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Abstract

This paper presents a new method to validate risk models: the Risk Map. This
method jointly accounts for the number and the magnitude of extreme losses and
graphically summarizes all information about the performance of a risk model. It
relies on the concept of a super exception, which is de�ned as a situation in which
the loss exceeds both the standard Value-at-Risk (VaR) and a VaR de�ned at an
extremely low coverage probability. We then formally test whether the sequences
of exceptions and super exceptions are rejected by standard model validation tests.
We show that the Risk Map can be used to validate market, credit, operational, or
systemic risk estimates (VaR, stressed VaR, expected shortfall, and CoVaR) or to
assess the performance of the margin system of a clearing house.
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1 Introduction

The need for sound risk management has never been more essential than in today�s �nancial

environment. Of paramount importance for risk managers and regulators is the ability to

detect misspeci�ed risk models as they lead to misrepresentation of actual risk exposures

(Blöchlinger, 2011). In this paper, we focus on a popular family of risk models, namely

the tail risk models. These models can generate a variety of risk measures including the

Value-at-Risk (VaR), which is de�ned as an extreme quantile of a return or pro�t-and-loss

(P&L) distribution, as well as stressed VaR, expected shortfall, and CoVaR. In practice,

tail risk models are used to measure downside risk (Bali, Demirtas and Levy, 2009), con-

struct portfolios (Basak and Shapiro, 2001), quantify �nancial institutions� exposures to,

and capital requirements for, market, credit, and operational risks (Jorion, 2007), set mar-

gin requirements for derivatives users (Booth et al., 1997), and measure the systemic-risk

contribution of a �nancial institution (Adrian and Brunnermeier, 2011).

In this paper, we present a new tool, called the Risk Map, for validating risk models. To

grasp the intuition of our approach, consider two banks that both have a one-day Value-

at-Risk (VaR) of $100 million at the 1% probability level. This means that each bank

has a one percent chance of losing more than $100 million over the next day. Assume

that, over the past year, each bank has reported three VaR exceptions, or days when

the trading loss exceeds its VaR, but the average VaR exceedance is $1 million for bank

A and $999 million for bank B. In this case, standard backtesting methodologies would

indicate that the performance of both models is equal (since both models lead to the

same number of exceptions) and acceptable (since the annual number of exceptions is

close enough to its target value of 2.5 = 1% of 250 trading days). The reason is that

current backtesting methodologies only focus on the number of VaR exceptions and totally

disregard the magnitude of these exceptions (Berkowitz, 2001, and Stulz, 2008).

However, in practice, market participants and regulators do care about the magnitude

of their losses.1 It is indeed the severity of the trading losses, and not the exceptions per

se, that jeopardize the solvency of �nancial institutions. For instance, banking regulators

may want to penalize more heavily � in terms of capital requirements � a bank that ex-

periences extremely large exceptions than a bank that experiences moderate exceptions.

Furthermore, it makes a big di¤erence whether the margin of a given derivative market

1In a recent survey on trading risk, members of the Basel Committee state that "account for the severity
of losses beyond the con�dence threshold [...] is especially important for regulators, who are [...] concerned
about exactly these losses" (Basel Committee on Banking Supervision, 2011b).
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participant is exceeded by a small or by a large amount as it creates a shortfall of the

same amount that the clearing house must cover. To the best of our knowledge, there is

no general hypothesis-testing framework available in the literature that accounts for both

the number and the magnitude of extreme losses. The objective of this paper is to �ll this

gap.

The Risk Map approach jointly accounts for the number and the magnitude of the VaR

exceptions. The basic intuition is that a large loss not only exceeds the regular VaR de�ned

with a probability B (e.g. 1%) but is also likely to exceed a VaR de�ned with a much lower

probability B0 (e.g. 0.2%). On this ground, we de�ne a VaR exception as rt < �V aRt(B),

where rt denotes the P&L, and a VaR super exception as rt < �V aRt(B
0), with B0 much

smaller than B. As an illustration, we show in Figure 1 the joint evolution of the daily P&L,

V aR (B), and V aR (B0) for a hypothetical portfolio. We see that, as expected, �V aR (B0)

is systematically more negative than �V aR (B) as V aR (B0) is measured further left in the

tail of the P&L distribution. For this portfolio, there are four exceptions and three super

exceptions.

< Insert Figure 1 >

In practice, the choice of the probability B0 is key. We show in this paper that this

parameter can be either chosen freely by the user or de�ned endogenously. In the former

case, the B0 parameter must re�ect the loss aversion of the investor whereas in the latter

case, B0 is set such that V aR (B0) corresponds either to the stressed VaR or to the expected

shortfall.

In order to validate the risk model, we formally test whether the sequences of exceptions

and super exceptions satisfy standard backtesting conditions. Formally, we need to test

the joint null hypothesis that the probability of having an exception is B and that the

probability of having a super exception is B0. Several statistical strategies can be used to

test this null hypothesis (e.g. log-likelihood ratio, hit regression test) and some statistical

tests are readily available in the literature. We then report the p-value of the statistical

test in a three-dimensional graph, which we call the Risk Map, that graphically summarizes

all information about the performance of a risk model. To sum up, what the Risk Map

approach allows us to do is to simplify an intricate problem de�ned over a {loss frequency,

loss severity} domain to an easier problem de�ned over a {loss frequency, loss frequency}

domain.
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There are several advantages to the Risk Map approach. First, it preserves the sim-

plicity of the standard validation techniques (Kupiec, 1995), while still accounting for the

magnitude of the losses. Thus, the Risk Map approach is a three-dimensional generaliza-

tion of the "Tra¢c Light" system (Basel Committee on Banking Supervision, 2006, 2011a)

which remains the reference backtest methodology for banking regulators.2 Second, it is a

formal hypothesis testing framework that provides p-values and rejection ranges. Indeed,

it allows us to jointly test the null hypothesis that both the numbers of VaR exceptions

and super exceptions are accurate. Third, the Risk Map approach is general and can be

used with any tail risk model as it only relies on the sequence of exceptions and super

exceptions. In particular, no assumptions need to be made regarding the distribution of

the P&L. For instance, it can be used to backtest the market VaR of a single asset, port-

folio, trading desk, business line, bank, insurance company, mutual fund, or hedge fund

(Berkowitz, Christo¤ersen and Pelletier, 2011). It also permits to jointly validate the stan-

dard and stressed VaRs that banks must compute under Basel III, as well as expected

shortfalls. Furthermore, the Risk Map can be used to backtest credit-risk VaRs (Lopez and

Saidenberg, 2000), operational-risk VaRs (Dahen and Dionne, 2010), or VaR-based margins

for derivative users (Cruz Lopez et al., 2011). Finally, we show that the Risk Map can be

used to validate the systemic risk measure recently proposed by Adrian and Brunnermeier

(CoVaR, 2011) as it is de�ned as the conditional quantile of a bank asset return. The Risk

Map is, to the best of our knowledge, the �rst method allowing one to backtest a systemic

risk measure.

The outline of the paper is as follows. In the next section, we describe our model valida-

tion framework. In Section 3, we present several applications of the Risk Map methodology

that sequentially deal with market risk, systemic risk, and margin requirements. We sum-

marize and conclude our paper in Section 4.

2Accounting for VaR exceedances is particularly important in the context of the Basel III regulation
(Basel Committee on Banking Supervision, 2011a). Indeed, under Basel III, capital requirements for market
risk depend on both the VaR and stressed VaR (calibrated to historical data from a continuous 12-month
period of signi�cant �nancial stress) of the bank:

c = max
�
V aRtjt�1;m � V aRavg

	
+max

�
sV aRtjt�1;ms � sV aRavg

	
:

As the value of the multiplicative factors m and ms only depends on the backtesting results of the VaR, but
not of the stressed VaR, it is particularly important to account for the magnitude of the VaR exceedances.
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2 Validation Framework

2.1 Background

Let rt denote the return or P&L of a portfolio at time t and V aRtjt�1(B) the ex-ante one-

day ahead VaR forecast for an B coverage rate conditionally on an information set Ft�1.

