Restitution numérique d’ambiances de projets et environnements architecturaux - Les CD-ROM du Master CCI de l’École d’architecture de Marseille

Isabelle Fasse

To cite this version:

HAL Id: halshs-00745518
https://halshs.archives-ouvertes.fr/halshs-00745518
Submitted on 25 Oct 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Restitution numérique d’ambiances de projets et environnements architecturaux

Les CD-ROM du Master CCI de l’École d’architecture de Marseille

Isabelle FASSE
Laboratoire ABC, École nationale supérieure d’architecture de Marseille, France
fasse@marseille.archi.fr

Abstract. This article is an overview of the work realized from 2003 to 2010 as part of the master CCI of the School of Architecture of Marseille. The aim of this presentation is to highlight how specialized computer tools and digital processes can approach the way architectural ambiances were held in each of the sites and projects studied for these CDROM. In this situation, these tools proved to be true interfaces of analysis and communication, allowing the specification and explicit numerical description of the ambiances. However, data relating to ambiance representation and simulation result less of the effects that the process in which they are listed referring to other areas specific to the architecture of the project studied.

Keywords: computer tools, simulation, communication, navigation, interaction

Introduction
L’objectif de cet article est de présenter le cadre dans lequel s’est inscrit le master CCI de l’école d’architecture de Marseille, il illustre comment l’utilisation des outils informatiques spécialisés favorise la connaissance de nouveaux savoirs et techniques dans le domaine des ambiances et plus généralement de la pratique architecturale. Il montre d’autre part comment l’approche pluridisciplinaire permet de rendre explicites les questions d’usage, d’ambiance et de confort dans le processus de conception.
Trois thèmes sont traités dans cet article : la complexité de la représentation des ambiances, les outils et méthodes qui permettent leur communication, le rôle des outils et interfaces pour une approche immersive et interactive des ambiances, dans les contextes spécifiques des projets étudiés dans l’ensemble des CD-ROM du Master de CCI de 2003 à 2011.

Contexte de la formation dispensée au cours du Master CCI
Depuis 2003, le master CCI accueille chaque année une dizaine d’étudiants de niveau master 2. Cette formation a pour objectif de donner aux étudiants ayant une formation architecturale une formation complémentaire en informatique. Un projet portant sur le patrimoine architectural et urbain de la Région PACA permet chaque année aux étudiants de mettre en œuvre les connaissances acquises.
L’enseignement dispensé dans cette formation a pour objectif de permettre aux étudiants de maîtriser le passage du réel au modèle, d’en connaître les limites, réductions et approximations selon un point de vue ou domaine de connaissances donné, associé à l’activité architecturale et urbaine. La place des ambiances dans le domaine de la conception architecturale se révèle être émergente aussi bien dans le choix des projets que dans celui du traitement de l’information.
Restitution des ambiances : entre connaissance et réalité objective

L’apprentissage des concepts et connaissances relatives aux ambiances fait partie de ce travail de synthèse et dépend ainsi de la qualité et manière dont sont traitées et organisées les données.

La question des ambiances dans l’ensemble des CD-ROM du Master CCI passe par l’analyse de l’environnement dans lequel se situe le projet architectural et urbain, mais plus généralement par l’ensemble des éléments ci-dessous :

- Les questions d’esthétique, questions fondamentales en architecture, qui ne peuvent cependant pas être séparées des questions liées à la fonction et la construction des édifices ;
- Le contexte dans lequel naît et se situe le projet (contexte culturel, économique, historique...) ;
- La question de la conception et de la création – les processus susceptibles et/ou capables d’avoir généré le projet ;
- La question de l’usage, des ambiances et du confort ;
- Les questions liées aux enjeux actuels du lien écologique et durable avec l’environnement ;
- Les réponses formelles : la question de la forme comme objectif et/ou résultat de toutes ces considérations.

Tous ces questionnements nous donnent un aperçu de la complexité architecturale de ces sites et projets et, par réciprocité, de la complexité du traitement des ambiances architecturales.

L’exemple de la Villa E1027

La complexité de la villa E1027 provient de deux contraintes fortes : son programme et son site.

Il y a quelques années, une réhabilitation a été entreprise par la Mairie sur la globalité du site de Roquebrune-Cap-Martin. La question de sa restauration amorcée pose encore nombre de questions relatives à la connaissance même de cet édifice tel qu’il avait été conçu dans les années trente.

Aussi comment représenter numériquement ce qui a été fortement endommagé, ce dont les représentations ne sont pas suffisantes et dont la connaissance est parfois uniquement hypothétique comme résultats de faits de conception ?
Initier une modélisation pour une restitution numérique des ambiances de cet édifice devait tenir compte de ce contexte pour valider des hypothèses de simulation dont le discours viendrait sous-tendre une démarche fortement didactique visant à restituer le travail d’Eileen Gray.
La complexité de la simulation est alors de montrer, voire de démontrer, que la conception d’un projet, même si sa réalisation en diffère par certains aspects architecturaux ou techniques, s’appuie essentiellement sur des hypothèses adoptées provisoirement comme idées directrices indépendamment de leur vérité absolue.

