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ABSTRACT. The paper investigates the effects of agglomeration of technological 

activities on regional productivity growth, applying the notion of pecuniary knowledge 

externalities. These enable to appreciate both the gains and the losses associated with 

the regional concentration of knowledge generating activities. Both are two sides of the 

same coin. The former are due to the reduction in the prices of knowledge as input on 

its dedicated markets while the latter stem from the reduction in the prices for 

knowledge as an output. This allows us to contextualize the effect of geographical 

proximity on knowledge externalities, and their impact on regional growth. Our analysis 

leads to specify the hypothesis of an inverted U-shaped relationship between the 

agglomeration of innovation activities and productivity growth. The empirical analysis 

based upon a large sample of European regions in the years 1996-2003 supports the 

hypothesis that agglomeration yields diminishing net positive effects beyond a 

maximum.  
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1 Introduction 
 

The relationship between agglomeration, externalities and regional growth has received 

renewed attention by economic geographers in the last decades. More specifically, 

elaborating upon the classical contribution of Alfred Marshall, scholars interested in the 

geography of innovation emphasized the idea that firms clustering in geographic space 

benefit from external economies and grow faster than isolated firms. This literature 

developed on the claim that geographical proximity, through unintentional contacts and 

interactions positively affected knowledge sharing and technological learning. 

Therefore, the so-called “pure” knowledge externalities, or knowledge spillovers have 

been highlighted as major drivers of technological progress and economic growth 

(Audretsch and Feldman, 1996; Jaffe, Trajtenberg and Henderson, 1993; Dumais, 

Ellison and Glaeser, 2002; Thompson, 2006). 

 

Surprisingly enough, the possible negative effects of agglomeration on the exploitation 

of external knowledge received instead very little attention, as the implicit assumption 

underlying the predominant literature is that technological knowledge spills freely in the 

atmosphere and firms can simply benefit by “being there”. Yet Jaffe (1986) had fully 

articulated and tested the hypothesis of the negative consequences of geographical 

proximity in terms of reduced appropriability of knowledge as an output: his results 

however did not receive due consideration. 

 

In this paper we develop a framework to analyzing both the positive and the negative 

effects that agglomeration and knowledge externalities may yield on productivity 

dynamics. To this purpose we combine three different strands of literature, i.e. the 

economics of collective knowledge (Antonelli, 1999; Foray, 2004; von Hippel, 1988), 
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the analysis of the markets for knowledge (Arora, Fosfuri and Gambardella, 2001) and 

the notion of pecuniary externalities, as formerly articulated by Tibor Scitovski (1954).  

 

Our main argument is that intentional interactions among innovating agents are key to 

the success of knowledge production processes. The production of new knowledge 

requires instead the access to external knowledge as a source of new ideas able either to 

improve existing technologies or to provide the basis for brand new ones. Explicit 

market transactions can be effective solutions for knowledge exchange when supported 

by contractual modes such as long-term outsourcing contracts, equity agreements, 

bundling of license and good, patents’ trade (Arora, Fosfuri, Gambardella, 2001). 

Geographical proximity helps the creation of markets for knowledge and complements 

the role of contractual arrangements due to the conditions of trust and reciprocity that 

characterize interactions within local contexts (Feldman, 1999).  

 

The grafting of the notion of pecuniary externalities within this context proves to be far 

reaching. Insofar as markets for knowledge are supported by spatial proximity among 

innovating agents, pecuniary externalities hold when the price (cost) of goods (inputs) 

falls below the equilibrium level, so that economic agents obtain a real benefit when 

purchasing it. Knowledge is however both an input and an output in the knowledge 

production process. In view of this, the lowering of knowledge price is likely to yield 

both positive and negative effects, in terms of cost and revenue reduction respectively. 

 

Specifically, we argue that the combined effects of positive and negative consequences 

of agglomeration are aligned along a quadratic relationship. In order to test this 

hypothesis we investigate the relationship between the agglomeration of technological 
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activities and the growth of total factor productivity (TFP) for a large sample of 

European regions, observed in the time span ranging from 1995 to 2003. We find 

evidence of an inverted U-shaped relation between technological agglomeration and 

productivity growth. The rest of the paper is organized as follows. Section 2.1 spells out 

the hypothesis that agglomeration bears both positive and negative effects in terms of 

knowledge externalities and that these can be captured by the notion of pecuniary 

knowledge externalities (henceforth PKE), while section 2.2 frames our hypotheses 

within a simple model. Section 3 articulates the methodology adopted to measure TFP 

following the growth accounting approach, presents the data set used for the empirical 

analysis and exhibits the econometric results of our study. Section 4 concludes and 

highlights the policy implications of our argument. 

 

2 Geographical proximity and knowledge spillovers: The 

discovery of PKE 

2.1 The theory 

The concept of externalities has long attracted the interest of innovation scholars. 

According to the received Marshallian tradition (Meade, 1952; Viner, 1932), knowledge 

externalities are qualified as ‘untraded’ interdependencies among firms. These 

interdependencies are not mediated by the price mechanism and do not bear any actual 

costs for the firms to exploit their gains. Knowledge generated by a given firm is an 

unpaid factor that enters the production and innovation processes of other firms by 

means of accidental effects of co-location and spontaneous learning. After the early 

contributions on the local and systemic character of innovation processes, a wide body 

of theoretical and empirical literature has emerged aimed at applying the composite 
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externalities framework to understanding the role of geographical space in the 

generation of technological knowledge and in the introduction of innovations.  

 

In this direction, different kinds of externalities are said to contribute local accumulation 

of technological knowledge. An extensive body of empirical literature followed the 

original contribution of Glaeser, Kallal, Scheinkman and Shleifer (1992), which 

identified three types of knowledge externalities from which the advantages of 

agglomeration stem: the Marshall-Arrow-Romer (MAR) externalities that derive from 

the concentration of firms within a single industry; the Jacobs externalities, which 

instead are associated with the diversity of firms and industries within a given region; 

and the Porter externalities, according to which local competition among firms 

concentrated in the same industry favors local development.  