In practice, VaR is computed using either non-parametric techniques, such as Historical

Simulation (Pritsker, 2006), or parametric techniques, such as Monte Carlo simulation

(Broadie, Du and Moallemi, 2011). If the VaR model is adequate, then the following

relation must hold:

Pr[rt < �V aRtjt�1(B)] = B. (1)

Let It (B) be the hit variable associated with the ex-post observation of a VaR(B) violation

at time t:

It(B) =

(
1 if rt < �V aRtjt�1(B)

0 otherwise
: (2)

Backtesting procedures are typically only based on the violation process fIt (B)g
T

t=1. As

stressed by Christo¤ersen (1998), VaR forecasts are valid if and only if this violation se-

quence satis�es the Unconditional Coverage (UC) hypothesis.3 Under the UC hypothesis,

the probability of an ex-post return exceeding the VaR forecast must be equal to the B

coverage rate:

Pr [It(B) = 1] = E [It(B)] = B. (3)

A key limitation of this approach is that it is unable to distinguish between a situation

in which losses are below but close to the VaR (e.g. bank A in the introduction) and

a situation in which losses are considerably below the VaR (e.g. bank B).4 A solution

proposed by Lopez (1999a,b) consists in considering the excess losses over and above the

3Validation tests are also based on the independence hypothesis (IND), under which VaR violations
observed at two di¤erent dates for the same coverage rate must be distributed independently. Formally,
the variable It(B) associated with a VaR violation at time t for a coverage rate B should be independent of
the variable It�k(B), 8k 6= 0. In other words, past VaR violations should not be informative about current
and future violations. When the UC and IND hypotheses are simultaneously valid, VaR forecasts are said
to have a correct Conditional Coverage (CC), and the VaR violation process is a martingale di¤erence,
with E [It(B)� B Ft�1] = 0. For a test of the CC hypothesis, see Christo¤ersen (1998), Christo¤ersen and
Pelletier (2004), Engle and Manganelli (2004), and Berkowitz, Christo¤ersen and Pelletier (2011).

4Other standard backtesting methods also disregard the magnitude of the losses beyond the VaR
(Christo¤ersen and Pelletier, 2004; Engle and Manganelli, 2004; Gaglianone et al., 2011; Berkowitz,
Christo¤ersen and Pelletier, 2011).
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VaR and de�ning a loss function:

Lt(B) =

(
(rt + V aRtjt�1(B))

2 if rt < �V aRtjt�1(B)

0 otherwise
: (4)

Lopez proposes various heuristic criteria in order to assess the magnitude of these excess

losses. However, such criteria convey only limited information since no normative rule can

be deduced for the magnitude of these excess losses.

Another possibility is to complement the VaR data with some extra risk estimates. A

�rst approach is to consider the average loss beyond the VaR using the concept of expected

shortfall:

ESt (B) =
1

B

Z B

0

F�1 (p) dp (5)

where F (:) denotes the cumulative distribution function of the P&L (Artzner et al., 1999).

Alternatively, Berkowitz (2001) suggests testing the entire P&L density � see Christo¤ersen

(2009) for a discussion of the backtesting of ES or density forecasts.

Di¤erently, we propose a model validation methodology that is based on the number and

the severity of VaR exceptions.5 Our approach exploits the concept of a super exception,

which we de�ne as a loss greater than V aR(B0), with B0 much smaller than B (e.g. B = 1%

and B0 = 0:2%). One can similarly de�ne a hit variable associated with V aRt(B
0):

It(B
0) =

(
1 if rt < �V aRtjt�1(B

0)

0 otherwise
with B0 < B: (6)

The de�ning feature of our approach is to account for both the frequency and the magnitude

of trading losses. The intuition of our test is the following. If the frequency of super

exceptions is abnormally high, this means that the magnitude of the losses with respect to

V aR(B) is too large.

For both VaR exceptions and super exceptions, we propose to use a standard backtesting

procedure. Consider a time series of T VaR forecasts for an B (respectively B0) coverage

rate and let N (respectively N 0) be the number of associated VaR violations:

N =
TX

t=1

It (B) N 0 =
TX

t=1

It (B
0) : (7)

5We show in Section 3.1.3 that our method can also be used with expected shortfalls.
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If we assume that the It (:) variables are i:i:d:; then under the UC hypothesis, the total

number of VaR exceptions follows a Binomial distribution:

N � B (T; B) (8)

with E (N) = BT and V (N) = B (1� B)T: Thus, it is possible to test the UC hypothesis

for the VaR expectations as:

H0 : E [It (B)] = B (9)

H1 : E [It (B)] 6= B: (10)

Under H0; the corresponding log-likelihood ratio statistics is de�ned as:

LRUC (B) = �2 ln
h
(1� B)T�N BN

i
+ 2 ln

"�
1�

N

T

�T�N �
N

T

�N#
d
�!
T!1

�2 (1) (11)

where the LRUC statistic is asymptotically chi-square with one degree of freedom (Jorion,

2007). A similar validation test can be de�ned for super exceptions:

H0 : E [It (B
0)] = B0 (12)

H1 : E [It (B
0)] 6= B0: (13)

An LR test statistic LRUC (N
0) can be de�ned as in equation (11), except that we now use

the coverage rate B0 and the corresponding number of hits N 0.

2.2 The Risk Map

The goal of the Risk Map is to present the backtesting results for a given risk model in

a graphical way. A �rst approach is to jointly display the non-rejection zones for the

LRUC (B) and LRUC (B
0) tests. For instance, with 500 observations, if the number of

V aR (1%) exceptions is between two and nine, we cannot reject the risk model at the 95%

con�dence level. Similarly, if the number of super exceptions is strictly greater than two,

we reject the validity of the VaR model at a similar con�dence level for the reason that it

leads to too many super exceptions. It is then possible to check whether any risk model lays

inside the global non-rejection area, i.e., 2 6 N 6 9 and N 0 6 3. It is important to notice

that in this �rst approach, we investigate this double validation process (loss frequency +

loss magnitude) in a disjointed way. It boils down to consider the LRUC (B) and LRUC (B
0)

tests independently, which does not allow us to control for the nominal size of the test, i.e.,
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the probability of rejecting a valid model. An alternative approach is to jointly test the

number of VaR exceptions and super exceptions:

H0 : E [It (B)] = B and E [It (B
0)] = B0: (14)

This joint null hypothesis can be tested using either a multivariate version of the uncondi-

tional coverage test (LRUC) or of the hit regression test of Engle and Manganelli (2004).

