on a detailed annotation of three different corpora of question-answer pairs. This study provides important insights on the type of morphological knowledge to be integrated into QA systems in order to improve their performance.
- We evaluate and compare five different morphological resources for French, including both inflectional and derivational morphology.
- We show that resources covering some important morphological phenomena are still lacking for the French language and make concrete proposals about the resources which would be most helpful for QA.

2. Annotation of Question-Answer pairs

2.1. Description of the datasets

The datasets gathered for the annotation come from three very different QA corpora: Quæro, EQueR-Medical and Conique, which are presented below. Our aim in annotating different types of corpora was to determine if there are significant differences in the morphological processes observed depending on the type of data. Table 1 presents statistical information on each corpus.

Quæro The French Quæro corpus has been built for QA evaluation (Quintard et al., 2010) within the Quæro project. The corpus consists of 2.5M French documents extracted from the web and a set of 250 questions for the 2008 evaluation and 507 questions for the 2009 evaluation. The document corpus has been constituted by taking the first 100 pages returned by the Exalead search-engine for a set of requests found in the search-engine’s logs. As for the questions, they have been written by French native speakers by using the contents of the documents for the 2008 evaluation, and by using only the query logs of the search-engine for the 2009 evaluation. There are three types of questions: factual questions, boolean questions which ask for a yes-no answer and questions requiring a list for answer.

We have constituted our corpus for the annotation task by taking all the snippets returned by the Ritel-QA System (Quintard et al., 2010) that have been manually validated as containing the correct answer for each factual question of the two evaluation campaigns. We thus obtained 566 pairs of question and snippet containing the answer, 338 from the the 2008 evaluation and 228 from the 2009 evaluation.

EQueR-Medical The EQueR evaluation dataset has been constituted within the EQueR-EVALDA evaluation campaign for French Question Answering systems (Ayache et al., 2006). The campaign included two main tasks: (i) general domain QA over a collection of newspaper articles and senate reports and (ii) specialised domain QA over a collection of medical texts. We restricted our annotation study to the medical questions. The answer snippets were retrieved by the participant systems and manually validated by a specialised judge.

Overall, the EQueR-Medical dataset comprises 394 question-answer-snippet pairs for 200 different questions.

CONIQUE The CONIQUE corpus has been built with the objective of studying relevant answer justifications for QA systems (Grappy et al., 2010). Answer justifications provide additional material to the user, so that she/he may trust the answer retrieved by the system. The corpus is based on a subset of 291 questions from the French EQueR campaign (Ayache et al., 2006) and several CLEF campaigns. Candidate answer snippets have been retrieved from the French Wikipedia using a coarse retrieval mechanism and manually annotated by seven annotators. In contrast to the two previously described datasets, answer snippets in CONIQUE do not correspond to the output provided by QA systems. It therefore constitutes an almost full recall dataset, devoid of any bias inherent to QA systems such as high question-snippet token overlap.

We automatically pre-processed the annotated corpus to retrieve question-snippet pairs. We only kept full or partial justifications. Moreover, we reduced the snippet to up to three sentences, centred on an annotated justification. Overall, the dataset we annotated comprises 664 question-answer pairs, for 201 different questions.

2.2. Annotation methodology

The annotation was manually performed by three trained independent annotators, using the YAWAT alignment tool (Germann, 2008). YAWAT was originally developed to align words in bilingual sentence-pairs for machine translation evaluation. In our case, we aligned words and phrases in question-answer pairs and typed their morphological relation. We defined three tags for morphological relations: one for inflection, another for derivation and another for compounding. Since there can be more than one morphological step between two morphologically related words we defined specific guidelines for the annotation.

First, we did not annotate inflectional variants of auxiliaries and determiners, as these tend to be very frequent but do not provide any interesting semantic information for use in QA. Second, derivation and compounding supersede inflection. For instance, in the QA pair presented in Figure 1 there are two morphological steps between the noun Australie (eng:
Table 1: Annotation corpora statistics

<table>
<thead>
<tr>
<th></th>
<th>Quæro</th>
<th>EQueR-Medical</th>
<th>CONIQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Questions</td>
<td>350</td>
<td>200</td>
<td>201</td>
</tr>
<tr>
<td>#QA pairs</td>
<td>566</td>
<td>394</td>
<td>664</td>
</tr>
<tr>
<td>Avg. question length</td>
<td>8.8</td>
<td>9.9</td>
<td>11.4</td>
</tr>
<tr>
<td>Avg. answer length</td>
<td>38.5</td>
<td>29.0</td>
<td>92.4</td>
</tr>
</tbody>
</table>