 

In this vein, different authors (e.g. Deckle, 2002; Dumais, Ellison and Glaeser, 2002; 

Rosenthal and Strange, 2003) tested whether cross-fertilization of ideas, and 

consequently knowledge spillovers contribute regional productivity growth because of 

the technological homogeneity of firms clustered within the same industry, or rather 

because knowledge externalities are mobile across sectors and therefore benefit from 

the knowledge heterogeneity of the firms. The contributions in this body of scholarly 

research shares the idea that, thanks to social and institutional ties, localized 

accumulation of labor, capital and R&D are the unique requirements for knowledge 

spillovers and spontaneous learning from external sources to take place, and exert an 

unconditional positive effect on output and productivity growth. These are the basic 

tenets of the approach to pure knowledge spillovers.  
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However, this authoritative analytical framework has been recently challenged both 

with regard to the understanding of the conditions under which agglomeration favors 

knowledge externalities and with regard to the types of externalities that spur local 

dynamics of innovation and growth (e.g., Thompson and Fox-Kean, 2005, also for a 

review of contributions). 

 

In this paper we argue that economic geographers and innovation scholars would do 

well to rediscover the distinction introduced by Tibor Scitovski (1954) between 

technological externalities and pecuniary externalities. The former are benefits accruing 

from others’ activities that are not mediated by market mechanisms, while the latter 

describe benefits accruing from others’ activities that are mediated by markets through 

the price system2.  

 

Knowledge spillovers have been seen as a case of pure technological externalities, being 

knowledge available at no costs in local contexts, and freely accessible by everyone 

“being there”. Yet, most of the literature analyzing the dynamics of knowledge 

spillovers falls in the trap of explaining the supposed evidence of dynamic increasing 

returns at the local level by invoking processes that typically apply to pecuniary 

externalities, like economies of specialization and labor market economies (Breschi and 

Lissoni, 2001b). 

 

Differently from the established literature, we argue that knowledge externalities are 

mostly pecuniary in their own right, rather than ‘pure externalities’. The combination of 

the collective knowledge approach with the literature on markets for technologies 

                                                 
2
 In this respect, both MAR and Jacobs’ externalities may turn out to be either pecuniary or technological. 
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allows for proposing the new concept of PKE: the benefits from local knowledge pools 

are not due to a generic intangible atmosphere, but they are the outcome of intentional 

actions and organized transactions carried out in the marketplace. 

 

The generation of technological knowledge can be depicted as an outcome of a 

collective undertaking strongly influenced by the availability of local sources of 

knowledge and by the way in which interactions are organized and carried out (Allen, 

1983; von Hippel 1988). Specifically, technological knowledge, as it is used and 

generated by firms, stems from the combination of two basic inputs, i.e. internal and 

external knowledge. The intentional participation of firms in organized knowledge 

exchanges makes possible the acquisition of knowledge sourced externally in other 

firms (e.g., clients, suppliers, rivals) and institutions (e.g., universities, R&D labs, 

TTOs) (Dicken and Malmberg, 2001; Nicholas, 2009). Internal and external knowledge 

represent two strongly complementary inputs and none of the two inputs may fall 

without a certain threshold without harming the entire knowledge production process 

(Antonelli, 1999). 

 

The innovative performance of the firms does not depend only on their internal R&D 

resources but also and increasingly, on their ability to acquire complementary 

competencies from external sources through a wide array of mechanisms. These are the 

result of the increasing trend toward outsourcing highly specialised phases of 

production, as well as the provision and purchase of specific and complementary 

intermediate inputs involving both upstream (users) and downstream actors (contractors 

and subcontractors) (Herrigel and Zeitlin, 2000), and include, for instance: a) pure 

research contracts with research laboratories and universities; b) technology transfer 
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agreements with TTOs and public infrastructures; c) technological consultancy provided 

by knowledge intensive service firms; d) production-oriented agreements or joint 

manufacturing agreements. 

 

In such a context of increasing compositeness of the innovation process and its 

organization, firms need to undertake specific activities and efforts to integrate such 

external knowledge, which can be very idiosyncratic and different from those already 

possessed, into their internal knowledge production processes (Pisano, 1996; Patrucco, 

2009). In other words, access to external knowledge is harmed by the efforts agents 

must face to screen the markets of technological knowledge, and then acquire the 

relevant portion of knowledge produced and sourced externally (Agrawal, Cockburn 

and McHale, 2006; Beugelsdijk, 2007).  

 

The analysis of the mechanisms through which knowledge results as a collective 

undertaking bears a new emphasis on the role of interactions for the working of the 

markets for knowledge. The crucial analytical achievement of the research on the 

markets for knowledge (e.g., Arora, Fosfuri and Gambardella, 2001) is the appreciation 

that contractual devices and geographical proximity reduce the price of trading and 

exchanging of bodies of knowledge in the market place between the players of 

reiterated interactions. Hence, regional proximity complements and actually makes 

possible the markets for knowledge and the flows of transactions between, for instance, 

manufacturing firms, academic laboratories, new technology-based firms, consultants 

and knowledge-intensive services.  
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Lynn Zucker and her colleagues (Zucker, Darby, and Armstrong, 1998; Zucker, Darby, 

Brewer, 1998; see also Nakamura and Odagiri, 2005) provided a systematic and original 

support to the increasing importance of organized-transactions in the markets for 

knowledge for the dissemination and acquisition of technological knowledge. Proximity 

eases the interactions between venture capitalists, skilled management, and the 

scientific community so as to increase the probability that new fertile knowledge is 

exploited timely and effectively. Organized-transactions are supported not only by an 

array of complementary institutional conditions such as intellectual property rights, long 

terms contracts and spatial proximity. The latter provides favorable conditions to the 

creation of markets for knowledge, so that agglomeration and interactions complement 

rather then substitute transactions. Proximity through high-quality conditions of trust 

and reciprocity also enables repeated interactions between co-localized firms (Feser, 

2002; Gossling, 2003) that lead to more effective market mechanisms, which increase 

the opportunities of the actual exploitation of technological knowledge.  