We follow Pérignon and Smith (2008) and de�ne several indicator variables for revenues

falling in each disjoint interval:

J1;t = It (B)� It (B
0) =

(
1 if � V aRtjt�1(B

0) < rt < �V aRtjt�1(B)

0 otherwise
(15)

J2;t = It (B
0) =

(
1 if rt < �V aRtjt�1(B

0)

0 otherwise
(16)

and J0;t = 1 � J1;t � J2;t = 1 � It (B). The fJi;tg
2
i=0 are Bernoulli random variables equal

to one with probability 1 � B, B � B0, and B0, respectively. However, they are clearly

not independent since only one J variable may be equal to one at any point in time,
P2

i=0 Ji;t = 1. We can test the joint hypothesis (14) of the speci�cation of the VaR model

using a simple Likelihood Ratio test. Let us denoteNi;t =
PT

t=1 Ji;t, for i = 0; 1; 2, the count

variable associated with each of the Bernoulli variables. This multivariate unconditional

coverage test is a likelihood ratio test LRMUC that the empirical exception frequencies

signi�cantly deviate from the theoretical ones. Formally, it is given by:

LRMUC (B; B
0) = �2 ln

h
(1� B)N0 (B� B0)

N1 (B0)
N2
i

+2 ln

"�
N0
T

�N0 �N1
T

�N1 �N2
T

�N2#
d
�!
T!1

�2 (2) : (17)

Under the null (14) of joint conditional coverage for the VaR exceptions and super excep-

tions, the LRMUC statistic is asymptotically chi-square with two degrees of freedom.
6 The

p-values of the test are displayed for di¤erent combinations of number of exceptions N and

super exceptions N 0 in Figure 2. Alternatively, a Risk Map can be constructed based on

the rejection zones for di¤erent con�dence levels (Figure 3). Note that the cells below the

diagonal are not colored as they correspond to situations in which the number of super

6The p-values of the test can be based on either the asymptotic distribution or the �nite sample dis-
tribution, which can be generated by simulation. See Section 2.3 for more discussion on �nite sample
properties.
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exceptions exceeds the number of exceptions, which is of course impossible. If the (N;N 0)

pair corresponds to a green cell, we conclude that we cannot reject the null hypothesis

E [It (B)] = B and E [It (B
0)] = B0 at the 95% con�dence level. If (N;N 0) falls in the orange

zone, we can reject the null at the 95% but not at the 99% con�dence level. Finally, a red

cell implies that we can reject the null hypothesis at the 99% con�dence level. Note also

that, for technical reasons, the p-values for the �rst-column cells (N 0 = 0) and diagonal

cells (N 0 = N) are computed from a univariate LRUC test because the multivariate test

cannot be computed in these cases. Similarly, when N 0 = N = 0, none of the LR test can

be computed.

< Insert Figures 2 and 3 >

We illustrate the di¤erence between the Risk Map and standard validation tests using a

simple example. Consider a sample of 500 daily VaR forecasts generated from a hypothetical

VaR model. Out of these 500 days, there are 10 exceptions. According to the LRUC test,

such model would be rejected as the 95% non-rejection range for this test is 2 � N � 9.

Di¤erently, with the Risk Map, a model with 10 exceptions would not be rejected at the

95% con�dence level as long as there are either 1, 2, or 3 three super exceptions. However,

the model would be rejected if the number of super exceptions is N 0 = 0 or N 0 > 3.

What the Risk Map does is to test whether both N and N 0 are at an acceptable level.

The intuition is as follows: if there are too few super exceptions, it means that even if

the model is valid with respect to the B coverage rate, it turns out not to be valid with

respect to lower coverage rates. In that sense, the model is considered to be globally

invalid. For instance, if among the 10 exceptions, there is no super exception, the VaR

model overestimates the risk for the B0 coverage rate, which casts doubt on the overall

performance of the risk model. On the contrary, if there are four or more super exceptions,

the model is also rejected as it underestimates V aR(B0). In the latter case, even if the

VaR model is validated on the basis of the V aR(B) exceptions, the magnitude of these

exceptions is too large.

2.3 Extended Risk Map and Finite Sample Properties

The Risk Map can be enriched with information about empirical frequencies of VaR (super)

exceptions under the assumption that the VaR model is valid. This additional layer of
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information complements the p-values and is independent of the statistical test used to

build the Risk Map. To do so, we draw T observations from a uniform distribution over

[0; 1]. The simulated violation process It (B) is then de�ned by a binary variable that takes

a value of one if the simulated value is less than B and zero otherwise. The simulated super

violation process It (B
0) is de�ned in the same way with a cut-o¤ of B0. Theoretically, these

violation processes have the same properties as the processes obtained by comparing valid

ex-ante VaR forecasts with ex-post losses. We repeat the experiment 10,000 times and for

each simulation we count the number of violations (N) and super violations (N 0).

The upper Risk Map in Figure 4 displays the empirical frequencies of each pair (N;N 0)

for T = 500, B = 1%, and B0 = 0:2%. This extended Risk Map provides useful information

about the validity of the risk model. Consider for instance a model that yields 13 exceptions

and 3 super exceptions. Figure 4 indicates that this case has only 3 chances out of 10,000

to arise with a valid risk model. Di¤erently, an outcome like (N = 5; N 0 = 1) has more

than 700 chances out 10,000 to occur with a valid model, which suggests that the analyzed

model is more likely to be valid.

< Insert Figure 4 >

This extended Risk Map can also be seen as a graphical representation of the �nite

sample properties of the statistical test used to build the Risk Map (i.e., the LRMUC test

in our case). The statistical test determines the shape of the non-rejection area, which is the

green zone if we consider a 5% level of nominal risk. Logically, if the test is well sized, most

(N;N 0) observations fall inside the non-rejection area. More precisely, the sum of empirical

frequencies of pairs of violations/super violations that are outside the non-rejection area

corresponds to the empirical size of the test (de�ned as the risk of rejecting a valid model)

for a �nite sample size of 500. If the test is well sized, 95% of (N;N 0) observations remain

inside the non-rejection area.

To further illustrate the size performance of the Risk Map, we report in Panel A of

Table 1 the empirical sizes considering successively the cases when [B = 5%; B0 = 1%], [B =

2%; B0 = 0:4%], and [B = 1%; B0 = 0:2%], as well as various sample sizes. The reported

empirical sizes correspond to the rejection rates calculated over 10; 000 simulations for a

nominal size of 5%. We can observe that the size of the Risk Map is quite close to the

nominal size, even for small samples.

9



< Insert Table 1 >

In the same manner, the Risk Map can be used to illustrate the power of the test

(de�ned as the probability to reject an invalid model). Here, the larger the number of

exceptions and super exceptions that fall outside the non-rejection zone, the more powerful

the test. In this case, two elements are required: a data generating process for the P&L and

a risk model to produce the VaR forecasts. Let us consider the following experiment. We

assume that the P&L are generated from a Markov Switching GARCH model (Bauwens,

Preminger and Rombouts, 2010). This particular model allows both the conditional mean

and the volatility to change from one state to the next:

rt = �st + �tut (18)

�2t = !st + Bst
�
rt�1 � �st�1

�2
+ Cst�

2
t�1 (19)

where ut is i:i:d:N: (0; 1) and st denotes a two-state hidden Markov Chain with a transition

matrix de�ned by the probabilities
�
�ij = Pr (st = ij st�1 = j)

	
: The parameters values

are those estimated by Bauwens, Preminger and Rombouts (2010) for the S&P 500 index

between 2001 and 2007.7 To illustrate the power of the test, we assume that the VaR model

is misspeci�ed and that VaR forecasts are computed according to the Historical Simulation

method. This method, widely used by professionals, simply consists in calculating the

empirical quantile of the past P&L over a rolling window (set here to 500 observations).

The VaR forecasts are clearly invalid in this case, especially in periods of crisis, in the sense

that they do not react fast enough to changes in the P&L dynamics (Pritsker, 2006). We

simulate 10,000 P&L sequences of 1,000 observations each, and for each of them we compute

500 Historical Simulation out-of-sample VaR(1%) and VaR(0.2%) forecasts. Corresponding

violations and super violations are then obtained by comparing these forecasts to the ex-

post losses. Similar to what we did in the case of the valid model, we count for each

simulation the number of exceptions (N) and super exceptions (N 0).

