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Abstract According to a minimalist version of Afriat’s theorem, a consumer be-
haves as a utility maximizer if and only if a feasibility matrix associated with
his choices is cyclically consistent. An “essential experiment” consists of observed
consumption bundles (z1,--- ,zn) and a feasibility matrix a. Starting with a stan-
dard experiment, in which the economist has access to precise budget sets, we show
that the necessary and sufficient condition for the existence of a utility function
rationalizing the experiment, namely, the cyclical consistency of the associated
feasibility matrix, is equivalent to the existence, for any budget sets compatible
with the deduced essential experiment, of a utility function rationalizing them
(and typically depending on them). In other words, the conclusion of the standard
rationalizability test, in which the economist takes budget sets for granted, does
not depend on the full specification of the underlying budget sets but only on the
essential data that these budget sets generate. Starting with an essential exper-
iment (z1,---,zn;a) only, we show that the cyclical consistency of a, together
with a further consistency condition involving both (z1,---,zn) and «, guaran-
tees the existence of a budget representation and that the essential experiment is
rationalizable almost robustly, in the sense that there exists a single utility func-
tion which rationalizes at once almost all budget sets which are compatible with
(z1, - ,zn; a). The conditions are also trivially necessary.
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1 Introduction

Afriat (1967)’s theorem has been revisited in a few recent papers, which propose
new proofs (Fostel et al., 2004; Chung-Piaw and Vohra, 2003), extensions (Forges
and Minelli, 2009), new interpretations (Ekeland and Galichon, 2012) of the re-
sult. In all these papers, as already in the classical one (see, e.g., Varian, 1982),
information on the choices of a given consumer at various dates j = 1,--- ,n is
summarized by an n x n feasibility matrix. The (j, k) entry of this matrix takes
the value —1, 0 or 1 and indicates to which extent the item (e.g., a consumption
bundle) that has been chosen by the consumer at date k is affordable or not at
date j. According to (a minimalist version of) Afriat’s theorem, the consumer be-
haves as a utility maximizer if and only if the feasibility matrix satisfies a tractable
property, referred to as “cyclical consistency”. This version of Afriat’s theorem is
recalled in Section 2 as Proposition 1.1

In a standard framework, the observed choices of the consumer are bundles
T1,+ ,Tn € Rﬁ_, which define, together with the associated feasibility matrix,
what we call in this paper an “essential experiment”. For the sake of exposition,
we explicitly refer to the “economist” who analyzes the consumer’s data. In order
to test the consumer’s rationality, the economist basically has to check whether the
feasibility matrix is cyclically consistent. When performing this test, the economist
typically has access to precise budget sets for every date. As shown by Forges and
Minelli (2009), even if the budget sets are quite general (namely, just compact
and monotonic), Afriat’s original constructive approach applies: if the feasibility
matrix is cyclically consistent, the economist can derive an explicit utility function
rationalizing the data. This is another version of Afriat’s theorem, which is stated
in Section 3 as Lemma 1.

In the latter, classical, version of Afriat’s theorem, the basic data take the form
of an “experiment”, namely, consumption bundles and budget sets. The utility
function, if it exists, depends on these budget sets, which may be complex, e.g.,
involve tariffs or taxes. While the economist has access to these budget sets, he
may not be sure that the consumer has made full use of the budget sets beyond
what is revealed by the “essential experiment”. For instance, let us assume that
the unit price of, say, good 1, decreases with the quantity that is bought. If the
consumer’s chosen bundles at every date j = 1, ..., n, all contain small quantities of
good 1, the economist has no reason to take for granted that the consumer knows
the unit price of good 1 for large quantities. The “essential experiment” that we
introduced above precisely captures the consumer’s knowledge of the budget sets
as it is revealed by his choices. The good news is that the essential experiment (as
opposed to the standard one, which involves a precise description of the budget
sets) is just what is needed to test the consumer’s rationality. This result will be
formally stated as Proposition 3. However, testing the consumer’s rationality is
not the only content of Afriat’s contribution: it also provides a way to construct
an explicit utility function when it exists.