 

The chance to benefit from the lower prices at which actors can access and buy external 

knowledge drives economic organizations to outsourcing specific pieces of knowledge, 

creating a sort of intermediary market for knowledge producers (Arora, Fosfuri and 

Gambardella, 2001). Organizations enter the markets for knowledge, and increase the 

density and frequency of knowledge transactions, because the price they pay to buy 

technological knowledge sourced externally through knowledge transactions is lower 

than the cost they would face in the case they choose to produce the same portion of 

knowledge through vertical integration of R&D.  
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However, the more complex and articulated this process, the larger the number of the 

actors involved and embedded in the local net of knowledge exchanges, the more 

difficult are contract to be enforced, and the lower the opportunity to appropriate and 

secure the rights for the exclusive exploitation and valorization of proprietary 

knowledge (Aharonson, Baum and Feldman, 2007). Markets for knowledge turn out to 

be efficient mechanisms for knowledge transactions only from a static viewpoint. 

Dynamic efficiency is secured only unless a critical number of transactions are reached. 

Beyond a threshold level of transactions diminishing returns are likely to arise. 

Proximity favors repeated interactions that in turn easily lead to relaxing the control 

conditions for the exclusive use of knowledge and reduce the opportunities for its direct 

exploitation as a good or indirect valorization as an input into downstream innovation 

processes. The mobility of qualified personnel (e.g., Gossling, 2003) is for instance a 

major factor in the reduction of the actual appropriation of proprietary knowledge. 

Firms localized in a region with high levels of concentration of research activities share 

their basic knowledge because they access the same pools of local knowledge with the 

clear effect to attracting and increasing the entry of new competitors in the local 

markets for knowledge.  

 

The reduction in the price for knowledge as an output affects also the efforts to secure 

the indirect valorization of the proprietary knowledge internally by means of its vertical 

integration and use in downstream activities where it becomes an input into the 

introduction of product and process innovation and the production of other goods so 

that it can be sold embodied. Proximity in fact favors not only the leakage of 

disembodied knowledge upstream, but also, downstream, the imitation of innovated 

goods by agents localized nearby (Levin et al., 1987).   



11 

 

 

 

 

We are now able to articulate the notion of PKE. Pecuniary knowledge externalities 

consist of the indirect interdependences among actors that take place in the markets for 

knowledge inputs via the price system. They apply when firms acquire inputs (and sell 

output) at costs (prices) that are lower (higher) than equilibrium levels because of 

specific structural factors. Most if not all external knowledge, in fact, is acquired by 

means of user-producer interactions that are realized through market transactions among 

sellers and customers of intermediary and capital goods. Hence pecuniary externalities 

apply, instead of technological externalities, because the external effects that shape the 

generation and exploitation of knowledge is channeled by transactions and hence take 

place via the price mechanism (Antonelli, 2008a and b).   

 

This approach seems at the same time closer to the actual evidence of knowledge 

generation processes and more inclusive as it enables to accounting for both the gains 

and the losses engendered by knowledge externalities on the markets for knowledge. 

While the former consist of the advantages associated with lower prices of external 

knowledge as an input due to more effective knowledge transactions, the latter are 

represented by the reduction in the actual price for knowledge as an output that firms 

can command when they try and sell their knowledge or try and make a direct use to 

improve their productivity. Both the positive and negative effects of PKE depend upon 

the density of innovative agents co-localized in the same region. It is clear that the 

larger is the density of innovative agents and the larger is the opportunity to acquire 

external knowledge, as an indispensable input, by means of market exchanges, but is 

also clear that the larger is the density of innovative agents and the larger are the losses 

in terms of reduced price for proprietary knowledge as an output.  
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The combination of positive and negative effects explains the quadratic relationship 

between agglomeration and productivity growth. The dynamics of PKE are such that an 

increase in the agglomeration of knowledge generating activities is expected to yield net 

positive effects, so long as the negative effects in terms of appropriability losses and 

excess supply overtake the positive effects due to lower purchasing prices. This 

quadratic relationship is likely to hold irrespective of the degree of coherence of the 

structure of the local knowledge base. Because of the need of acquiring external 

resources, knowledge is likely to be heterogeneous, and variety may yield positive 

effects in terms of Jacobs’ knowledge externalities. Yet, the distinction between related 

and unrelated variety (Frenken et al., 2007) help us in qualifying the degree of 

heterogeneity of knowledge and the extent to which external knowledge can be 

efficiently absorbed and used. When the technological distance between different 

knowledge bases is too high, and these are divergent and unrelated, acquiring external 

knowledge is difficult and variety is likely to harm the dynamics of PKE. Viceversa, 

heterogeneity of knowledge and Jacobs knowledge externalities are likely to display 

their advantages on the dynamics of PKE when internal and external knowledge bases 

are characterized by high degree of relatedness and coherence3. Different variety 

regimes may thus affect the extent to which PKE display their effect, but are not likely 

to fully neutralize them4. When knowledge pools are characterized by a relatively high 

degree of related variety, one would expect that increasing density of technological 

activities would lead to a somewhat flatter quadratic curve, the maximum of which 

                                                 
3
 In this respect, we characterize knowledge as a heterogeneous good within given boundaries of 

proximity and relatedness of the different knowledge bases.  
4
 For example, in a context characterized by a large number of highly specialized knowledge components, 

the negative effects on appropriability conditions may not hold across different technological areas, but 

would apply within each technological area as the within density increases. In this direction, it would be 

interesting to combine the analysis of pecuniary knowledge externalities with the concepts of diversity, 

balance and disparity (Stirling, 2007; van der Berg, 2008), but it is well beyond the scope of this paper.  
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would be lower than in a context characterized by a relatively high degree of unrelated 

variety.  