The lower Risk Map in Figure 4 displays the empirical frequencies of each couple (N;N 0)

for this invalid model. The Risk Map reveals that most of the (N;N 0) couples are outside

the non-rejection area (95% con�dence level). This con�guration clearly indicates that the

VaR model employed is misspeci�ed. In this case, the sum of empirical frequencies of pairs

7The parameter values are !1 = 0:419; !2 = 1:988; B1 = 0:014; B2 = 0:115; C1 = C2 = 0; �1 = 0:046;
�
2
= �0:040; �

11
= 0:994, and �

22
= 0:986:
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of violations/super violations that are outside the non-rejection area corresponds to the

empirical power of the LR test.

Similar to what we did for size, we report in Panel B of Table 1 the empirical power of

the Risk Map and of the LRUC test for various sample sizes and coverage rates (B; B
0) : The

empirical power corresponds to the rejection rates (for a nominal size equal to 5%) based

on 10,000 replications of the experiment previously described (MS GARCH DGP and VaR-

HS). For comparison purposes, we report in Panel C the power of the LRUC test for the 1%,

2%, and 5% coverage rates. Two conclusions can be drawn from this experiment. First, the

power of the Risk Map generally increases with the sample size and the coverage rate (the

latter result being true only for moderately sized samples, as in Berkowitz, Christo¤ersen

and Pelletier, 2011). Second, the power of the Risk Map is at least as good as the one of

the LRUC test.

2.4 Computation of VaR(B0)

In most applications, Risk Map users, namely risk managers and regulators, will have both

data on V aR(B) and V aR(B0). Nevertheless, we show in this subsection that a Risk Map

can still be generated when only V aR(B) is available. This could for instance be the case

when a bank only discloses to the public its VaR at the 1% level. To overcome this problem,

we propose a calibration procedure allowing us to extract V aR(B0) from V aR(B), with B0

< B. The main elements of our procedure are (1) the data generating process of the P&L,

(2) the internal VaR model used by the bank, and (3) the auxiliary model that we use to

generate the V aR(B0) estimates.

We assume that the P&L distribution is a member of the location scale family and, for

simplicity, that it is centered, i.e., E (rt) = 0.
8 Under these assumptions, the conditional

VaR can be expressed as an a¢ne function of the conditional variance of the P&L, denoted

ht:

V aRtjt�1(B; C) = �
p
htF

�1 (B; C) (20)

where F�1 (B; C) denotes the B-quantile of the conditional standardized P&L distribution.

We assume that this distribution is parametric and depends on a set of parameters C.

A �rst way to compute V aR(B0) is to use the Quasi-Maximum Likelihood (QML) esti-

8When E (rt) 6= 0, the estimated VaR can simply be deduced from (20) by adding the unconditional
average return.
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mates of the conditional variance and of the conditional quantile:

V aRtjt�1(B
0; bC) = �

q
bhtF�1

�
B0; bC

�
(21)

where bh and bC are the QML estimates. Alternatively, we propose an approach that does
not rely on the QML estimate bht. Given the VaR forecast reported by the bank, V aR(B),
we de�ne an implied P&L conditional variance as:

q
eht = �

V aRtjt�1(B)

F�1
�
B; bC

� : (22)

We here proceed by analogy with the option pricing literature, in which implied volatility

is extracted from option prices (Taylor, 2005). V aR(B0) is then de�ned as:

V aRtjt�1(B
0; bC) = �

q
ehtF�1

�
B0; bC

�
= V aRtjt�1(B)

F�1
�
B0; bC

�

F�1
�
B; bC

� : (23)

Interestingly, we notice that the auxiliary model is only used to get an estimate of the

conditional quantile F�1
�
B; bC

�
. As a result, this process mitigates as much as possible the

impact of a misspeci�cation of the auxiliary model on the VaR estimates. Implementing

this calibration method requires two ingredients: (1) an auxiliary model for the condi-

tional volatility ht, such as a GARCH or stochastic volatility model, and (2) a conditional

distribution for the P&L, which depends on a set of parameters C.

In the Appendix, we use a Monte Carlo study to assess the empirical performance

of our calibration procedure. We use a GARCH model as the auxiliary model and a t-

distribution for F . In that case, the set of parameters C simply corresponds to the degree

of freedom of the t-distribution, which can be estimated by QML. Overall, we �nd that this

calibration procedure leads to reliable estimates for V aR(B0). Furthermore, we implement

this calibration procedure on real data in Section 3.1.1.

3 The Risk Map at Work

In this section, we present a variety of applications for the Risk Map. The di¤erent areas

of application include market risk modeling, systemic risk measurement, and margins for

derivatives users. From one application to the next, it is only the de�nition of the r variable

12



that is changing. It denotes successively the P&L of a bank trading portfolio, the asset

return of a �nancial institution and of the �nancial system, and the change in a derivatives

(portfolio) price, respectively.

3.1 Market Risk

3.1.1 Bank VaR

A natural application of the Risk Map is to backtest the VaR of a �nancial �rm. It is indeed

key for both risk managers and banking regulators to check the validity of banks� VaR

engines as capital requirements depend on banks� VaR internal estimates (Jorion, 2007, and

footnote 2). Berkowitz and O�Brien (2002) show that VaR estimates of leading US banks

tended to be conservative during the late nineties. Using P&L data from four business lines

in a large international commercial bank, Berkowitz, Christo¤ersen, and Pelletier (2011)

�nd evidence of volatility dynamics and clustering in VaR exceptions. Frésard, Pérignon

and Wilhelmsson (2011) report that during the global �nancial crisis, the number of VaR

exceptions increased sharply, with some �nancial institutions experiencing more than 50

VaR(1%) exceptions per year. However, prior empirical literature did not consider the

magnitude of the VaR exceedances.

We use actual VaR and P&L for a large European bank, namely La Caixa, which is

the third largest Spanish bank.9 We use daily one-day ahead VaR(1%) and daily P&L for

that bank over the period 2007-2008. We plot in the upper part of Figure 5, the bank

VaR along with the actual P&L. As our sample period includes the beginning of the recent

�nancial crisis, there is a clear regime shift in the variability of the trading revenues. We

see that volatility spiked after the end of the �rst semester of 2007. Similarly, the VaR(1%)

jumped from around 2 million euros during 2007-Q1-Q2 to around 4 million afterwards.

We provide some summary statistics on the P&L and VaR time series in Table 2.

< Insert Table 2 >

VaR forecasts de�ned at a lower coverage rate are required to implement the Risk

Map methodology but are not disclosed by the bank. As a result, we use the calibration

9The VaR and P&L �gures correspond to the entire trading portfolio of the bank. VaR and P&L data
have been extracted directly from the �rm�s annual reports, as in Frésard, Pérignon and Wilhelmsson
(2011).
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procedure presented in Section 2.4 to extract the VaR(0.2%) series from the VaR(1%) series.

We use a t-GARCH as the auxiliary model for the P&L and report the estimated parameters

in Panel B of Table 2. Out of the four parameters, only the degree of freedom bv is needed to
estimate the quantile of the conditional distribution. As shown in equation (22), the implied

conditional variance eht is given by the ratio of VaR(1%) and the quantile of the conditional
distribution. Given the implied variance eht, we then compute VaR(0.2%) following equation
(23). We display in Panel A of Table 2 some summary statistics on VaR(0.2%). We notice

that the ratio of means of VaR(0.2%) and VaR(1%) is 1.73, which corresponds to the ratio

of quantiles de�ned in equation (23). Interestingly, we see that VaR(0.2%) has the same

skewness and kurtosis as VaR(1%) which suggests that our calibration procedure preserves

the main statistical properties of the original VaR(B).

< Insert Figure 5 >

Over this sample period, there were 13 VaR exceptions (N = 13) and three super

exceptions (N 0 = 3) for La Caixa. The number of violations de�ne the coordinates of the

point associated with the risk model used by the bank in our Risk Map representation.