Table 2: Inflection, derivation and compounding in the three corpora

<table>
<thead>
<tr>
<th>Corpus (qa pairs)</th>
<th>Inflection</th>
<th>Derivation</th>
<th>Compounding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nbr %</td>
<td>nbr %</td>
<td>nbr %</td>
</tr>
<tr>
<td>Conique (664)</td>
<td>159 41.8%</td>
<td>188 49.5%</td>
<td>33 8.7%</td>
</tr>
<tr>
<td>Quæro (566)</td>
<td>136 61.8%</td>
<td>80 36.4%</td>
<td>4 1.8%</td>
</tr>
<tr>
<td>EQueR (394)</td>
<td>69 26.4%</td>
<td>81 31.0%</td>
<td>111 42.5%</td>
</tr>
</tbody>
</table>

Table 3: Parts of speech involved in inflectional processes

<table>
<thead>
<tr>
<th></th>
<th>Adjectives</th>
<th>Nouns</th>
<th>Verbs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nbr %</td>
<td>nbr %</td>
<td>nbr %</td>
</tr>
<tr>
<td>Conique (159)</td>
<td>28.3%</td>
<td>27.0%</td>
<td>44.7%</td>
</tr>
<tr>
<td>Quæro (136)</td>
<td>6.6%</td>
<td>40.5%</td>
<td>52.9%</td>
</tr>
<tr>
<td>EQueR (69)</td>
<td>31.9%</td>
<td>47.8%</td>
<td>20.3%</td>
</tr>
</tbody>
</table>

Figure 1: Example of QA pair where both derivational and inflectional information are available

Q: Quelle est la capitale de l’ Australie ?
A: le territoire sur lequel est située la capitale fédérale australienne, Canberra.

3. Analysis of the annotated data

At the end of the annotation step, we obtained a set of morphologically related words, that can be studied according to different points of view. First we studied the repartition of morphological relation types such as inflection, derivation and compounding in the three corpora. Then, we analysed in more details the part-of-speech involved in each morphological relation, the grammatical features expressed by the inflectional processes and the semantic types of derivational processes.

3.1. Morphological relation types

The results of the annotation of each corpus according to the different types of morphological relations are presented in Table 2. Each question-answer pair (qa pair) does not necessarily contain a morphological relation, and, more importantly, several pairs of words in the same question-answer pair can be morphologically related to one another, with different morphological relations.

The figures in Table 2 show that each corpus seems to favour a particular type of morphological relation: the Conique corpus contains a majority of derivational relations, while the Quæro corpus comprises more inflectional morphology. As for the EQueR corpus, it presents more compounding than any other kind of morphological relation. Moreover, if we consider the type of morphological relation depending on the corpus, inflection has the greatest proportion in the Quæro corpus, derivation is proportionally more present in the Conique corpus, while compounding is almost absent from Conique and Quæro and very important in EQueR.

The Conique and Quæro corpora show little difference with respect to the proportion of compounding. However, Conique contains more derivational relations than Quæro does. This is due to the way the Conique corpus has been built. It is not based on the output of a QA system, but the answers have been manually retrieved and annotated. QA systems usually have difficulties in dealing with derivational morphology. Moreover, there is a large variation in question and answer length between both corpora, as shown in Table 1. This could also explain the presence of more derivationally related pairs of words in Conique, because the longer the questions and the answers, the more opportunities to observe a derived word and its base. As for EQueR, the great proportion of compounds is certainly related to domain of the corpus: it contains a lot of medical terms, which are often compound nouns, as shown in Figure 2. These morphological characteristics of medical data have already been pointed out by Namer and Zweigenbaum (2004).

In the remainder of this section we detail the annotation results for inflection and derivation only, since there are no morphological resources devoted to compounding which could be evaluated.
to say about the case when the derivational relation is non direct, since in that case the relation between the two words is pretty unpredictable. That is why we focus our study on the pairs which contain one base and one derivative, with only one derivational process between the two.