Within this framework, the role of ‘pure externalities’ can be reconsidered. Untraded 

interdependencies are not the solely factors, and not even the predominant ones, shaping 

the dynamic increasing returns observed in technological clusters. Pure technological 

externalities, however, do add  on to the effects of PKE on productivity gains. They are 

actually supposed to positively affect innovation dynamics by means of a generalized 

increase of locally available technological opportunities. This would amount to a 

change in the intercept in the quadratic curve, according to which PKE in a context 

characterized also by strong ‘pure externalities’ would be represented by an inverted-U 

curve wherein productivity gains for each level of agglomeration are higher than in a 

context characterized by weaker ‘pure externalities’ 

 

2.2 The Model 

 

Our hypothesis is that agglomeration of knowledge intensive activities yields 

diminishing returns beyond a maximum. Agglomeration in fact engenders both positive 

and negative effects in terms of PKE. Net pecuniary gains from knowledge externalities 

refer to the productivity gains stemming from the access to cheaper external knowledge 

available in the local markets for knowledge mediated by the price system, after 

accounting for the losses engendered by the negative effects of agglomeration on the 

appropriation of knowledge as an output and hence on its market price. 

 

PKE enable to account both for the gross gains that are possible when the actual price of 

external knowledge falls below the equilibrium levels due to the relative abundance of 
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external knowledge sources and the gross losses that stem from reduced appropriability 

and exclusive exploitation when knowledge as an output is valorized and feed the 

downstream introduction of product and process innovations. Net PKE are the algebraic 

sum of the two and exert a direct effect on the growth of total factor productivity of co-

localized firms following a quadratic function of the density of knowledge intensive 

activities. 

 

The argument elaborated may be clarified by articulating a simple model. Let’s suppose 

that a local (say regional) economy is represented by a general production function: 

),( LKAfY            (1) 

Where Y represents a measure of output, A is a measure of production efficiency, while 

K and L are capital and labour inputs. The efficiency of production, A, is usually 

referred to as total factor productivity (TFP). The TFP indicator is likely to capture a 

wide body of phenomena that make output increase more than proportionally with 

respect to the increase in production inputs
5
. For the sake of simplicity, let us argue that 

A is a (linear) function of the whole body of technological knowledge available in the 

region6: 

)(TKfA            (2) 

According to Griliches (1979), the generation of knowledge may be viewed as the 

outcome of a knowledge production process, represented by a knowledge production 

                                                 
5
 We acknowledge that differences in levels and rates of change of TFP may be subject to non-univocal 

interpretations. While Solow (1957) associated TFP growth with technological advances, Abramovitz 

(1956) defined the residual as some sort of measure of ignorance. Nonetheless it remains a useful 

signalling device, in that it provides useful hints on where the attention of the analysts should focus 

(Maddison, 1987). 
6
 The triggering effects of innovation on productivity growth represent a well established fact in the 

economic literature dealing with innovation and technological change. The relevance for regional 

economic growth has been acknowledge since the seminal work by Francois Perroux (1955). 
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function (KPF). Our KPF relates the knowledge output to the employment of two 

knowledge inputs, i.e. internal and external knowledge (respectively IK and EK): 

),( EKIKgTK           (3) 

According to a wide body of literature in the economics of knowledge, internal and 

external knowledge are both key and complementary inputs for the generation of new 

technological knowledge. In view of this the process of knowledge production might 

hardly take place should any of these two inputs be missing.  

 

The complementarity between internal resources and external ones is emphasized 

bearing in mind the extensive qualitative and quantitative evidence on the organization 

of innovation processes. Building upon the research inaugurated by Cohen and 

Levinthal (1989 and 1990), scholars confirm that firms purposefully establish selective 

interactions within networks precisely to access complementary knowledge inputs7. 

Such literature shows that the production of innovation and new technological 

knowledge by means of vertically-integrated R&D activities has been progressively 

substituted by a net of knowledge transactions because a single firm is not able to invest 

the sufficient amount of resources to develop new knowledge through a fully internal 

process. The use of external knowledge inputs may yield clear advantages in 

overcoming the technological and financial limitations of in-house innovation, and may 

enlarge technological opportunities through the search of the external environment. At 

the same time, some internal technological competencies are necessary to explore for 

the more appropriate external knowledge available, as well as to enable an efficient 

absorption and use of the knowledge sourced externally. In other words, a firm does 

                                                 
7
 For recent theoretical and empirical contributions on the complementarity between internal and external 

knowledge inputs, see for instance Zahra and George, 2002; Roper, Du and Love, 2008; Love and Roper, 

2009, which elaborate, further develop and test the original intuition by Cohen and Levinthal, 1989). For 

some qualitative and quantitative evidence at the geographical level see for instance Patrucco, 2005 and 

Giuliani, 2007.   
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need to access other knowledge sources in order to create new knowledge since the 

collapse on internally developed knowledge would necessarily lead to exhaustion of 

technological opportunities, which would not be fed by new stimuli. On the other hand, 

by relying only on external knowledge, one would not develop the conditions to absorb 

it8.  