The lower part of Figure 5 displays the point associated with La Caixa on the Risk Map

(see the cross at (3;13)). We conclude that we can reject the validity of the VaR model of

the bank since the observation falls outside the non-rejection zone colored in green. The

corresponding p-value of the LRMUC test is 0.0108.

One may wonder whether our conclusion is a¤ected by the value of the probability B0.

If we assume that there is a continuum of VaR(B0) associated with a continuum of B0, the

number of super exceptions would remain the same for a range of value for B0. For La Caixa,

this range is pretty large as it goes from B=10 to B=4:3. Furthermore, we plot in Figure

6 both the number of super exceptions and the p-value of the LRMUC test for di¤erent B
0

coe¢cients. The main take away from this �gure is that the p-value remains remarkably

stable, which con�rms the robustness of our results. Note also that the question about

the value of B0 is not relevant anymore under Basel III. Indeed, as shown in the next two

subsections, B0 becomes in this case endogenous.

< Insert Figure 6 >
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In the context of banking regulation, the Risk Map can be used to generalize the "Tra¢c

Light" system of the Basel Committee. Under current regulation, part of the capital

requirement for banks comes from the market risk exposure of the banks. More speci�cally,

the Market Risk Charge depends on the V aR(1%) and a multiplicative factor which is set

to 3 plus a penalty term �. The value of the applicable penalty only depends on the number

of exceptions: � = 0 for N < 5, � = 0:4 for N = 5, � = 0:5 for N = 6, ..., and � = 1 for

N > 10. We suggest generalizing this approach by accounting jointly for the number and

the magnitude of the exceptions within the framework of the Risk Map. We present in Table

3 the value of the penalty term for di¤erent number of exceptions and super exceptions

and di¤erent sample sizes (T = 250 and T = 500). The no-penalty zone corresponds to the

green zone of the Risk Map and the maximum penalty zone corresponds to the red zone

(see Figure 3). Between these two zones, the bank incurs an increasing penalty, which is

obtained through linear interpolation. As an illustration, given the backtesting results in

Figure 5, the penalty coe¢cient that would apply to La Caixa is 0.7.

< Insert Table 3 >

3.1.2 Bank Stressed VaR

Under Basel III, all �nancial institutions with material trading activities must compute

both their VaR using recent data and their stressed VaR (sVaR) using data from a par-

ticularly volatile period (Basel Committee on Banking Supervision, 2011a). As shown in

equation (20), the VaR is an a¢ne function of the conditional variance of the P&L, denoted

ht. Di¤erently, the sVaR depends on a conditional variance of the P&L measured over a

particularly volatile period, denoted Ht:

sV aRtjt�1(B;B) = �
p
HtF

�1 (B;B) (24)

where B denotes the parameters of the P&L distribution F in the high-volatility period.

The Risk Map can be used to validate globally the VaR engine of the bank using both

VaR and sVaR �gures. Note that this is, to the best of our knowledge, the �rst attempt to

validate a sVaR, which is the preferred market-risk measure under Basel III. To do so, we

de�ne the coverage rate B0 for which V aR(B0; C) is as close as possible to sV aR(B;B):
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bB0 = argmin
fB0g

(
1

T

TX

t=1

�
V aRtjt�1(B

0; C)� sV aRtjt�1(B;B)
�2
)T

t=1

: (25)

In this case, we de�ne a super exception as a loss exceeding the stressed VaR and consider

the associated hit variable:

It(B
0) =

(
1 if rt < �sV aRtjt�1(B;B)

0 otherwise
: (26)

The relevant joint null hypothesis remains equation (14). A particularly appealing feature

of applying the Risk Map to stressed VaRs is that the probability B0 becomes endogenous.

3.1.3 Expected Shortfall

Similarly to what we did with stressed VaR, the risk model can be validated using both

the VaR and the expected shortfall ES. The latter risk measure is de�ned as the average

loss beyond the V aR (see equation 5) and is produced by the same risk model as the VaR.

First, we identify the V aR(B0) that corresponds to the ES(B). As V aR (B0) = F�1 (B0),

then B0 = F (ES (B)).

When the P&L distribution is known, backing out the B0 probability is straightforward.

For instance, if we assume that the unconditional distribution of the P&L is a t-distribution,

then the expected shortfall is:

ES (B; v) = �

�
v

v � 1

��
1 +

1

v
F�1 (B; v)

�
f (B; v)

F (B; v)
(27)

where f (x; v) and F (x; v) respectively denote the pdf and the cdf of the t-distribution

with v degrees of freedom (Zhu and Galbraith, 2010). For B = 1% and v = 2, we obtain

B0 = F (ES (B; v) ; v) = 0:25%, which is close to our benchmark value of 0.2%.

Alternatively, when the P&L distribution is unknown, B0 can be estimated by:

bB0 = argmin
fB0g

(
1

T

TX

t=1

�
V aRtjt�1(B

0; C)� EStjt�1(B; C)
�2
)T

t=1

: (28)
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Then we de�ne the ES-based hit variable as:

It(B
0) =

(
1 if rt < �EStjt�1(B; C)

0 otherwise
(29)

and, again, consider the null hypothesis in equation (14).

3.2 Systemic Risk

Since the recent �nancial crisis, the quest for measuring and forecasting systemic risk has

never been more popular. Of particular importance is the quanti�cation of the marginal

contribution of systemically important �nancial institutions to the overall risk of the system.

While many methodologies have been recently proposed to measure systemic risk (Acharya

et al. 2010; Adrian and Brunnermeier, 2011; Engle and Brownless, 2011), there is to

the best of our knowledge no ex-post validation method for systemic risk measures. In

this section, we show that the Risk Map approach can be used to backtest systemic risk

measures.

We follow Adrian and Brunnermeier (2011) and de�ne the CoVaR measure as the VaR

of the �nancial system conditional on institutions being under distress. Formally, CoVaR is

de�ned as the B-quantile of the conditional probability distribution of the �nancial system

asset returns rj:

Pr
�
rj � �CoV aR

jjC(ri)(B)
CC C (ri)

�
= B (30)

where C (ri) denotes a conditioning event concerning �rm i. One possible conditioning

event is a situation in which the loss of �rm i exceeds its VaR:

Pr
�
rj � �CoV aR

jji (B)
CC ri � �V aRi(B)

�
= B: (31)

Given this de�nition, it is obvious that CoVaR can be backtested within the Risk Map

framework. Just like with VaR, we need to analyze the frequency of the conditional prob-

ability and the magnitude of the losses in excess of the CoVaR. The latter will provide us

with some crucial information about the resiliency of the �nancial system when a particular

�rm is in �nancial distress.

The Risk Map framework allows one to validate the CoVaR in two dimensions: number

and severity of CoVaR exceptions. We de�ne a CoVaR exception and super exception as

rj < �CoV aR jji (B) and rj < �CoV aR jji (B0), respectively. By analogy with VaR, we
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de�ne the following hit variables:

Ij(q) =

(
1 if rj < �CoV aR

jji (q)

0 otherwise
; for q = B or q = B0 (32)

with B0 < B: By de�nition of the CoVaR exception (and super exception), we have:

E
�
Ij(q)

CC ri � �V aRi(q)
�
= q: (33)

It is possible to transform the conditional expectation (33) into an unconditional one since

the condition (33) implies E [Ij(q)� I i(q)] = q2 for q = B or q = B0, where I it(B) is the

standard VaR(B) hit variable for institution i:

I i(B) =

(
1 if ri < �V aR

i(B)

0 otherwise
: (34)

So, the CoVaR-Risk Map can be de�ned as the non-rejection area of the joint test:

H0 : E
�
Ij(B)� I i(B)

�
= B2 and E

�
Ij(B0)� I i(B)

�
= B02: (35)

Under the null, conditional on the distress of institution i, the probability to observe a loss

in the �nancial system larger than the CoVaR(B) is precisely equal to B, and the probability

to observe a CoVaR super exception should not exceed B0.

