Les systèmes de rafraîchissement passifs dans l’architecture contemporaine et la conception bioclimatique du bâtiment - Méthodologie d’analyse et évaluation de réalisations à travers le monde
Gianluca Cadoni

To cite this version:

HAL Id: halshs-00745047
https://halshs.archives-ouvertes.fr/halshs-00745047
Submitted on 24 Oct 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Les systèmes de refroidissement passifs dans l’architecture contemporaine et la conception bioclimatique du bâtiment

Méthodologie d’analyse et évaluation de réalisations à travers le monde

Gianluca CADONI
Laboratoire ABC ENSA Marseille, Directeur de thèse Stéphane HANROT, Co-directeur de thèse Jean-Louis IZARD. contact@arch-cadoni.com

Abstract. Passive cooling systems are the combined technical solutions and design strategies used to promote low carbon cooling. The aim of our research is to appreciate the real performances of passive cooling systems and to evaluate what impact they have on architectural design. The objective of this methodological, systemic approach is to allow us to compare passive buildings in different parts of the world. Our analysis is carried out by dividing each building into its separate devices. Ours aim is to realise some rules to help the architects that want to use passive cooling systems.

Keywords: passive cooling system, low carbon cooling, an architect’s posture

Plan de l’article

L’objectif de la recherche est de définir si les systèmes de refroidissement passifs sont réellement applicables à l’architecture contemporaine. D’une part, nous avons cherché à comprendre ce qu’est le refroidissement passif. D’autre part, nous avons analysé des bâtiments contemporains, refroidis passivement, afin d’évaluer si les systèmes de refroidissement passif peuvent garantir le confort des usagers. Nous avons cherché à mettre en valeur les raisons qui ont conduit à la réussite ou la faillite des systèmes de refroidissement passifs. Cela pour rédiger un carnet de règles aptes à aider l’architecte à réaliser un projet de bâtiment refroidi passivement. Un aspect que nous avons voulu mettre en évidence est l’impact des systèmes de refroidissement passif sur la conception du projet.

Pourquoi une recherche sur le refroidissement passif est-elle nécessaire ?

Actuellement le secteur du bâtiment a un grand impact sur la production de CO2. En 2007 le marché global des climatiseurs à usage domestique a connu une croissance de 14%. Le plus grand marché au monde pour les produits de climatisation, depuis 2008, est devenu la Chine ; cela signifie que dans les pays en développement la demande d’énergie va continuer à augmenter de manière exponentielle. Nous pouvons voir dans le graphe de la figure 1, les prévisions de consommation en Italie entre 1990 et 2020. À partir de 2004, la consommation en été a dépassé la consommation en hiver. Au vu de ce graphe, il est évident que le refroidissement passif est l’une des voies possibles pour réduire la consommation des bâtiments.

1. www.enerzine.com/14/1417+Le-batiment-responsable-de-25-pc-des-emission-de-CO2+.html
La problématique de la recherche

Le nombre des bâtiments, en particulier contemporains, rafraîchis passivement est très réduit (Ford et al., 2010). Le premier problème auquel nous avons été confrontés était de comprendre comment procéder pour analyser des bâtiments localisés dans différentes régions du monde, avec des conditions climatiques et des usages différents.

La méthodologie d’analyse des bâtiments rafraîchis passivement

Nous avons cherché à mettre en place une méthodologie apte à évaluer le bâtiment comme un ensemble, ayant pour objectif de garantir le confort thermique des usagers. Notre approche systémique (Le Moigne, 2006) nous a permis d’évaluer le bâtiment et ses dispositifs architecturaux (Hanrot, 2002) et de les interpréter comme s’ils étaient une machine apte à garantir le confort thermique des usagers (Rechtin & Maier, 2009). Notre évaluation ne s’est pas limitée à une simple analyse cartésienne, mais a pris en considération les composantes d’usage et de fonctionnement des systèmes de rafraîchissement (Hanrot, 2005).

La base des données critique

La base des données critique est une matrice de données construite pour analyser les bâtiments rafraîchis passivement. Aux différents niveaux de définition, elle est ainsi composée des éléments suivants :

- Territoire : Latitude, Longitude, etc.
- Ensembles : Implantation, Orientation, etc.
- Entités : Morphologie du bâtiment, Coefficient de forme, etc.
- Systèmes pour améliorer le confort des usagers : Rafraîchissement, éclairage naturel...
- Divisions : Cloisonnement vertical vers l’extérieur, Patios, etc.
- Éléments : Surfaces vitrées, Protection solaire, etc.
- Constituants : Matériaux inertes, Type de vitrage, etc.
- Note moyenne de tous les dispositifs.

Dans la matrice apparaissent les données techniques, des avis critiques et des notes qualitatives permettant d’évaluer le comportement du bâtiment.

Pour permettre la comparaison des bâtiments ont été choisis des dispositifs critiques. Les dispositifs critiques sont ceux qui, mal conçus ou mal réalisés, peuvent compromettre le fonctionnement bioclimatique du bâtiment. Ils ont été reportés sur un graphe radar ; ci-dessous nous pouvons voir le graphe du bâtiment CII de Bangalore.