We are thus led to the following question:

1 Afriat’s approach has also been applied to various economic environments, beyond classical
consumer’s theory (see, e.g. Brown and Calsamiglia, 2007; Carvajal, 2010; Chambers and
Echenique, 2009) for recent references.
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Given an essential experiment (z1,---,zn;a) in which the feasibility matrix
a is cyclically consistent, can we construct a utility function v which robustly
rationalizes (z1,---,2n; ), in the sense that v(z;) maximizes v over Bj, for any
family (B;) of budget sets compatible with (z1,--- ,zn;)?

Proposition 4 gives an answer to this question. The motivation for such a utility
function v is clear: v would not be sensitive to those specific aspects of the budget
sets that the consumer might not perceive.

The previous informal discussion hides some difficulties. First of all, we will
show that the previous question is not meaningful unless the essential experiment
satisfies some basic consistency requirement (independent of cyclical consistency)
guaranteeing that there indeed exists (compact, monotonic) budget sets that are
compatible with it. We introduce the property that the essential experiment “con-
tains no contradictory statement” and show that it captures such a requirement.
This result is formally stated as Proposition 2. Equipped with this tool, we can
give a formal statement of the “good news” announced above: an essential exper-
iment (x1,--+,zn; ) can be rationalized if and only if a is cyclically consistent
and (x1,--+,Tn; ) contains no contradictory statement.

Next, we construct an essential experiment (z1,22;a) € R% which contains
no contradictory statement, where « is cyclically consistent, and which cannot be
rationalized robustly. This simple example is by no means pathological and shows
that, formulated exactly as above, the question cannot be answered positively.

Nonetheless, we prove that every essential experiment (z1,---,zn;a) which
contains no contradictory statement and where a is cyclically consistent can
be rationalized in an almost robust way, in the sense that for every sufficiently
small ¢, there exists an almost largest family (Bf) of budget sets compatible with
(z1,--+ ,zn; ) and a utility function v° rationalizing (z1,--- ,zn; a) over (BY). Tt
is not difficult to prove that, conversely, if (z1,---,2zn;a) can be rationalized in
an almost robust way, then (z1,---,zn;a) contains no contradictory statement
and « is cyclically consistent. This is the main content of Proposition 4 given in
Section 4.

As suggested above, our results can be interpreted in the standard framework
where the economist has access to precise budget sets. From these and the observed
consumption bundles, he can deduce the corresponding essential experiment. A by-
product of Proposition 3 (partially contained in Lemma 1) is that the conclusion
of the standard rationalizability test, in which the economist takes budget sets for
granted, does not depend on the full specification of the underlying budget sets
but only on the essential data that these budget sets generate; the economist’s
conclusion automatically applies to a whole family of budget sets. If the essential
experiment passes the rationalizability test, Proposition 4 gives a way to construct
an almost robust utility function, which rationalizes the consumer’s choices for
basically all budget sets that are consistent with these choices.

In a much less classical interpretation of our results, the economist does not
have access to a precise description of the budget sets, which remain private in-
formation of the consumer. The only available data on the consumer could then
be the essential experiment, as the outcome of a survey. The economist would be
interested in checking whether the data could have been generated by a rational
consumer, making choices in monotonic budget sets.

The paper is organized as follows: notations are made precise in the next sub-
section; Section 2 deals with a consumer choosing over finitely many items and
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defines cyclical consistency; Section 3 deals with a consumer choosing over con-
sumption bundles and defines budget sets; Section 4 turns to rationalization and
states the results listed above; most of the proofs are given in the appendix.