Représentation des ambiances : entre outils et méthodes
La complexité des ambiances, une fois les hypothèses posées quant à leur conception dans le cas des projets du master CCI, peut être définie au travers des procédures suivantes du travail de restitution numérique : la modélisation, la simulation et la navigation.

Modélisation et simulation
Suivant le type d’objet à modéliser, sa complexité géométrique, les moyens nécessaires à sa description, le choix ira de préférence vers l’outil de modélisation qui s’approchera le mieux de la connaissance de l’objet sans toutefois omettre la difficulté et l’interactivité de l’outil. Mais si la complexité du modèle numérique dépend de la nature de l’édifice, elle dépend aussi du modèle souhaité, c’est-à-dire du modèle sur lequel des simulations seront faites. Parmi ces modèles il faut choisir entre diverses approches : schématiques, symboliques ou réalistes, qui permettent des accès à des techniques de représentation, des méthodes de calcul, des applications logicielles particulières.

Figure 2. Approches numériques des ambiances du Fort du Mont Alban à Nice

Basées sur l’expérience, des méthodes et procédures sont mises en place, en s’adaptant à chaque fois aux différents contextes des projets étudiés et aux nouveaux outils, interfaces et applications logicielles.

L’exemple du Fort du Mont Alban
Pour le fort du Mont Alban, l’expression du caractère puissant de son architecture maçonnée et les formes complexes de ses espaces intérieurs voûtés noyés d’ombre et reliés par des galeries enterrées symbolisent la structure architectonique et la qualité environnementale de l’édifice.
La volonté d’exprimer le caractère massif de cette architecture conçue pour résister à l’artillerie se fait par la visualisation d’une coupe selon trois axes pour montrer la relation entre l’importance de l’épaisseur des maçonneries et de ses remplissages par rapport aux faibles espaces habitables. Cette coupe dynamique permet une lecture située et à l’échelle de ces pleins espace et de leurs relations entrecroisées.
La réalisation de cette coupe dynamique nécessite une opération booléenne, différence entre un cube dont l’intersection forme le plan de coupe et la géométrie de la maçonnerie du fort. Pour avoir des opérations booléennes animées sans altération de la géométrie, une
des solutions consiste à utiliser un logiciel capable de traiter la géométrie comme solide (CSG).

Simulation

L’objectif de la simulation est de communiquer l’analyse architecturale sur la base de différents modèles du projet qui correspondent à des regards particuliers sur le projet. Ces différentes simulations peuvent avoir pour objectif d’exprimer le fonctionnement d’éléments, d’exacerber les relations entre objets et/ou espaces, les transformations et évolutions du projet, des ambiances lumineuses, etc. Elles sont l’expression nécessaire de faits et d’hypothèses architecturales.

Pour simuler ces comportements physiques, un modèle structuré et hiérarchisé est nécessaire. Pour pouvoir être manipulés lors de la modélisation, les objets doivent être organisés selon une logique se référant à leur fonction, leurs attributs et comportements physiques. Cette logique permet de qualifier (élément structurel, élément de cloisonnement) et caractériser chaque objet (matière), de regrouper les objets par niveau, espace, sous-espace ou sous-partie des éléments. L’organisation des éléments permet ainsi de faciliter les animations et transformations d’objets à l’appui de langages de programmation graphique, mais également d’optimiser les rendus, car les éléments les plus détaillés peuvent être affichés lorsqu’ils sont nécessaires au calcul et à la représentation.

En ce qui concerne la simulation réaliste, elle permet, au travers d’une maîtrise de la lumière naturelle ou artificielle et de la maîtrise des matériaux dans leurs caractéristiques physiques, d’évaluer des hypothèses liées à la géométrie, aux matériaux et à la couleur des objets, etc. La simulation d’effets lumineux générés lors des multiples inter-réflexions offre ainsi, suivant la couleur des matériaux, des lectures très différentes de l’intérieur d’édifices.

![Figure 3. Simulation des ambiances et filtres lumineux à l’intérieur de la villa E1027](image)

Cette démarche démontre d’un point de vue scientifique que la représentation des ambiances et des connaissances architecturales nécessite d’élargir notre champ d’investigation à de nombreuses disciplines, dont celles concernant la perception, la couleur, la propagation de la lumière, l’étude du comportement physiques des matériaux.

Navigation

Une autre dimension dans la communication du projet concerne cette fois la manipulation des modèles et des résultats de simulation produits. La navigation interactive avec ses possibilités de représentation et d’interaction sur ces modèles se trouve être un moyen efficace de représenter et de confronter dans un même discours différentes considérations liées au projet.

Devant la grande complexité des modèles géométriques architecturaux et des informations stockées dans ces modèles, lors par exemple du calcul de solutions de radiosité pour une simulation réaliste des ambiances lumineuses, une approche du modèle du point de vue de l’interaction s’avère intéressante parce qu’elle permet l’immersion au sein du projet et qu’elle est le moyen de mettre en évidence des résultats de calculs d’ambiances. Plusieurs
techniques et outils peuvent être abordées même si cette question, qui reste d’une grande actualité, n’est bien souvent approchée que de manière empirique dans le cas de scènes architecturales.