 

 External knowledge is an essential and non-disposable input as much as internal 

learning and R&D activities: none of them can be suppressed or reduced to nihil 

(Nelson, 1982). For these reasons, the access to external knowledge is a necessary, 

though not sufficient, condition for the production of new knowledge, which cannot be 

surrogated in any way (Foray, 2004; Antonelli, 1999). It turns out that such inputs 

cannot be considered as substitute, not even imperfect, in the KPF, but they must be 

considered as strictly complementary with very low levels of the elasticity of 

substitution among the two production factors.  

 

Hence the specification of the knowledge production function is far from the traditional 

Cobb-Douglas and takes all the characteristic form of a generic multiplicative 

relationship (Kremer, 1993; Patrucco, 2008). 

 

This leads us to specify the total costs of knowledge production as follows: 

 EKzIKvhTCK ,,,         (4) 

                                                 
8
 These arguments may translate into the specification of a knowledge production function with two 

inputs, namely internal and external knowledge, where the marginal rate of substitution is far lower than 

the standard unit level that characterizes the Cobb Douglas production function.  
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Where v and z are respectively the unit price of internal and external knowledge. While 

v may be viewed as the cost economic agents must bear to commit resources to learning 

and R&D activities, z represents the price at which knowledge is sold on local markets  

 

The core of pecuniary knowledge lies in the relationship between the price of external 

knowledge as an indispensable input into the production and the price of knowledge as 

an output. Let us consider first the effects of the purchasing price of external knowledge 

as an non-disposable input. It is easy to proof that in a traditional setting characterized 

by a Cobb-Douglas, the TCK would have increased as z increases, but at a decreasing 

rate as an effect of imperfect substitutability between IK and EK. However, we have 

posited that in the KPF, IK and EK are not substitutes but complementary inputs which 

are in a multiplicative relationships with each other. Therefore we may characterize 

equation (4) as follows: 

0




z

TCK
 ; 0

2






z

TCK

 

so that the TCK look like a power function of z, as in Figure 1. 

INSERT FIGURE 1 ABOUT HERE 

The first side of the PKE hypothesis consists  in the fall of the price for knowledge as an 

input on local markets below the equilibrium price as an effect of increased availability 

on local knowledge markets. Let us now consider the second nested effect on the 

revenue of the firms that generate knowledge as an output and try and valorize it. 

 

In order to have a complete assessment of both effects, in fact we need to explore the 

relationship between the price at which knowledge is sold and the revenues stemming 

from its sale. Since knowledge produced by agent i represents external knowledge for 
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all other agents, it may be sold on local markets at price z. According to this, we may 

also specify the total gross revenue stemming from knowledge selling: 

TKzTRK           (5) 

The gains and the losses associated to the working of PKE can now be fully appreciated 

with a few passages. The argument elaborated in Section 2 leads us to spell out the 

following relationship between the price of external of external knowledge and the 

density of knowledge generating agents: 

Dmz   with 0'm        (6) 

The intuition is straightforward, and is much in line with Scitovski’s analysis of 

pecuniary externalities. The agglomeration of knowledge production activities leads to 

an expansion of the knowledge output so that the price for knowledge on local markets 

falls down. Since knowledge is both an input and an output of this production process, 

the mechanisms of PKE yield both positive and negative effects, according to the side 

of the production process one focuses on (input purchasing vs. output selling). On the 

one hand, the lowering of the price for the external knowledge input lowers the total 

costs for knowledge production. On the other hand, the knowledge producing agent 

turns out to sell its knowledge output at a lower price. This relationship is much clear 

when plotting a diagram of TCK and TRK as a function of D (see Figure 2). 

INSERT FIGURE 2 ABOUT HERE 

Following Scitovski, pecuniary externalities apply when prices are below the 

equilibrium level. The full effects of PKE may be now grasped when comparing the 

gains and the losses stemming from knowledge production in presence of externalities 

with those obtained in a no-externalities context. Indeed, in the latter the price of 

external knowledge is not supposed to vary according to D. Therefore we may represent 

both the costs (TCK*) and the revenues (TRK*) at equilibrium prices as a straight line 
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parallel to the x-axis in Figure 3. In the top diagram, the equilibrium cost line is 

compared with the TCK curve as a function of D. The difference between the two 

curves represents the benefits, or pecuniary gains (PG), that stems from the lowering of 

knowledge production costs. In the same vein, in the mid diagram we compare the 

equilibrium revenue line with the RTK line as a function of D. The difference between 

these two lines stands for the pecuniary losses (PL) that stems from the lowering of the 

revenues from knowledge production.  

INSERT FIGURE 3 ABOUT HERE 

Therefore, the effects of PKE are germane to both the costs and the revenue sides. The 

assessment of them both in turn enables to determine the actual profits for knowledge 

producing agents. “When these benefits accrue the firms, in the form of their profits, 

they are pecuniary external economies” (Scitovski, 1954: p. 147). The bottom diagram 

allows us to compare PG and PL, so as to introduce the concept of net pecuniary gains 

(NPG) as the difference between the former and the latter. 

 

From the diagram it is clear that the NPG increase as D increases up to a point after 

which the NPG start decreasing. In other words, the NPG function may well be 

approximated by a quadratic function with a downward concavity. Formally the 

relationship is: 

 DwNPG     with: 
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     (7) 

The analysis articulated so far has shows that PKE are likely to yield both positive and 

negative effects, so that their net benefits exhibit a quadratic relationship with the 

density of knowledge generating agents within local contexts. We may now derive the 

effects on total factor productivity through a few more passages. 
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Insofar as there are positive net pecuniary gains for knowledge generating firms, new 

agents would be willing to enter the local markets for knowledge due to the prospective 

profit opportunities. The growth of knowledge generating agents (N) therefore turns out 

to be a positive function of NPG. These are in turn a quadratic function of D. If we 

assume N to proportionally grow as NPG increases, we may approximate the growth of 

N as a quadratic function of D as well: 

DwNPG
t

N





         (8) 

The growth of the total knowledge (TK) in turn grows as an effect of the increasing 

number of knowledge generating agents in the area: 

 DwNPG
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        (9) 

Finally, let us recall the relationship expressed by equation (2). According to that, we 

may argue that TFP grows as a function of TK growth: 

DwNPG
t
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TK
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
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


       (10) 

According to this chain of nested relationships, the growth rate of A turns out to be a 

quadratic function of the density (D) of knowledge creating agents within the local 

context. Figure 4 helps clarifying the passages that lead to this conclusion. Differences 

in the degree of internal coherence of the local knowledge base are likely to shape the 

curvature of the parabola in bottom diagram, while the relative strength of 

complementary ‘pure externalities’ is likely to shift it upwards. 