The CoVaR Risk Map can be constructed by analogy with the VaR Risk Map. Given

a sequence of estimated conditional CoVaR for the system,
n
CoV aR

jji
tjt�1 (q)

oT
t=1

for q = B

and q = B0, we compute the sequences of hits
�
Ijt (q)

	
. The corresponding test statistic

can then directly be derived from the LRMUC (B; B
0) test shown in (18). In this case,

N1 =
PT

t=1

�
Ijt (B)� I

j
t (B

0)
�
� I it (B), N2 =

PT

t=1 I
j
t (B

0) � I it (B), and N0 = T �N1 �N2:

The non-rejection area of the test can be represented as in Figure 3. For a given �nancial

institution i, the numbers of CoVaR exceptions and CoVaR super exceptions correspond

to one particular cell on the Risk Map. It produces a direct diagnostic about the validity

of the systemic risk measure, which jointly accounts for the number and the magnitude of

the exceptions.

Finally, given the CoVaR de�nition, it is possible to compute the di¤erence between

(1) the VaR of the �nancial system conditional on the distress of a particular �nancial

institution i and (2) the VaR of the �nancial system conditional on the median state of
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institution i: Adrian and Brunnermeier (2011) call this di¤erence �CoV aR:

�CoV aR jjC(ri)(B) = CoV aR jjri��V aR
i(B)(B)� CoV aR jjri�Mediani(B): (36)

The measure �CoV aR jji quanti�es how much an institution contributes to the overall sys-

temic risk. Backtesting�CoV aR jji can be achieved by applying the Risk Map methodology

successively to CoV aR jjri��V aR
i(B) and CoV aR jjri�Mediani.

3.3 Margin Requirements

Tail risk models are also used to set margin and collateral requirements on derivatives mar-

kets. Margins are key to protect derivatives users against the default of their counterparties.

The di¢cult trade-o¤ faced by the derivative exchange is to set margins high enough to

mitigate default risk but not so high as to shy traders away and damage liquidity.

The initial margin C for one futures contract (long or short position) must be set so

that the probability of a futures price Ft change, rt = Ft � Ft�1, exceeding the margin is

equal to a prespeci�ed level:

Pr[rt < �Ctjt�1(B)] = Pr[rt > Ctjt�1(B)] = B: (37)

Depending on the expected volatility, the derivatives exchange frequently adjusts the level

of the margin, as shown by Brunnermeier and Pedersen (2009, Figure 1) for the S&P

500 futures. The empirical literature has considered a variety of distributions for futures

price changes and volatility dynamics (Booth et al., 1997; Cotter, 2001). The Risk Map

approach can be used to test whether actual margins or optimal margins according to a

given modeling technique generate too many margin exceedances and too many margin

super exceedances. The analysis would have to be conducted separately for the left and

right tails.

A related problem is the determination of the margin requirements for the clearing

members of a given clearing house (Cruz Lopez et al., 2011, and Hurlin and Pérignon,

2012). In this case again, VaR models are one of the two main techniques used to set

margins � the other one being the SPAN system. The issue of validating clearing members�

margins takes nowadays central stage as clearing houses have moved to clear new products

that used to be over-the-counter (OTC) (Du¢e and Zhu, 2011).
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To show how the Risk Map can be used in the context of a clearing house, let !i;t�1 be

the vector of positions of clearing member i at the end of day t� 1:

!i;t�1 =

2
664

!i;1;t�1
...

!i;D;t�1

3
775 (38)

where D is the number of derivatives contracts (e.g. futures, options, CDS, and swaps)

cleared by this clearing house and i = 1; :::; N . We assume that these contracts are written

on U di¤erent underlying assets. To arrive at a margin for this portfolio, the clearing house

considers a series of S scenarios representing potential changes in the value and volatility

of the underlying assets. For each scenario, the value of the portfolio is recomputed, or

marked-to-model, using derivatives pricing formulas, and the associated hypothetical P&L

is computed:

eri;t =

2
664

er1i;t
...

erSi;t

3
775 : (39)

Notice that this simulation-based technique allows the clearing house to account for diver-

si�cation among underlying assets and maturities, which reduces collateral requirements.

From this simulated distribution of P&L, the clearing house can set the margins for clearing

member i such that:

Pr[ersi;t < �CV aRi;tjt�1(B)] = B (40)

with s = 1; :::; S.10 The clearing house will proceed in the same way for the N � 1 other

clearing members and only those who will be able to pile up this amount of collateral on

their margin accounts will be allowed to trade on the next day. On a regularly basis, the

risk-management department of the clearing house and the regulatory agencies check the

validity of the margining system. In particular, they need to check whether the hypothetical

shocks used in the scenarios are extreme enough or whether the estimation of the derivative

prices is reliable. Of particular concern is a situation in which the collateral is set at too low

a level. In this case, a default by a clearing member following a big trading loss would lead

to a massive shortfall, which may propagate default within the clearing system (Eisenberg

and Noe, 2001). The evaluation of the margining system can be conducted using the Risk

Map approach. In this particular case, the analysis can be conducted by clearing member

10For instance, the European Central Bank�s Recommendations for Central Counterparties (2009) state
that �Margin requirements [...] should be su¢cient to cover losses that result from at least 99 % of the
price movements over an appropriate time horizon.�
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or for all the clearing members pooled together.

In addition to the VaR-based margins presented in equation (40), clearing houses have

recently started using expected shortfall-based margins CES, which are de�ned as:11

CESi;tjt�1(B) = E[ersi;tjersi;t < �CV aRi;tjt�1(B)]: (41)

The margin model of the clearing house can then be tested using both CV aR and CES by

following the procedure described in Section 3.1.3.

4 Conclusion

In �nance, risk models must capture both (1) the frequency of the losses and (2) the

magnitude of these losses. Surprisingly, current model validation techniques completely

neglect the magnitude dimension of �nancial risk. In this paper, we have proposed a

validation framework allowing risk managers and regulators to assess the validity of a risk

model by accounting for both the number and the magnitude of extreme losses. We have

introduced the concept of a super exception and designed a testing procedure that combines

information about both exceptions and super exceptions. The main advantages of the Risk

Map is that it is as simple to use as standard validation techniques; it is a formal hypothesis

testing framework; and it can be applied to any tail risk model. The Risk Map framework

can be handy in validating market risk, credit risk, or operational risk estimates, systemic

risk measures such as CoVaR, or the margin system of a clearing house.

The Risk Map approach may prove particularly e¤ective in banking. Indeed, as a

generalization of the system currently used by banking regulators to validate banks� risk

models, the Risk Map could help detecting misspeci�ed risk models and penalizing banks

that experience VaR exceptions that are too frequent and/or too large. In this case, bank

capital requirements would directly be a¤ected by the conclusions of the Risk Map analysis.

In order to ease the implementation of the present methodology, we have created a

website that automatically generates Risk Maps:

www.RunMyCode.org/CompanionSite/site2

11See the Options Clearing Corporation (OCC) website for a recent example of expected shortfall-based
margins: http://www.optionsclearing.com/risk-management/margins/
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Users only have to upload their risk estimates and P&L data and to indicate the respec-

tive coverage rates. All calculations are done in a cloud computer and results are directly

displayed to the users.
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Appendix: Monte Carlo Experiment

We assess the accuracy of the calibration procedure for V aR(B0) presented in Section 2.4
in a series of controlled experiments. The aim of these experiments is to systematically
compare the estimated V aR(B0) to the true V aR(B0). To conduct the experiments, we
need to specify (1) the data-generating process (DGP) of the P&L, (2) the internal VaR
model used by the bank, and (3) the auxiliary model that we use to generate the VaR
estimates. We check whether our approach is able to accurately estimate V aR(B0) when
(1), (2), and/or (3) are misspeci�ed.