While focusing on the direct derivational relations, we can evaluate the proportion of different derivational processes involved. Table 5 presents the result of this evaluation. The figures in Table 5 show that the corpora differ with respect to the derivational processes used. While Conique shows more denominal adjectives (about 47% of the derivational processes), Quæro and EQueR seem to favor noun formation processes (with respectively 61% and 54% of the derivational processes). These two particular derivational processes are described below.

3.3. Derivation

As shown in Table 2, derivation is important in the three corpora (between 30% and 50% of the pairs). In some cases the word in the question and the word in the answer are morphologically related by more than one derivational step. For instance lune (eng: “moon”) and allumisage (eng: “landing on the moon”) or lait (eng: “milk”) and allaitement (eng: “breastfeeding”). In these cases one word is more complex than the other, but the complex word is not directly derived from the less complex. In some other cases, like joueur (eng: “player”) and jouable (eng: “playable”) the word in the question and the word in the answer are morphologically related but neither derives from the other. Instead, they both derive from another word, which is jouer (eng: “play”) for joueur and jouable. Table 4 shows the proportion of direct derivational relations, non direct derivational relations and cases where both words are complex and derive from another word. The figures show that most derivational relations between a word in the question and a word in the answer are direct (between 86% and 92%). Only very few relations are non direct. There is little

3.3.1. Denominal adjectives

In our data, adjectives which derive from a proper noun (Proper N) are always relational adjectives, like chilien (eng: “chilean”) derived from Chili (eng: “Chile”), or africain (eng: “african”) derived from Afrique (eng: “Africa”). Adjectives deriving from a common noun are mostly relational adjectives too, as shown by the figures in Table 6. For instance présidentiel (eng: “presidential”) derived from président (eng: “president”), or solaire (eng: “solar”) derived from soleil (eng: “sun”). However there also are some qualifying adjectives. For instance âgé (eng: “old”) which derives from âge (eng: “age”) with the meaning ‘having a certain age’ or montagneux (eng: “mountainous”) derived from montagne (eng: “mountain”) with the meaning ‘full of mountains’. Table 6 presents the proportion of relational or qualifying adjectives in our corpora, and shows that relational adjectives are much more frequent in the three corpora. It is also worth noting that the highest proportion of relational adjectives is found in the medical corpus, which confirms previous works such as (Deléger and Cartoni, 2010).

Table 4: Derivational steps between the word in the question and the word in the answer

<table>
<thead>
<tr>
<th></th>
<th>Conique (174)</th>
<th>Quæro (70)</th>
<th>EQueR (70)</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct relation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nbr %</td>
<td>174 92.6</td>
<td>70 87.5</td>
<td>70 86.4</td>
</tr>
<tr>
<td>two steps</td>
<td>2 1.0</td>
<td>1 1.3</td>
<td>3 3.7</td>
</tr>
<tr>
<td>nbr %</td>
<td>12 6.4</td>
<td>9 11.2</td>
<td>8 9.9</td>
</tr>
<tr>
<td>two complex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>nbr %</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Derivational processes in question-answer pairs

<table>
<thead>
<tr>
<th>Process</th>
<th>Conique (174)</th>
<th>Quæro (70)</th>
<th>EQueR (70)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noun > Adj</td>
<td>41 23.6</td>
<td>16 22.9</td>
<td>28 40.0</td>
</tr>
<tr>
<td>Proper N > Adj</td>
<td>45 25.9</td>
<td>8 11.4</td>
<td>1 1.4</td>
</tr>
<tr>
<td>Noun > Noun</td>
<td>29 16.7</td>
<td>5 7.1</td>
<td>7 10.0</td>
</tr>
<tr>
<td>Proper N > N</td>
<td>6 3.4</td>
<td>8 11.4</td>
<td>2 2.9</td>
</tr>
<tr>
<td>Adj > Noun</td>
<td>3 1.7</td>
<td>0 0</td>
<td>4 5.7</td>
</tr>
<tr>
<td>Verb > Noun</td>
<td>41 23.6</td>
<td>30 42.9</td>
<td>25 35.7</td>
</tr>
<tr>
<td>Other</td>
<td>9 5.1</td>
<td>3 4.3</td>
<td>3 4.3</td>
</tr>
</tbody>
</table>