INSERT FIGURE 4 ABOUT HERE 

In conclusion, PKE are likely to affect productivity dynamics in local contexts, so that 

the TFP growth rate turns out to be a quadratic function of the density of innovating 

agents. In what follows we provide an empirical test for the validity of such hypotheses. 
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3 The evidence of PKE 

3.1 Methodology 

 
This section provides the basic methodology to investigate the relationship between 

TFP and the agglomeration of technological activities, as driven by PKE. 

 

In order to test our working hypotheses, we first need to measure total factor 

productivity (TFP), Ait, following the growth accounting approach (Solow, 1957; 

Jorgenson, 1995; OECD, 2001). Let us start by assuming that the regional economy can 

be represented by a Cobb-Douglas production function with constant returns to scale: 

itit

itititit LKAY



1

          

where Lit is represents labour services rendered in the region i at the time t, Kit stands for 

capital services in the region i at the time t, and Ait is the level of TFP in the region i at 

the time t. 

 

The yearly output elastiticity of labour, βit, is calculated for each region as the total 

income share of employment compensation9. Then the annual growth rate of regional 

TFP is calculated as usual in the following way: 
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Our basic hypothesis is that the net benefits from PKE grow until a critical mass of 

agents within the system is reached. The further increase in the density of agents makes 

the pecuniary gains grow less than proportionately with respect to pecuniary losses. 

                                                 
9
 In the discrete approximation of the Divisia index, the growth rate of the production factor is weighted 

by the two years average of the output elasticity. Therefore, in Equation (11)   is the two years average 

output elasticity of labour. 
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The test of such hypothesis needs for modeling the growth rate of TFP as a function of 

the density of technological activities, which we call Dit. Moreover, it is usual in this 

kind of empirical settings to include the lagged value of TFP, 1,ln tiA , in order to 

capture the possibility of mean reversion. In general terms, this relationship can be 

written as follows: 

),(ln 11,  tti DAf
A

dA
         (12) 

 

In particular, our line of reasoning leads us to characterize Equation (6) as follows: 






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*0
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DDif

DDif
fD ;  DfD 0'' ,   

Where D* is the threshold level of the density of technological activities. A convenient 

way to represent such a kind of relationship can be found in the following structural 

equation: 

  tiitttt tdXDcDcAba
A

dA
,1

2

12111ln     (13) 

Where Xt-1 represents a vector of control variables and the error term is decomposed in 

ρi and Σψt, which are respectively region and time effects, and the error component εit. 

Equation (13) proposes a quadratic relationship between TFP growth and density, where 

we expect c1>0 and c2<0. 

 

Equation (13) can be estimated through traditional fixed effect estimators for panel data. 

However, when analyzing the determinants of TFP growth at the regional level a special 

focus must be devoted to locational aspects. Regional scientists have indeed showed 

that geographical proximity may affect correlation between economic variables. 
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While the traditional econometric approach has mostly neglected this problem, a new 

body of literature has recently developed, dealing with the identification of estimators 

able to account for both spatial dependence between the relationships between 

observations and spatial heterogeneity in the empirical model to be estimated. Former 

treatment of spatial econometric issues can be found in Anselin (1988), subsequently 

extended by Le Sage (1999). 

 

The idea behind the concept of spatial dependence is straightforward. The properties of 

economic and social activities of an observed individual are likely to influence 

economic and social activities of neighbour individuals. Formally this relationship can 

be expressed as follows: 

 

)( ,, tjti yhy , ni ,,1 , ij        (14) 

 

The dependence can therefore be among several observations. If this is the case, 

structural forms like equation (13) are likely to produce a bias the estimation results. 

There are different ways to cope with this issue. First, one may apply spatial filters to 

the sample data, so as to remove the spatial structure and then apply traditional 

estimation techniques. Second, the relationship can be reframed using a spatial error 

model (SEM), in which the error term is further decomposed so as to include a spatial 

autocorrelation coefficient. Third, one may apple the spatial autoregressive model 

(SAR), which consists of including the spatially lagged dependent variable in the 

structural equation.  

 

We decided to compare the SAR and SEM models in order to have a direct assessment 

of the spatial dependence of productivity growth between close regions. However, most 

of the existing literature on spatial econometrics propose estimator appropriate for 
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cross-sectional data. Given the panel data structure of our sample, we therefore follow 

Elhorst (2003) extending Equation (13) so as to obtain the SAR (Eq. 15) and the SEM 

(Eq. 16) specifications: 
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Where ξ is referred to as spatially autoregressive coefficient and W is a weighting 

matrix. This latter can be defined either as a contiguity or as a normalized distance 

matrix. In the analysis that follows we chose the second alternative, by building a  

symmetric matrix reporting the distance in kilometres among the city centre of the 

regional chief towns. 

 

 

3.2 The data 

 

In order to investigate the relationships between economic performances on the one 

hand, and the density of innovation activities on the other hand, the data were mainly 

drawn from the Eurostat regional statistics, obtaining an unbalanced panel of 186 

European regions, observed in the time span ranging from 1995 to 2003. 