1.1 Notations and terminology

R’ denote the Euclidean space of dimension ¥;

For every z,2’ e R, o > o iff oy > al, Vi=1,--- 4 z >z’ iff 2 > 2 and © # 2/,
z>a iffz; >, Vi=1,--- ¢

Rﬂ = {z e R’ |z >0} and ]Rﬁ+ := {z € R® | > 0} denote the non negative
and positive orthant of R¢ respectively;

Given aset A€ R, FrA={zc A|{z} +RL,}NA=0}and [A]; = ANRE
denote the frontier of A and the subset of the non negative elements of A
respectively;

The vector 1 is the characteristic vector of R whose components are equal to 1;

Aset B C Rﬂ is monotonic if [B—Rﬁh_ C B; and if x € FrB then, for all k € [0,1),
kx € B\ FrB;?

Let N ={1,--- ,n} be fixed once and for all.

2 Essential data

As announced in the introduction, we start with a feasibility matrix o = (o) ke n,
i.e. an n x n matrix which summarizes the affordability of n observed consumer
choices: for every j, k € N;

aji € {—1,0, +1} and Q5 = 0,

ajr, = —1 if item k is affordable at date j without exhausting the consumer’s
revenue;

aj, = 0 if item £ is affordable at date j and exhausts the consumer’s revenue;

aj, = +1 if item £ is not affordable at date j.

The essential data determine a choice experiment in which the choice set
reduces to the n items. A traditional question is to which extent the data are
consistent with rational choice, namely whether there exists a rationalization of
the data. This amounts to finding a number v; for every item j, such that v; > vy
for every item k that is affordable at date j, with strict inequality if item k does
not exhaust entirely the revenue of the agent.

Definition 1 Utils (v)jen rationalize the feasibility matrix a, if, for every j € N:

vj > vy, for every k € N such that a;; <0,
vj > vy, for every k € N such that a;; < 0.

The following tractable condition of cyclical consistency is the usual test to
check whether or not an experiment can be rationalized.

2 The second part of the definition is technical and guarantees that FrB is non-level on the
boundary of Rﬂ.
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Definition 2 An n x n real matrix A = (a;jx);ren Is cyclically consistent if for
every chain j, k, £, ...,7, ajp < 0,a50 <0,...,a.; <0 implies all terms are 0.

The next proposition can be deduced from Afriat (1967)’s theorem, in which
the feasibility matrix is actually implicit.

Proposition 1 The following conditions are equivalent:

1. The feasibility matriz o is cyclically consistent.
2. There exist utils (v;);en rationalizing the feasibility matriz a.

Proof [1. = 2.] is proved in Fostel et al. (2004, replacing A’ by a page 215).
[2. = 1] is proved in Ekeland and Galichon (2012, replacing R;; by «;; in the
proof of 3. = 1., Theorem 0). O

Remark 1 Ekeland and Galichon (2012) propose another, “dual”, interpretation of
the matrix a in terms of a market with n traders and an indivisible good (house)
to be traded (see also Shapley and Scarf (1974)). In the autarky allocation, each
trader j owns house j. The matrix a summarizes then the preferences of traders in
the initial autarky allocation: aj;, = 1 represents strict preference of his own house
over house k; o, = —1 represents strict preference of house & over his own house;
aji, = 0 represents indifference of trader j between house £ and his own house. In
this dual interpretation, Proposition 1 actually amounts to: the autarky allocation
is a no trade equilibrium allocation supported by prices m; = —v; (condition 2. of
Proposition 1) if and only if it is Pareto optimal (condition 1. of Proposition 1).

3 Budget sets

From now on we turn to the standard consumer problem, in which there are /¢
divisible consumption goods, and utility is thus defined by a function v : ]Rﬂ_ — R.
Hence, the data contain consumption bundles in addition to the feasibility matrix.
This leads to the following notion of experiment, which becomes the basic data in
our revealed preference analysis.

Definition 3 An essential (consumer) experiment (x, ) consists of observed con-
sumption bundles (mj)jeN, x; € Rﬁ-—&-’ and a feasibility matrix a.