Figure 2: Example question-answer pair from EQueR

Q: Quelle est la conséquence de la corticothérapie sur l’os?
A: Le problème essentiel des corticoïdes réside dans leur effets secondaires (… ostéoporose, ostéonécrose aseptique des têtes fémorales ou parfois humérales …).
3.3.2. Noun formation processes

As regards the noun formation processes, the three corpora favour deverbal nominalisations, but deadjectival and denominal nominalisations are also found. The formations of noun out of a noun are very few, except in Conique. Those are mostly masculine and feminine profession names, like infirmier and infirmière (eng: “male/female nurse”), directeur and directrice (eng: “male/female director”), président and présidente (eng: “male/female president”), which we considered to be two distinct words rather than one and the same word inflected for gender. There are some suffixed diminutive nouns too, like rame (eng: “ream”) > ramette (eng: “small ream”), and prefixed nouns like président (eng: “president”) > vice-président (eng: “vice-president”). We also considered the formation of a noun out of a proper noun to be a denominal nominalisation. These derived nouns are mostly mononyms (names for the resident of a place) which derive from a location denoting proper noun, like Colombien (eng: “Colombian”) derived from the country name Colombie (eng: “Colombia”). This kind of nouns is found in the Conique and the Quero corpora, but there are only two in the EQueR corpus, which is not surprising since it is a medical corpus.

Deadjectival nouns are very few in the three corpora. None of them is found in Quero, and there are just a few of them in the other two corpora. These deadjectival nouns are property nouns, like toxicité (eng: “toxicity”) which derives from the adjective toxique (eng: “toxic”). Not surprisingly deadjectival nouns denoting a property are mostly found in the EQueR corpus. It can be explained by the fact that the medical corpus contains a lot of disease or trouble nouns (like toxicité or insuffisance “insufficiency”) which often refer to the property of being in a particular state (toxicité ≈ ‘property of being toxic’, insuffisance ≈ ‘property of being insufficient’).

As for deverbal nominalisations, they are most often event nouns in the three corpora, like débarquement (eng: “landing”) derived from the verb débarquer (eng: “to land”). Event denoting nouns represent almost 85% of the deverbal nouns, as shown in Table 7. However, there also are a small number of agent nouns in the Conique and the Quero corpora, but none in the EQueR corpus. For instance réalisateur (eng: “director”) from réaliser (eng: “to direct”). And there is a small set of result nouns like produit (eng: “product”) which derives from the verb produire (eng: “to produce”).

3.3.3. Other derivational processes

Other derivational processes include for instance adverbs formation out of adjectives, like complétement (eng: “completely”) derived from complet (eng: “complete”), or directement (eng: “directly”) derived from direct (eng: “direct”). There also are some prefixed deverbal verbs like déboucher (eng: “unblock”) out of boucher (eng: “block”) or denominal adjectives like international (eng: “international”) derived from nation (eng: “nation”). Interestingly we observed no deadjectival verb formation (like national “national” > nationaliser “nationalize”) and almost no denominal verb formation. Only four denominal verbs were found in Conique, and none in the other corpora.

The absence of denominal verbs could be explained by the rather unpredictable semantic relation between a noun and a derived verb. As stated by Hopper and Thompson (1984) there is an asymmetry in the lexical categories, since a nominalisation still names the event denoted by the verb, whereas a verbalization does not refer to the entity denoted by the noun, but denotes an event associated with that entity. For instance, the noun destruction denotes the same event as its base verb destruct. But in the case of a nominal verb like hospitalize, the verb does not refer to the object denoted by the base noun hospital, but denotes some event related to that object. What is more, the events we could associate to an entity are numerous and various. So, the semantic relation between a noun and its derived verb is less informative than that of a verb and its derived noun. It is not surprising then that so few nouns related to their derived verbs were found in the corpora.

4. Evaluation of morphological resources

The set of morphologically annotated data presented in the previous section forms a gold-standard of morphological relations on which we can evaluate the coverage of existing morphological resources.

4.1. Description of the resources

Several resources are available to deal with French morphology. However none of them handles the whole morphology for French. Instead, there are different resources, each of them dealing with a specific area of French morphology. Thus, we took the morphological resources dealing with each type of morphological process we found in the corpora and evaluated them according to their morphological specificity. For inflectional morphology we evaluated two resources : Morphalou and Leff. For derivational morphology we evaluated three different resources : Verbaction and Dubois for deverbal nouns, and Prolexbase for denominal adjectives.