Dans ce cas, deux dispositifs critiques ont une note de 1, cela est dû au fait que la stratégie de contrôle du système de rafraîchissement passif est défaillante et que les protections solaires ne sont pas suffisantes. La stratégie de contrôle du bâtiment est le talon d’Achille de tout le système. En phase de projet était prévue une centrale automatique de contrôle, mais finalement il a été choisi de passer à l’usage manuel. Une autre cause des surchauffes est

3. MAP. dgerm.sviluppoeconomico.gov.it/dgerm/scenarioenergetico.asp
due aux protections solaires erronées. La façade principale du bâtiment est exposée à l’ouest. La radiation directe du soleil touche les baies vitrées et cause des surchauffes trop élevées pour être compensées par des systèmes de refroidissement passifs. L’analyse du bâtiment nous permet de comprendre comment les erreurs faites d’une part par le concepteur, d’autre part par le maître d’ouvrage, ont causé le dysfonctionnement du système bâtiment.

Figure 2. Graphe synthétique du CII Institute of Quality, Bangalore (Inde)

Création des fiches

L’objectif de la base des données est de comprendre l’efficacité des systèmes de refroidissement passif et de rendre comparables des bâtiments différents. L’objectif des fiches est de communiquer les résultats de la recherche et de comprendre la posture des architectes par rapport à l’intégration des systèmes de refroidissement passifs.

G. Braid classe les bâtiments par rapport à la volonté du concepteur de manifester la présence des systèmes techniques (Braid, 2001). Nous avons utilisé cette échelle de valeurs du niveau 1 au niveau 5 pour évaluer la prédéposition des systèmes de refroidissement dans l’architecture. Un autre questionnement auquel nous voudrions donner réponse est de comprendre quel impact ont ces systèmes sur l’architecture. Y. Mansouri (Mansouri, 2003) analyse la typo/topologie des systèmes de ventilation par rapport à la typologie des bâtiments refroidis. Nous avons modifié et élargi la grille d’analyse morphologique et l’avons utilisée pour mettre en évidence les contraintes architecturales liées aux systèmes de refroidissement passifs. Le lecteur des fiches est mis en condition de comprendre comment
fonctionne le bâtiment, la posture de l’architecte et la prégnance des systèmes de rafraîchissement sur l’architecture. La mise en forme des fiches est la conséquence logique des analyses réalisées sur les différents dispositifs archétypaux. Les fiches sont ainsi composées : une première page de synthèse où le lecteur trouve une explication synthétique du bâtiment, le contenu de la fiche, la localisation géographique, climatique, un logo synthétique du bâtiment, qui permet d’en comprendre le fonctionnement, le schéma morpho/typologique et la note sur la prégnance des systèmes de rafraîchissement par rapport à l’architecture. En deuxième page apparaissent le graphe radar et le diagramme bioclimatique. Dans les pages suivantes apparaît l’analyse du bâtiment, avec la même division par niveaux de définition que nous trouvons dans la base des données critique. La troisième partie des fiches est consacrée à la critique architecturale.

Conclusions

Suite à notre recherche, nous nous sommes aperçus que la plus grande partie des cas d’échec des systèmes de rafraîchissement passifs sont dus à des erreurs banales, des incompatibilités entre usage et système de contrôle, les modifications de dernière minute, etc. Un autre problème commun à plusieurs bâtiments est dû à la mauvaise réalisation ou à l’entretien des systèmes de rafraîchissement. D’autre part, il apparaît que ces problèmes sont plus évidents et ressentis quand la distance entre architecte-concepteurs et usagers est grande. En conclusion, il n’est pas possible d’affirmer que les systèmes de rafraîchissement passifs pourraient garantir le confort thermique des usagers, sans concevoir un bâtiment étudié pour réduire les charges thermiques et dont l’usage soit harmonisé avec les systèmes de contrôle. Un système de climatisation mécanique peut atténuer les problèmes liés à un mauvais projet, tandis que cela est très difficile avec un système de rafraîchissement passif. Une autre possibilité est donnée par le rafraîchissement hybride, quand les conditions climatiques ou d’usage extrêmes ne permettent pas de rafraîchir passivement. Le rafraîchissement hybride peut être une solution pour atteindre les températures de confort, réduire la consommation électrique et réduire la taille des machines de climatisation. La variable comportementale est fondamentale pour le succès d’une architecture bioclimatique.

Références

Hanrot S. (2002), À la recherche de l’architecture, essai d’épistémologie de la discipline et de la recherche architecturales, Paris : L’Harmattan
Hanrot S. (2005), Évaluation relative de la qualité architecturale : une approche par le point de vue des acteurs, Cahiers Ramau − La Qualité Architecturale − Acteurs et Enjeux
Le Moigne J.-L. (2006), La théorie du système général théorie de la modélisation. 4e édition, éd. Internet : Modélisation de la Complexité
Mansouri Y. (2003), Conception des enveloppes de bâtiments pour le renouvellement d’air par ventilation naturelle en climats tempérés, Thèse de doctorat

Auteur

Gianluca Cadoni, Doctorant à l’ENSA Marseille, Architecte diplômé en Italie depuis 2002.