We will distinguish such an essential experiment from a standard experiment
which involves consumption bundles and budget sets. We follow Forges and Minelli
(2009)’s model of budget sets, which is appropriate if finite bundles are consumed
and free disposal is allowed. In particular, the formulation encompasses the fol-
lowing cases: classical linear budget sets; budget sets defined by the intersection
of linear inequalities, as in Yatchew (1985); convex but non-linear budget sets, as
in Matzkin (1991). More generally, the budget set of the consumer can result from
quantity constraints, taxes and other sources of non convexities.

Besides compactness, the crucial requirement is monotonicity (see subsection
1.1).

Definition 4 A budget set is a compact and monotonic subset of Rﬂ.
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The next definition is the natural extension of the classical notion of experiment
with linear budget sets. In particular, the budget sets B; are implicitly assumed
to be observed by the economist, who will make inferences over the consumer’s
choices. Furthermore, consumption choices entirely exhaust the consumer’s avail-
able revenue, at each given date. Note that the latter fact is also implicitly assumed
in the classical theory with linear budget sets defined by prices.

Definition 5 An experiment (x, B) consists of observed consumption bundles z; €
Rﬁ+ and of budget sets Bj, such that z; € FrB; for every j € N3

In the standard approach of revealed preference analysis, an experiment (x, B)
is given. This formulation implicitly assumes that a rational consumer perfectly
knows his budget set B; for every j € N. The economist is interested in testing
whether the consumer chooses every consumption bundle “rationally” given the
budget sets at each date.

Definition 6 A utility function v is said to rationalize an experiment (x,B) if
v(z;) = max,ep; v(x) for every j € N.

Next we describe how to relate budget sets and the feasibility matrix a to
perform the consumer’s rationalizability test in terms of essential data only.

Definition 7 Given an experiment (x, B), let A*® denote the n x n matrix with
entries af,;B = —1if 2}, € intBy; aj;f =0 if 2}, € FrBy; aj;f =1if z; ¢ Bj.

An essential experiment (x, ) admits a budget representation if there exists a
family of budget sets (Bj);cn such that (x,B) is an experiment and ATB =l A
family (Bj)jen with this property is said compatible with (x, o).

Given an experiment (x, B), the economist can deduce the corresponding essen-
tial experiment by setting o = A5 Alternatively, let us imagine that the essential
experiment (x, ) is the only available one. As explained in the introduction, this
can happen in at least two different situations. In the first one, the economist has
access to the full experiment (x,B) but he suspects that the consumer only used
the partial description in the associated essential experiment (x, A%%). In the sec-
ond situation, the economist has only access to survey data which take the form
of an essential experiment (x, ).

If only the essential experiment (x, ) is available, (x, &) does not necessarily
admit a budget representation. In the next section, we introduce a tractable nec-
essary and sufficient condition, “no contradictory statement”, for this property to
hold (Proposition 2). For the time being, we just assume that (x, o) admits a bud-
get representation, as it is the case if the essential experiment is simply deduced
from some standard experiment (x, B).

The next result can be deduced from Proposition 3 in Forges and Minelli (2009).

Lemma 1 Let (x, ) be an essential experiment which admits a budget representation.
The following conditions are equivalent:

1. The matriz o is cyclically consistent.

3 Note also that the definitions of budget set and experiment imply that every budget set
considered hereafter has a nonempty interior.
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2. For any family of budget sets (Bj)jen compatible with (x, ), there exists a locally
non satiated, continuous utility function vB rationalizing the experiment (x,B).