For the DGP of the P&L, we follow Berkowitz, Christo¤ersen and Pelletier (2011) and
assume that returns rt are issued from a t (v)-GARCH(1; 1) model:

rt = �t zt

r
v � 2

v
(A1)

where fztg is an i:i:d: sequence form a Student�s t-distribution with v degrees of freedom
and where conditional variance is:

�2t = ! + D

�
v � 2

v

�
z2t�1�

2
t�1 + � �

2
t�1: (A2)

Parameterization of the coe¢cients and initial conditions are deduced from maximum-
likelihood estimated parameters for the S&P 500 index daily returns over the period
08/07/2010 to 01/07/2011. The parameter values are ! = 4:9453e�7, D = 0:1012, � =
0:8550, and v = 4:1561. The initial condition �21 is set to the unconditional variance.

Using the simulated P&L distribution issued from this DGP, it is then necessary to
select a method to forecast the VaR. This method represents the internal VaR model used
by the �nancial institution. We �rst consider a VaR calculation method that perfectly
matches the P&L distribution. As a result, unconditional coverage is satis�ed for both
standard and super exceptions. In a second experiment, we use a method that induces
a violation of unconditional coverage for super exceptions: a method that is valid with
respect to the current backtesting procedures, but it generates too many extreme losses
(see Panel A of Table A1). Then, the third experiment considers the case when both the
internal VaR models and the auxiliary model are misspeci�ed.

< Insert Table A1 >

Recall that the aim of the experiments is to assess the capacity of our method to estimate
the V aR(B0) produced by the internal model of the bank. For that, it is possible to compare

directly the true VaR, denoted V aR0tjt�1(B
0), to the estimated one, denoted V aRtjt�1(B

0; bC):
However, what is most important is not comparing the VaRs, but the exceptions induced
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by these VaRs, since backtesting is based on exceptions. Ideally, the timing of the super
exceptions should be the same with the true and the estimated V aR(B0).

We denote I0t (B
0) the true hit process associated to V aR0tjt�1(B

0) and It

�
B0; bC

�
the

estimated hit process associated to V aRtjt�1(B
0; bC): There are two types of errors that can

occur: false positive (type 1 error) and false negative (type 2 error). We evaluate the
quality of our approach by using three indicators. The True Positive Rate (TPR) denotes
the fraction of super exceptions that occur concurrently for the true and for the estimated
V aR(B0). More formally, if we denote T the out-of-sample size of the sample, we de�ne:

TPR =

PT

t=1 I
0
t (B

0)� It

�
B0; bC

�

PT

t=1 I
0
t (B

0)
: (A3)

The False Positive Rate (FPR) represents the frequency of type 1 error. It gives the fraction
of estimated super exceptions events that were observed to be non events (false alarms).

FPR =

PT

t=1 [1� I
0
t (B

0)]� It

�
B0; bC

�

PT

t=1 [1� I
0
t (B

0)]
: (A4)

Finally, we consider the True Negative Rate (TNR), which measures the fraction of non
super VaR exceptions that are correctly identi�ed (complementary of the type 2 error).

TNR =

PT

t=1 [1� I
0
t (B

0)]�
h
1� It

�
B0; bC

�i

PT

t=1 [1� I
0
t (B

0)]
: (A5)

Experiment 1: Valid Internal VaR Model

In the �rst experiment, the internal risk model of the bank corresponds to the true
DGP. In this context, the true conditional VaR is de�ned as:

V aR0tjt�1(B) = �

s
C � 2

C
�t F

�1 (B; C) (A6)

where F (:; C) denotes the c.d.f. of the t (v) distribution. Let us denote V aR0tjt�1(B
0)

the true conditional VaR (unobservable) for the coverage rate B0. We consider the case
where B = 1% and B0 = 0:2%: Theoretically, these VaR forecasts are deduced from a
valid internal model and consequently the unconditional coverage assumption is satis�ed
for all coverage rates. Given the simulated returns path and the VaR displayed by the

bank,
n
V aR0tjt�1(B)

oT
t=1
, we apply our calibration procedure to estimate the VaR for a

coverage rate B0. In this �rst experiment, we consider an auxiliary model also de�ned as a
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t (C)-GARCH(1; 1) model:

rt = �t zt

s
C � 2

C
(A7)

�2t = D0 + D1

�
C � 2

C

�
z2t�1�

2
t�1 + D2�

2
t�1: (A8)

The parameters of this auxiliary model are estimated by QML. Let us denote bC the es-
timator of the distributional parameter (i.e., the degree of freedom of the t-distribution).
Conditionally on this estimated parameter and to the V aR0tjt�1(B) produced by the bank,

we can de�ne the estimated V aR(B0) as:

V aR tjt�1(B
0; bC) = V aR0tjt�1(B)

F�1
�
B0; bC

�

F�1
�
B; bC

� : (A9)

In Panel B of Table A1, the three indicators of the quality of the calibration process are
reported. In the second column, the frequency of super VaR exceptions obtained from our
estimated 0.2% VaR is reported for various sample sizes. Recall that in this experiment,
the unconditional coverage is valid (since the VaR model corresponds to the true P&L
DGP), and the super exception frequency should be equal to 0.2% if the calibration method
correctly estimates the VaR. The third, fourth, and �fth columns, respectively, report the
True Positive Rate, the False Positive Rate, and the True Negative Rate obtained from
10,000 simulations. Overall, Panel B shows that the performance of our estimation method
is very good.

Experiment 2: Invalid Internal VaR Model

In the second experiment, we introduce a discrepancy between the internal risk model
used by the bank to generate the VaR �gures and the auxiliary model used in the calibration
procedure. More speci�cally, we assume that the bank uses Historical Simulation whereas
the auxiliary model is a t-GARCH(1,1) model. We see in Panel C of Table A1 that even
in a situation in which the auxiliary model is wrong, our calibration procedure allows us
to extract a reliable estimate of V aR (B0).

Experiment 3: Invalid Internal and Auxiliary Models

In the third experiment, neither the internal model nor the auxiliary model conform
with the DGP, which is assumed to be a MS-GARCH model described by equations (18)
and (19). We assume that the bank computes its VaR through Historical Simulation and we
use a GARCH(1,1) model as the auxiliary model. In that case, V aR(B0) is simply de�ned
as:

V aRtjt�1(B
0; bC) = V aRtjt�1(B)

��1 (B0)

��1 (B)
(A10)

where � (:) is the cdf of the standard normal distribution. Results in Panel D indicate that
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the calibration procedure works �ne in this case too. Note that this does not imply that
our calibrated VaR(B0) is always a good proxy for the true VaR(B0) in term of bias. It only
means that the errors in the VaR(B0) estimates are not su¢ciently important to have any
material impact on the number of super exceptions. Even with a MS-GARCH model, the
TPR is close to 95% and the TNR close to 99%.
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Figure 1: VaR Exception vs. VaR Super Exception

Notes: This �gure displays the daily P&L, V aR (B), and V aR (B0) for a hypothetical port-
folio, with B = 1% and B0= 0:2%. Both the P&L and VaR series are simulated using a t-Garch
model. A VaR exception is de�ned as rt< �V aRtjt�1(B) whereas a super exception is de�ned as

rt< �V aRtjt�1(B
0). Over this 500-day sample period, there are �ve exceptions and four super

exceptions, which are highlighted with stars.
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Figure 2: P-values of the Multivariate Unconditional Coverage Test
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Notes: This �gure displays the p-value of a multivariate unconditional coverage test, LRMUC(B; B
0)

for di¤erent numbers of exceptions (N) and super exceptions (N 0). The parameter values are
B = 1%, B0= 0:2%, and T = 500.
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Figure 3: The Risk Map
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Notes: This �gure displays a Risk Map based on the p-value of a multivariate unconditional
coverage tests, LRMUC(B; B