 

As far as TFP is concerned, we need output, labour and capital services, and the labour 

and capital shares. As a measure of output we used the real GDP (2000 constant prices). 

Eurostat also provides with estimation of capital stock and employment, although it 
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does not provide data about hours worked at the regional level. For this reason we used 

average hours worked at the country level provided by the Groningen Growth and 

Development Centre10, and then calculate total hours worked. Although this does not 

allow us to appreciate cross-regional difference in average hours worked, nonetheless it 

allows us to account at least for cross-country differences. The labour share is 

calculated using data on the compensation of employees and the GDP, while capital 

share is calculated as 1 minus labour share. 

 

As far as the explanatory variables are concerned, we need a measure of innovation 

activity. To this purpose we used the number of patent applications submitted to the 

European Patent Office (EPO), provided by the Eurostat regional science and 

technology indicators. Patent applications are assigned to regions according to 

inventor’s address. Moreover each patent is assigned to one or more technological 

classes, according to the international patent classification (IPC)
 11. 

 

The actual measurement of externalities, as well as the distinction between pure and 

pecuniary externalities, represents a very difficult task for empirical economists 

(Breschi and Lissoni, 2001a and b)12. This is even more problematic in firm-level 

                                                 
10

 www.ggdc.net. 
11 

Patent applications as economic indicators present well-known drawbacks. They can be summarized in 

their sector-specificity, the existence of non patentable innovations and the fact that they are not the only 

protecting tool. Moreover the propensity to patent tends to vary over time as a function of the cost of 

patenting, and it is more likely to feature large firms (Pavitt, 1985; Levin et al., 1987; Griliches, 1990). 

However, previous studies highlighted the usefulness of patents as measures of production of new 

knowledge, above all in the context of analyses of innovation performances at the aggregate regional 

level (Acs et al., 2002). 
12

 Among the difficulties in measuring knowledge externalities, it is useful to recall here that we focus on 

the analysis of externalities at the regional level and look for the effect of geographical on knowledge 

flows channeled by market transactions. However, it is fair to acknowledge that recent literature, 

including evidence on co-patenting activities, highlights also the fact that networks between non-

neighboring actors provide effective channels for knowledge flows (see for instance, Breschi and Lissoni, 

2001a, b, and, for a more general perspective on the role of geographical proximity for knowledge 

exchange, Boschma, 2005). Our analysis of within-regions externalities leaves out the knowledge flows 

occurring between non-neighboring regions, and this should be taken into account when considering our 
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studies, where the object of analysis is the identification of the effects of external 

knowledge on firm’s innovation output. In this paper we adopt an indirect approach to 

the measurement of PKE. The discussion conducted in Section 2 indeed lead us to 

postulate that PKE shape the relationship between the density of technological activity 

and productivity growth, giving rise to a quadratic curve.  

 

Indeed externalities are likely to emerge in contexts shaped by geographical 

agglomeration of technological activities. This is even clearer when PKE are at stake, 

where the formation of local markets for knowledge is likely to affect the efficiency of 

the exploitation of knowledge sourced externally. We describe technological 

agglomeration through a measure of the density of technological activities, and more 

precisely as the relationship between the scale of such activities and the size of the 

population that generate, use and exploit technological knowledge13. The empirical test 

of our hypotheses should provide support to the existence of PKE. For what concerns 

the actual measurement of the density, D, we take the ratio between the regional levels 

of patent applications14 and the regional level of employment (Quatraro, 2009a). We 

therefore assume that knowledge externalities arise within regional areas, and that 

negative effects arise when the density of innovating agents within the production 

system is too high15: 

                                                                                                                                               
results. Knowledge flows between non-neighboring regions would be better analyzed by implementing a 

micro-level study focused on co-patentees. 
13

 Other approaches would rather have preferred the total number of patents as a measure of technological 

agglomeration. However, in our view agglomeration better refers to the magnitude of a phenomenon, as 

compared to the context in which it takes place. Therefore, in practice we measure technological 

agglomeration as the ratio between the total number of patents and the total number of employees in the 

region. This view is also consistent with the conventional use. 
14

 Due to the high variance of patenting activity over time, we decided to calculate the 5-years moving 

average at each year. 
15

 NUTS 2 regions are used in this analysis. We are aware of the problems raising by using administrative 

boundaries to define areas characterized by agglomerations, yet the available data do not allow to purse 

such a large scale analysis by refining the concept of local contexts.  
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The vector of control variables consists of the following indicators. First of al, we 

define an index of technological homogeneity (SPEC) of regions by using the 

Hirschman-Herfindal index. In particular, the IPC classification is organized at different 

levels of aggregation. We decided to take the one digit classification, so that eight 

classes can be distinguished, ranging from A to H. Therefore for each region at each 

year we were able to calculate the share of patents within each class. The index thus 

turns out to be: 


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
8

1

2

,,,

j

tjiti sSPEC  

Where sijt is the share of technological class j in the overall set of patent applications at 

time t in region i. The higher (lower) is the index, the higher (lower) is the technological 

homogeneity of regions. 

 

As for the control variables, one needs to control for the impact on the one hand of 

traditional agglomeration economies, on the other hand of changing regional industrial 

specialization, so as to reduce the possible biases in our estimates (Quatraro, 2009b). 

Following Crescenzi et al. (2007), the effects agglomeration economies are captured 

by the variable AGGL, which is calculated as the (log) ratio between regional 

population and size (square kilometres). The changing specialization is instead proxied 

by LOQ, i.e. the location quotient for manufacturing added value. 

 

Table 1 shows the descriptive statistics for the key variables, reporting the within and 

between values for the regions considered in our analysis. This preliminary data reveal 

that the variables are characterized by a fairly significant degree of variance, both 
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within and between regions. On average, the cross-regional dispersion is higher than 

that observed within regions over time. Moreover, the dispersion of the density index 

within regions is higher than that of the homogeneity index, while the reverse applies 

for what concerns the cross-regional variance. 