Proof [1. = 2.] Since (x, ) admits a budget representation, it holds that « is cycli-
cally consistent iff (x, B) satisfies GARP, for every family (B;),;cn compatible with
(x, @) using straightforward arguments. Then apply Proposition 3 in Forges and
Minelli (2009) to conclude the proof.* In particular, the construction of the utility
functions relies on the following arguments: for every compatible family (B;),cn,
construct continuous, monotone mappings (gf)jeN to describe the budget sets

as Bj = {:c € Rﬂ_ : ng (z) < 0}; use cyclical consistency of the matrix with entries

(gf(xk))j,ke ~ to derive inequalities a la Afriat; and finally, thanks to these in-
equalities, construct an explicit a utility function v depending on the mappings
(QJB)jeN-S

[2. = 1.] Since (x, &) admits a budget representation, there exist an experiment
(x,B) and a locally non satiated, continuous utility function v” rationalizing the
experiment (x,B) where A®? = a. Hence, v(z;) > v(xy) for every k such that
aji, < 0; with strict inequalities if a;, < 1, using local non satiation. Then [2. = 1]
of Proposition 1 gives the result. O

Lemma 1 sheds further light on the standard rationalizability test, which is
performed on the basis of the full experiment (x,B), but only uses the matrix
A®B  equal here to . The economist designs the test with specific budget sets
(Bj)jen in mind but ends up checking the cyclical consistency (or rationalization)
of the matrix a, which is equivalent to the rationalization of a whole class of
budget sets. By proceeding in this way, we get a different utility function for every
family of compatible budget sets. One can therefore question the predictiveness of
such a utility function, defined up to a family of budget sets. This motivates the
next section, together with the issue of the existence of a budget representation.

4 Rationalization
4.1 Existence of a budget representation and rationalization

Let us start with an essential experiment (x,a). Proposition 1 or Lemma 1 tells
us which conclusion we can draw from the cyclical consistency of the matrix «
but takes for granted that there exists a family of budget sets (B;), cn compatible
with (x,a). As already observed, an essential experiment (x,a) cannot neces-
sarily be generated by budget sets, which are monotonic, even if a is cyclically

consistent. For instance, a = (? O) is cyclically consistent, but if the associated

bundles are z1 = (1,1) and z2 = (2,2), there does not exist any (monotonic)

4 The experiment (x,B) satisfies GARP if, for every j,k € N, z,Hz; implies x5, ¢ intB;,
where H is the transitive closure of the direct revealed preference relation R: xpRz; if z; €
By.. For easy constructive proofs of the equivalence between GARP and the existence of a
rationalization, see, e.g., Varian (1982) in the linear case and Forges and Minelli (2009) in the
general case.

5 The matrix with entries (gf (zx))j,ken is cyclically consistent iff the matrix A®B is cycli-
cally consistent.
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budget sets that are compatible with (x, ). This is not surprising as cyclical con-
sistency characterizes the affordability of items without taking into account that
they are consumption bundles. This motivates the following tractable condition,
which expresses that the consumer understands that, at every date, free disposal
is allowed.

Definition 8 An essential experiment (x,a) admits a contradictory statement if
there exist j, k, k' € N such that either [a;, < ajp and @y, > @] or [0y = ajpr =0
and Tp > a:k/].

The previous property is completely independent of cyclical consistency (recall
the example above). The next proposition states that, in the same way as cycli-
cal consistency is necessary and sufficient for rationalization (Proposition 1), the
absence of contradictory statement is necessary and sufficient for budget represen-
tation. The proof is given in the appendix.

Proposition 2 The two following conditions are equivalent:

1. The essential experiment (x, ) admits no contradictory statement.
2. The essential experiment (x,a) admits a budget representation.

We can now state our first main result: together, cyclical consistency and no
contradictory statement are necessary and sufficient for an essential experiment to
be consistent with the rational choices of a consumer facing budget sets.®

Proposition 3 Let (x,a) be an essential experiment. The following conditions are
equivalent:

1. The essential experiment (x, ) admits no contradictory statement and a is cycli-
cally consistent.
2. There exist a family of budget sets (Bj)jen compatible with (x, ) and a locally

B rationalizing the experiment (x,B).

non satiated, continuous utility function v

The proof is given in the appendix. Recalling Proposition 1, Proposition 3 en-
ables us to disentangle the conditions which ensure that an essential experiment
(x, @) can be rationalized. The cyclical consistency of « is crucial to assess the ra-
tionality of choices over items, independently of the fact that these items might be
consumption bundles. The structure of consumption bundles matters to define the
absence of contradictory statement, and this property, together with cyclical con-
sistency, characterizes a stronger form of rationalization (namely, 2. in Proposition
3 instead of 2. in Proposition 1).