L’exemple du cabanon de Le Corbusier
Pour ce cabanon, un modèle VRML a été créé, il permet une visite interne interactive. Pour rendre la navigation possible dans cet espace aux faibles dimensions et permettre l’interaction avec le modèle, un cheminement par l’intermédiaire de points de vue clefs est proposé. Cela permet à l’observateur de se déplacer tout en gardant des points de vue immergés les plus réalistes possibles. Ces contraintes fortes liées au déplacement facilitent également l’interaction avec le modèle, à chaque point de vue clef correspond une action possible. Pour montrer par exemple le rôle visuel des volets intérieurs et de leur demi-face miroir, une simulation dynamique du reflet a été mise en place en pré-calculant le reflet pour une position fixe d’observation et en translatant cette image sur la surface du volet en fonction de l’angle d’ouverture. La complexité du phénomène physique qui prend en compte le reflet d’un environnement extérieur non modélisé et la difficulté du déplacement dans un espace restreint où l’usage, le fonctionnement et la place de chaque objet sont minutieusement pensés, induit la méthode et outil adoptés, conséquence d’un choix entre la vérité du reflet et la possibilité d’interagir sur le modèle.

Figure 4. Visite interactive du cabanon de Le Corbusier

Le rôle des interfaces
Les interfaces logicielles et les interfaces graphiques sont par définition des entités avec lesquelles les utilisateurs interagissent afin depuiser et de transmettre l’information. Les mécanismes d’interaction doivent être étudiés en tant que tels. Les interfaces graphiques des CD-ROM du Master CCI ont pour objectif de mettre en scène ces différents modèles et approches du projet architectural ou urbain. Elles ont été conçues pour transcrire le fait que, dans le domaine architectural et urbain, la restitution numérique réside avant tout dans l’association autour d’un même projet de diverses approches. Ainsi l’entrée dans ces CD-ROM et le parcours des éléments graphiques ne se font jamais de manière linéaire, mais plusieurs entrées sont proposées pour permettre à l’utilisateur de se confronter à ces différents points de vue, regards sur les bâtiments, sites et projets étudiés.

L’interface graphique du bâtiment IBM de M. Breuer à la Gaude

Figure 5. Structure de l’interface graphique du bâtiment IBM
Pour ce projet très emblématique du bâtiment d’IBM, qui adopte la forme d’un double Y et s’appuie sur le jeu répétitif de surfaces concaves avec lesquelles le soleil joue de ses effets, l’interface graphique propose à l’utilisateur des approches différentes et complémentaires de ce bâtiment qui traitent du parti constructif, du parti de l’esthétique et des ambiances, et de la composition.

L’utilisateur apprendra par ce biais que si d’un point de vue esthétique la réelle motivation de la forme du Y est sa beauté, elle permet d’autre part de réduire la longueur des couloirs de distribution, d’introduire une variété fonctionnelle et d’éviter les vues croisées. Il apprendra également que la façade épaisse de béton a été conçue de façon à supporter d’une part les charges du bâtiment, à abriter et distribuer les réseaux et systèmes mécaniques, mais qu’elle sert aussi par ses creux verticaux et horizontaux de protection solaire, et enfin que, par sa composition, elle peut être pensée comme un jeu de plis en deux dimensions.

L’interface telle qu’elle a été conçue est encore en cours d’élaboration, mais elle doit ainsi permettre la confrontation de modèles et de représentations différentes en s’appuyant sur plusieurs arborescences de navigation différentes entrecroisées et communicantes.

Conclusion

La restitution numérique des bâtiments analysés dans le cadre du master CCI fait appel à un travail collaboratif sur la base d’un enseignement pluridisciplinaire avec des équipes d’enseignants et d’étudiants ayant des connaissances et des parcours différents. La richesse et la complexité des formes et ambiances traitées dépassent ce que l’on pourrait imaginer sans avoir recours à ces technologies numériques.

Le choix des bâtiments traités dans les CD-ROM du master CCI relève-t-il alors des tendances et enjeux actuels dans la recherche et les pratiques de l’architecture. Ou en sont-ils implicitement l’objet, en transposant sur ces bâtiments des problématiques d’ambiance, de développement durable, de conception collaborative multidisciplinaire, de conception paramétrique...

Ce travail sur des architectures antérieures au XXIᵉ siècle fait ainsi référence aux enjeux actuels en termes de représentation et de simulation des ambiances dans les premières phases de la conception, et de l’impact de ces ambiances sur les processus, les procédés et les nouvelles technologies. Mais au-delà des outils et des techniques enseignées aux étudiants, pour la plupart d’entre eux la formation que leur a donnée le Master CCI a été en partie de leur apprendre à lire l’architecture dans sa complexité et sa richesse, un passage indispensable pour la restituer numériquement.

Références

Auteur

Isabelle Fasse, Maître assistante Associée, Laboratoire ABC, École nationale supérieure d’architecture de Marseille, France - fasse@marseille.archi.fr

202 — 2nd International Congress on Ambiances, Montreal 2012