4.1.1. Morphalou

Morphalou is an inflectional lexicon for French. It contains 539,413 inflected forms corresponding to 68,075 lemmas.

2The type of nominalisation (deverbal, deadjectival or denominal) depends on the part-of-speech category of the base (verb, adjective or noun, respectively).

3http://www.cnrtl.fr/lexiques/morphalou/
Table 7: Semantic types of deverbal nouns in question-answer pairs

<table>
<thead>
<tr>
<th></th>
<th>Conique (41)</th>
<th>Quæro (30)</th>
<th>EQuèR (25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verb > Event N</td>
<td>34 82.9</td>
<td>25 83.3</td>
<td>22 88</td>
</tr>
<tr>
<td>Verb > Agent N</td>
<td>4 9.8</td>
<td>4 13.3</td>
<td>0</td>
</tr>
<tr>
<td>Verb > Other N</td>
<td>3 7.3</td>
<td>1 3.4</td>
<td>3 12</td>
</tr>
</tbody>
</table>

4.1.2. Leff

Leff is a syntactic and morphological lexicon for French (Sagot, 2010). It contains morpho-syntactic information for each inflected form, such as part of speech, lemma and sub-categorization. Overall it contains 534,763 infected forms.

4.1.3. Verbaction

Verbaction is a lexicon of French action nouns linked to their corresponding verbs (Hathout et al., 2002; Hathout and Tanguy, 2002). It totals 9,393 verb-noun pairs.

4.1.4. Dubois

This XML resource is based on the description of French verbs by Dubois and Dubois-Charlier (1997). It classifies verbs in semantic and syntactical classes and also provides information about some derivatives of the verbs. Overall it contains 25,609 verb entries and mentions 33,955 derivatives.

4.1.5. Prolexbase

Prolexbase is a multilingual dictionary of proper nouns (Bouchou and Maurel, 2008; Tran and Maurel, 2006). While not targeted at morphology, it nevertheless provides information about relational nouns and adjectives associated with proper nouns, e.g. Français and français (eng: “French”) are explicitly associated with France. In some cases, relational nouns and adjectives are not morphologically related to the proper noun, e.g. britannique (eng: “British”) with Royaume-Uni (eng: “United Kingdom”). Overall, it comprises 76,118 lemma and 20,614 derivational relations.

4.2. Evaluation results

4.2.1. Inflection

Two resources, Morphalou and Leff, have been evaluated regarding the inflectional phenomena. Both resources contain approximately the same amount of inflected forms (see previous section), but have been built using different methods. Part of the information in Leff has been automatically acquired and manually validated, while Morphalou’s data originate from the TLFNome, the nomenclature of the TLF (Trésor de la Langue Française). In order to evaluate the coverage of the resources, each member of the inflectionally related word pairs identified in our corpus study was looked up in the lexicon. If correctly analysed, both members of the pairs should have the same lemma, and the link between them can be computed. The coverage of each resource was calculated by considering pairs that were correctly analysed, i.e. pairs of words with the same lemma. Table 8 presents the result of the evaluation of Leff and Morphalou for inflectional pairs.

Both resources have very high coverage of inflectional processes in the three corpora. Leff appears to be a little more complete than Morphalou, since its coverage is slightly better in the Conique corpora. Moreover, on the EQuèR dataset they differ in the word pairs they cover although they have the same global coverage. Indeed, both of them cover 65 pairs of inflected words out of 69, but the covered pairs are not exactly the same. So that the global coverage made by at least one resource is slightly better than the coverage of one and only one resource. This fact shows that using two different resources for the same type of morphological phenomena can improve the global coverage of the data.