What does Proposition 3 teach us in the “dual” framework of Ekeland and
Galichon (2012) (recall Remark 1)? The analogue of consumption bundle z; could
be a vector of “attributes”of house j, like its size, or other criteria that can be
measured in real units. Proposition 3 would then say that if the n traders have
monotonic preferences over the attribute vectors of the initial n houses, a contin-
uous equilibrium price function can be constructed over the space of all attribute

6 There is no hope to obtain testable restrictions in the consumer problem if one considers
poorer information than the one contained in essential experiments.
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vectors. Such a price function seems of little practical use.” However, the construc-
tion of such a utility function over the whole consumption space is the heart of
Afriat’s result (as recalled in Forges and Minelli, 2009, p. 139). But Proposition
3 is still not fully satisfactory in that respect, because, in condition 2., a different
utility function v? is associated with every family (Bj)jen- This motivates our
next section.

4.2 Robust rationalization

Taking again the essential experiment (x,a) as basic data, the following defini-
tion of robust rationalization naturally emerges from the discussion at the end of
Section 3: the utility function v robustly rationalizes the experiment (x, a) if v ra-
tionalizes the experiment (x,B) for every family (B;);cn compatible with (x, ).
The existence of a robust rationalization amounts therefore to the existence of a
largest family of budget sets compatible with the essential experiment. Unfortu-
nately, even if (x, o) is well behaved (in particular, « is cyclically consistent), such
a family may not exist as the next simple example illustrates.

Ezample 1 Let [(x1,(a11,212)), (z2, (@21, a22))] be an essential experiment such
that a12 =1, ae1 = —1 and z1 ¢ x2 —HR&_. First, it is an easy matter to verify that
the experiment admits a budget representation (actually, z1 ¢ z2 —HRﬁ_ guarantees
that there is no contradictory statement). For instance define a compatible family
as follows: By = [{z1} — Rﬁ]_i_ and By = [{z2} — Rﬁh_ U [{z1 +v1} — Rﬁh_ for
some v > 0 sufficiently small.®

Suppose now that zo2 ¢ x1 + Rﬁ, we can add a piece to the budget set B
without modifying the resulting matrix A%®. More precisely, there exists n > 0
such that, for all € € (0,7n), %Jrea:g ¢ Bi. Thus the family (Bf, BS), where Bf =
B1U [{(Te2} — RY ] . and BS = By is compatible with the essential experiment.
Suppose that there exists a well-behaved v rationalizing robustly the essential
experiment, then v rationalizes the experiments ((z1, BY), (z2, B)) for all e € (0, 7).
It follows that v(z1) > v(l%rea:g) since %ﬂwz € B{ and v(x2) > v(=z1) since z1 € B5.
From local non satiation, v(z2) > v(x1) since z1 € intBS but this contradicts the
continuity of v as e tends to 0.

The construction of the budget sets is given in Figure 1.

To obtain a contradiction in the above construction we assumed that zo ¢
{z1} + Rﬂ, which is by no means pathological. The previous essential experi-
ment can be rationalized for any compatible family of budget sets, but we cannot
hope for a robust rationalization. The previous example shows that, by enlarging
gradually a family of budget sets which is compatible with a given essential exper-
iment (x,a), we get at the limit budget sets which are well-behaved but are not
compatible with (x,a) anymore. We will nevertheless achieve an almost robust
rationalization, a concept that we define precisely below.

7 This is not surprising as Ekeland and Galichon (2010)’s interpretation does not require
the full power of Afriat’s theorem, but only Proposition 1.