0), for di¤erent numbers of VaR exceptions (N) and VaR super
exceptions (N 0). The parameter values are B = 1%, B0= 0:2%, and T = 500. For technical
reasons, the p-values for the �rst-column cells (N 0= 0) and diagonal cells (N 0= N) are computed
from a univariate LRUC test as the multivariate test cannot be computed in these cases. When
N 0= N = 0, none of the LR test can be computed.
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Figure 4: Valid vs. Invalid Model

Notes: The upper Risk Map displays the empirical frequencies of each pair (N,N�), where N
and N� denote the total number of VaR exceptions and super exceptions, respectively, obtained
from 10,000 simulations of a valid VaR model. The lower Risk Map displays the empirical fre-
quencies of the VaR exceptions and super exceptions generated from an Historical Simulation
VaR methodology applied to simulated returns drawn according to the MS-GARCH of Bauwens,
Preminger and Rombouts (2010). In both cases, parameter values are B = 1%, B0= 0:2%, and
T = 500.
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Figure 5: Backtesting Results for a Large Bank
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Notes: The upper graph displays the daily trading pro�t-and-loss (P&L), VaR(B = 1%), and
VaR(B0= 0:2%) for La Caixa between January 1, 2007 and December 31, 2008. All �gures are
in thousands of euros. Over this sample period, there were 13 exceptions and 3 super exceptions,
which are highlighted with stars. The lower graphs displays the Risk Map for La Caixa. The
cross corresponds to La Caixa for the period 2007-2008. As the cross falls inside the orange zone,
we can reject the null hypothesis at the 95% but not at the 99% con�dence level.
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Figure 6: Changing the Value of the B0 Coverage Rate
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Notes: The upper graph displays the number of super-exceptions N 0 obtained for La Caixa
for various coverage rates B0. The lower graph displays the p-value of the LRMUC test given N

0

and B0.
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Table 1: Finite Sample Properties of the Risk Map

Panel A: Empirical Size

Sample B = 5%; B0 = 1% B = 2%; B0 = 0:4% B = 1%; B0 = 0:2%

500 0.047 0.043 0.046

1,000 0.050 0.041 0.043

2,000 0.054 0.053 0.039

Panel B: Empirical Power of the Risk Map

Sample B = 5%; B0 = 1% B = 2%; B0 = 0:4% B = 1%; B0 = 0:2%

500 0.393 0.345 0.305

1,000 0.335 0.365 0.391

2,000 0.378 0.518 0.645

Panel C: Empirical Power of the LRUC Test

Sample B = 5% B = 2% B = 1%

500 0.399 0.361 0.326

1,000 0.275 0.297 0.339

2,000 0.220 0.378 0.434

Notes: Panel A presents the empirical size of the Risk Map for various values of (B; B0)
and sample sizes. The empirical size corresponds to the rejection rate calculated over 10,000
simulations for a nominal size equal to 5%. Panel B reports the empirical power of the Risk Map
when the P&L are generated from a MS-GARCH model and the VaR forecasts are computed
through Historical Simulation. Panel C reports the power of the LRUC tests for the 1%, 2%, and
5% coverage rates.
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Table 2: P&L and VaR of a Large Bank

Panel A: Summary Statistics

P&L VaR(1%) VaR(0.2%)

Mean -39.45 2,958.10 5,138.05

Median 50.00 3,000.00 5,211.24

Standard-Deviation 1,328.21 979.40 1,710.92

Skewness -2.08 -0.02 -0.02

Excess Kurtosis 16.66 -0.88 -0.88

Minimum -12,410 5,000 8,705

Maximum 4,000 850 1,455

Panel B: V aR(B0) Estimation

Estimates (Standard-Errors)

Constant 1:76e�5 (8:79e�5)

Garch parameter 0:6689 (0:074)

Arch parameter 0:3311 (0:132)

Degree of freedom 3:1020 (0:627)

Log-likelihood �4:180e3

Notes: Panel A presents some descriptive statistics on the daily trading pro�t-and-loss (P&L),
VaR(B = 1%), and VaR(B0= 0:2%) for La Caixa between January 1, 2007 and December 31,
2008. All �gures are in thousands of euros. Panel B presents some detailed information about
the estimation of VaR(B0= 0:2%). We report the estimated parameters and standard errors for
the auxiliary t-GARCH model, along with the value of the log-likelihood function. For each time
series, the number of observations is 500.
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Table 3: Generalized Tra¢c Light System

Notes: This table displays the increase in the multiplicative factor k that is applied to the
average VaR to generate the Market Risk Charge (MRC = 12:5� k�V aR) within the Basel
framework. Unlike the standard Tra¢c Light system, the Generalized Tra¢c Light system ac-
counts for both the number of exceptions and super exceptions. By analogy to the standard
Tra¢c Light system, the base multiplicative factor is set to a value of three and can increase up
to four. The no penalty zone corresponds to the green zone of the Risk Map and the maximum
penalty zone corresponds to the red zone of the Risk Rap. Between these two zones, the bank
incurs an increasing penalty wich is obtained by linear interpolation. The upper panel is for a
sample size of T = 250 whereas the lower panel is for a sample size of T = 500.
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Table A1: Monte Carlo Experiment

Panel A: Summary of the Monte Carlo Experiment

Experiment 1 Experiment 2 Experiment 3

P&L Data Generating Process t-Garch(1,1) t-Garch(1,1) MS-Garch(1,1)

Internal VaR Model t-Garch(1,1) HS HS

Auxiliary Model t-Garch(1,1) t-Garch(1,1) Garch(1,1)

Panel B: Experiment 1 - Valid Internal VaR Model

Sample Size TPR FPR TNR

250 0.8763 0.0002 0.9998

500 0.9220 0.0002 0.9998

1,000 0.9535 0.0001 0.9999

1,500 0.9562 0.0001 0.9999

2,000 0.9642 0.0001 0.9999

Panel C: Experiment 2 - Invalid Internal VaR Model

Sample Size TPR FPR TNR

250 0.7785 0.0006 0.9994

500 0.8134 0.0006 0.9994

1,000 0.8424 0.0007 0.9993

1,500 0.8366 0.0006 0.9994

2,000 0.8160 0.0007 0.9993

Panel D: Experiment 3 - Invalid Internal and Auxiliary Models

Sample Size TPR FPR TNR

250 0.9515 0.0020 0.9980

500 0.9606 0.0021 0.9979

1,000 0.9543 0.0021 0.9979

1,500 0.9514 0.0021 0.9979

2,000 0.9584 0.0022 0.9978

Notes: This table presents the design and the results of the Monte Carlo simulation. In the
three experiments, we vary (1) the data generating process (DGP) of the pro�t-and-loss data,
(2) the internal VaR model used by the bank, and (3) the auxiliary model used to generate the

VaR(B0) estimates. In experiment 1, (1), (2), and (3) match perfectly. In experiment 2, only the
internal model di¤er from the DGP, whereas in experiment 3, both internal and external models
di¤er from the DGP. For each experiment, we report the True Positive Rate (TPR; fraction

of super exceptions that occur concurrently for the true and for the estimated V aR(B0)); the
False Positive Rate (FPR; fraction of estimated super exceptions events that were observed to be
non events); and True Negative Rate (TNR; fraction of non super exceptions that are correctly
identi�ed). In each experiment, we vary the sample size from 250 to 2,000 observations and we
use 10,000 simulations.
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