4.2.2. Derivation

Assessing derivational resources is not as straightforward as inflectional ones. The three considered morphological resources that are available for French derivational morphology are designed to address specific morphological phenomena. Dubois and VerbAction contain exclusively deverbal morphology, while Prolexbase only contains demonym nouns and relational adjectives. Consequently, assessing the relevance of these resources can only be done with the appropriate sub-part of the gold-standard. The coverage of VerbAction and Prolexbase was calculated by counting the number of pairs that have been found in them. As for Dubois, it does not literally contain verbal derivatives. Those are only mentioned with specific information from which we can deduce the derivatives. Thus, in order to evaluate the coverage of Dubois we only took into account cases where the derivatives would be automatically computable from information provided in the resource. As regards the deverbal nouns, Table 9 summarises the coverage of VerbAction and Dubois for event nouns. As we can see, VerbAction has a better coverage than Dubois, especially in lay corpora (Conique and Quæro). As for the deverbal agitative nouns, Dubois covers 100% of the Conique corpus and 75% of the Quæro corpus (no agitative noun has been found in EQuèR corpus), while VerbAction does not contain any of them, since it is devoted to action nouns. As for the demonyms and relational adjectives derived from geographical names, the result of the evaluation of Pro-
lexbase is presented in Table 10. We distinguished between Demonym, Relational adjective, and LocOrg (grouping name of place and institutional entities). The figures show that Prolexbase has a very good coverage for both De- monyms derived from a Location name, and relational adjectives derived from Demonyms or Location names. In the Quero corpus no Demonym > RelAdj pair has been found, and in the EQueR corpus, only one pair LocOrg > RelAdj has been found and is correctly analysed in Prolexbase.

When evaluating the three different types of derivational resources (VerbAction, Dubois and Prolexbase) on the whole gold-standard the coverage is not as high as on specific parts of the gold-standard. Indeed, the global coverage of the three resources is only slightly higher than 50%, as shown in Table 11. Morphological resources are efficient for specific morphological processes. But very frequent phenomena seem to be lacking in the assessed resources, like deverbal agent nouns formation and denominal adjectives formation. This is highly regrettable since the latter process is the second most frequent in the pairs in Conique and Quero, and the first more frequent in EQueR, as shown in section 3. Consequently, efforts on building resources should be put on this particular phenomenon to address such a frequent issue.

5. Conclusion and Perspectives

In this paper, we have presented an in-depth analysis of the role of morphology in one specific NLP task: Question Answering. Based on a large-scale annotation of three distinct corpora of question-answer pairs, we have built a gold-standard of morphologically related words in question-answer pairs. This gold-standard provides interesting insights on the kind of morphological relations that are mostly implied, and it uncovers those which could have a significant impact on the application performance. Moreover, based on this gold-standard, we have evaluated the coverage of existing morphological resources for French. This evaluation proved that the analyzed French inflectional and derivational resources have a good coverage of the morphological knowledge they target. But some important morphological phenomena are lacking a dedicated resource such as denominal adjectives and agent deverbal nouns. In the future, we hence plan to develop some new French morphological resources for these two phenomena.

Acknowledgments

This work has been partially financed by OSEO under the Quero program.

6. References

8 Dubois does contain information about deverbal agent nouns. However, these nouns are not explicitly part of the resource and would have to be automatically computed from the indications provided in the resource.
Table 10: Coverage of Prolexbase for Geographic morphological relation

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Morphological relation (nbr.)</th>
<th>Found in Prolexbase nbr.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conique</td>
<td>Demonym - Rel Adj (1)</td>
<td>1</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>LocOrg - Demonym (6)</td>
<td>6</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>LocOrg - Rel Adj (45)</td>
<td>43</td>
<td>95.6</td>
</tr>
<tr>
<td>Quero</td>
<td>LocOrg - Demonym (8)</td>
<td>5</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td>LocOrg - Rel Adj (8)</td>
<td>8</td>
<td>100.0</td>
</tr>
<tr>
<td>EQueR</td>
<td>LocOrg - Rel Adj (1)</td>
<td>1</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>69</td>
<td>64</td>
</tr>
</tbody>
</table>

Table 11: Global coverage of the three derivational resources on derivational pairs

<table>
<thead>
<tr>
<th>Corpus (nbr.)</th>
<th>Global coverage nbr.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conique (174)</td>
<td>98</td>
<td>56.3</td>
</tr>
<tr>
<td>Quero (70)</td>
<td>41</td>
<td>58.6</td>
</tr>
<tr>
<td>EQueR (70)</td>
<td>26</td>
<td>37.1</td>
</tr>
<tr>
<td>Total (314)</td>
<td>165</td>
<td>52.5</td>
</tr>
</tbody>
</table>

Paul McNamee, Charles Nicholas, and James Mayfield. 2009. Addressing morphological variation in alphabetic languages. In SIGIR ’09: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pages 75–82, New York, NY, USA. ACM.