8 Note that the essential experiment satisfies cyclical consistency and therefore (BS, BS)
satisfies GARP.
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T2 (g2 =1)

1
1+4e€

x2

/ xr1 + vl

/ “T Tl (agp =-1)

Fig. 1 Non-existence of a robust rationalization as € tend to 0.

Definition 9 Let (x, @) be an essential experiment. Let e > 0, the pair ((B5);en, v°)
where (Bj) en is a family of budget sets and v is a utility function, is said to
e-robustly rationalize (x, a) if:

(). The family (Bf);en is compatible with (x, o),
(é3). The function v rationalizes the experiment (x, B€),
(#i1). For every family (Bj)jen compatible with (x,a), B; C (1 + ¢)Bj for every
jEN.

The justification for the terminology is that (i) implies that v¢ rationalizes
experiment (x, B), for every compatible family (B;);en included in (Bj),en and,
by (4ii), every compatible family is almost included in (Bj);jen. To show the former
statement, note that z; is such that v“(z;) > v°(z) for all € B} then a fortiori
v(z;) > v°(x) for all « € By; and since x; € Bj, it follows that v rationalizes the
experiment (x,B).

We are now ready for our second main result which states that the conditions
in Proposition 3 are also necessary and sufficient for the existence of an almost

robust rationalization.

Proposition 4 Let (x,a) be an essential experiment. The following conditions are
equivalent:

1. The essential experiment (x, ) admits no contradictory statement and o is cycli-
cally consistent.

2. There exists n > 0 such that, for all € € (0,n), there ezists a locally non satiated,
continuous utility function v¢ rationalizing e-robustly the experiment (x, o).

The proof is given in the appendix. It shows in particular that the utility func-
tion v¢ is easy to construct. As already suggested above, the construction of an
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almost robust rationalization (as in condition 2. of Proposition 4) is justified if we
want to recover Afriat’s conclusion (namely, a well-behaved explicit rationaliza-
tion) in a situation where we suspect that the consumer only has partial knowledge
of the experiment (x,B).

5 Appendix

The proofs of Propositions 2, 3 and 4 are deduced from the next Theorem and its
proof:

— The statements of Propositions 3 and 4 coincide with the equivalence given
below.

— The proof of Proposition 2 is jointly obtained in the proof below (in [1. = 2.]
and in [2. = 3.]).

Theorem 1 Let (x, ) be an essential experiment. The following conditions are equiv-
alent:

1. There exist (Bj)jen compatible with (x,a) and a locally non satiated, continuous
utility function VB rationalizing the experiment (x,B).

2. The essential experiment (x, ) admits no contradictory statement and a is cycli-
cally consistent.

3. There exists 1 > 0 such that, for all € € (0,7), there exists a locally non satiated,
continuous utility function v¢ rationalizing e-robustly the experiment (x, o).

Proof [1. = 2.] 2 To show the cyclical consistency of a we can proceed as in the
proof of Lemma 1 (2. = 1.). To show the property of no contradictory statement,
suppose, first, on the contrary that there exist j, k, k' € N such that [ajr < ajpr
and xj, > xp/]. Since (Bj);en is compatible with (x, a) we have either [z} € intB;
and zp ¢ intBj] or [z, € FrB; and xj ¢ Bj] together with x5 > xj/, but this
contradicts the monotonicity property required in the definition of a budget set
(see Definition 4 and also subsection 1.1). Second, suppose on the contrary that
there exist j, k, k" € N such that [o, = o = 0 and xy, > /). Since (Bj)jen is
compatible with (x, a) we obtain that xy,x € FrB; but this contradicts xj, > 2.

[2. = 3.] Let m > 0 be such that z; < ml for every j € N and define the
following family (Bf);jen (see also Figure 2):

= ¢
BS = [B;- N ({ml} - R+)]+
= : ¢ 1 ¢ c
where BS = (int ((Uiew,az=0({2:} + RE) UUien oy ({hewi} +RY))))
Let us check first the condition (ii4) of Definition 9.

Claim For every compatible family (Bj);cn with (x, ), it holds that B; C (1 +
€)Bj for any j € N and any e > 0.

9 A by-product is the proof of [2. = 1.] of Proposition 2.
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T3 |(a13 =0)

o T4 (a1q =)

T4

1
1+€

e Io
(@12 = —1) :
T1i (g1 =0)

e

Fig. 2 Construction of the family (Bf);cn (here Bf)

Proof Let x € B; and assume that %_Hx ¢ Bj. Then it must be true that, for

some k € N, either a;;, = 0 together with %-s-ef > xp, or aj, = 1 together with
%ﬁx > %Jrexk. In both cases, the fact that (Bj),cn is compatible with (x, ) and

the monotonicity property imply that = ¢ B;, which is a contradiction. O

The next two claims establish that, for any € > 0 sufficiently small, the family
of budget sets (Bj),en is compatible with (x, ) (i.e. condition (i) of Definition
9).lO

Claim (x,B¢) is an experiment for any e > 0 sufficiently small.

Proof By construction, each Bj is a budget set since it is the intersection of two
monotonic subsets of Rﬁ, one of those being compact. Suppose next that there
exists j € N such that z; ¢ FrB5 for all e > 0. Thus by construction there exists
necessarily k such that either o, = 0 and z;, < z; or o, = 1 and %%:rk < xj, for
all € > 0. This contradicts the fact that (x,a) admits no contradictory statement,
by using that e tends to 0 if necessary in the latter case. 0O

Claim A%B° = « for any € > 0 sufficiently small.

Proof Let j,k € N be such that a;;, = —1. Suppose that there exists k' such that
xp > xp with o = 0. Then it is a contradictory statement, which cannot
be the case. Suppose then that there exists k' such that z; > %ﬂxk/ with
ajr = 1 for all e > 0. As e tends to 0, this contradicts again the fact that (x, a)
admits no contradictory statement. Therefore for any ¢ > 0 sufficiently small

10" A by-product is the proof of [1. = 2.] of Proposition 2.
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2 ¢ (Uien,ay—0({zi} + RE)) U(Uien ;=1 ({ 3 7i} + RY)). Thus 2, € intB5,

that is a]“.';CBE =1
Let j,k € N be such that a;, = 0. Suppose that there exists k' such that zj, >
xp with a;p; = 0. Then it is then a contradictory statement, which cannot

be the case. Suppose then that there exists k' such that z; > ﬁmk' with
ajp = 1 for all ¢ > 0. As ¢ tends to 0, this contradicts again the fact that
x, ) admits no contradictory statement. Therefore for any ¢ > 0 sufficiently

dmit tradict tat t. Therefore f 0 sufficientl

small z ¢ int((UiGN,aji:O({xi} + RO))U(Uien,a,=1({ it + Rﬂ))) but

since x1, € Uie N, a;;=0({Zi} + Rﬂ) it follows that x € FrBj, that is a;.“’;cBe =0.

Let j, k € N be such that a;;, = 1. Then clearly, for all e > 0, 2}, € int((ui,,lji:o({mi}-l-

Rﬁ_)) U(Uz‘eN,aﬁ:l({ﬁxi}‘i‘Rﬁ-))) since xy, > %Jrexk That is to say =y, ¢ Bf,

ie.ai” =1. O

It remains to prove that one can construct a well behaved utility function v*
with the desired properties (i.e. condition (ii) of Definition 9). Using condition
2. and the fact that (Bf);jen is compatible with (x, ) (for any e > 0 sufficiently
small), Lemma 1 establishes the existence of a locally non satiated, continuous
utility function v¢ rationalizing (x, B€).

[3. = 1.] Consider the pair (v?,B?%) which rationalizes the experiment (x, )
Z-robustly, as given by condition 3. Then a fortiori the well-behaved function v?
rationalizes the experiment (x,B%) as required by condition 1. O
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