>>> INSERT TABLE 1 ABOUT HERE <<< 

To gain a better understanding of cross-regional differences in our sample, in Figure 2 

we report the maps that assign the regions to the observed levels of patent applications 

per thousand workers. Such diagrams provide some interesting preliminary information. 

Fist of all, in 1996 one may observe a great deal of concentration of patenting activity in 

Central European regions. The German areas of Stuttgart, Oberbayern and Rheinhessen 

appear to fall in the uppermost class. Comparable levels may be found also in the Dutch 

region of Noord-Brabant and the UK region of East Anglia. In the second class, which 

includes values between 0.017 and 0.028, one can find the rest of central German 

regions and the Rhone-Alpes area in France. Moreover, most of Finnish regions fall in 

this class, along with Essex, Berkshire and Gloucestershire in the UK, and 

Mellansveringe and Sydsverige in Sweden. The third rank class contains the Upper 

Norrland and the Middle Sweden regions, as well as some regions in the North of 

Germany. Furthermore, one may also include the Italian regions of Piedmont, 

Lombardy, Emilia Romagna and Abruzzi, along with the Ile-de-France and most of 

English and Scottish regions. It follows that the rest of European ergions in Spain, 

Greece, Southern Italy and Eastern Europe are in the lowermost classes, showing a clear 

divide between Northern and Southern Europe. 

>> FIGURE 5 ABOUT HERE << 

The bottom diagram in Figure 5 shows the regional distribution of per worker patent 

applications in 2003. One may easily observe that the polarization between Northern 
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and Southern Europe is quite persistent. However, there are some relevant changes to 

the relative distribution within the core of patenting regions. In particular, all areas in 

central Germany are now in the uppermost class, along with the south of Sweden. Some 

other regions also show a significant improvement, like the Emilia Romagna and 

Marche in Italy, and the Bretagne in France. On the other hand, the regions in the north 

of Sweden exhibit a clear reduction in the relative levels of patenting. The same applies 

to the Franche-Comté, the Bourgogne and the Champagne-Ardenne regions in France, 

as well as to Scottish and Welsh areas in the UK. 

 

This descriptive evidence shows that there is a significant variance across European 

regions for all variables. High levels of agglomerations seem to feature mostly some 

areas of the UK and Germany, along with some Swedish regions. Moreover, the density 

of innovating agents appears to vary to a great extent also over time, within the 

observed regional contexts. For this reason in what follows we will use panel data 

techniques in the econometric test.  

 

3.3 Econometric results 

 
In the empirical analysis we estimate the shape and the extent of positive and negative 

feedbacks from the agglomeration of innovation activities to the dynamics of 

productivity.  

 

Tables 2 and 3 report the results for the fixed effects estimation of equation (13), 

providing a number of robustness checks to our hypothesis about the existence of a 

quadratic relationship between productivity growth and the density of knowledge 

generation activities. In the first column one may find a baseline specification of a linear 
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relationship between dA/A and D. As expected, the coefficient on the lagged level of 

productivity is negative and significant, while the coefficient on D is positive and 

weakly significant. We then introduce in the regression the quadratic term for D. The 

results seem to be now stronger. All coefficients are significant at 1%, and the 

coefficients on D and on D
2
 show the expected sign, i.e. positive and negative 

respectively. This provides clear support to the idea that the agglomeration of 

innovation activities yields net positive gains that are increasing until the density of 

innovating agents reaches a maximum beyond which they start decreasing. In model (3) 

we add a control variable (SPEC) which is related to the degree of regional 

technological specialization. One may note that the only coefficients that preserve their 

signs, and keep being statistically significant, are D and D
2
. The same applies when we 

also add the interaction term between D and SPEC (model 4). However, our results may 

still be biased due to omission of relevant variables, like traditional agglomeration 

economies or the location quotient for manufacturing activities. We separately include 

them as control variables in models (5) and (6), while we put them together in model 

(7). When considered separately, both variables turn out to be positive and statistically 

significant. However, this does not affect the sign and the significance of our core 

variables, i.e. D and D
2
. When included together, the two variables do not turn out to be 

significant instead, while the quadratic specification on D keeps retaining its 

significance.  

INSERT TABLE 2 ABOUT HERE 

The results on Table 2 are obtained by running our regressions on an unbalanced panel 

of regions. In order to rule out the possibility that such are results are biased by the 

uneven distribution of observation across regions, we selected the regions showing 

observation over the whole time span, so as to get a balanced panel. The results of this 
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further stream of regressions are reported in Table 3. One may note that our hypothesis 

turns out to be robust also to this check. Still, the specification of a quadratic 

relationship between dA/A and D holds significant. In particular, the signs of 

coefficients suggest that such relationship takes the shape of a quadratic curve with 

downward concavity. When the density of innovating increases, the rate at which 

productivity grows, keeps increasing at a decreasing rate up to a point beyond which it 

starts decreasing. 

INSERT TABLE 3 ABOUT HERE 

One more concern about the validity of our estimates may come from the pretty 

established evidence about the spatial correlation of productivity growth rates across 

neighbor regions. This means that cross-regional estimates of the determinants of 

productivity growth must control for spatial autocorrelation. The problem holds as well 

when dealing with a panel of n regions observed over T years. For this reason we also 

estimated equations (15) and (16), which specify the spatial autoregressive and the 

spatial error model respectively.  Table 4 reports the results for the former estimation. 

Even in this case we provide a number of alternative models, so as to check for 

robustness. 

INSERT TABLE 4 ABOUT HERE 

In line with the existing literature, the coefficient on the spatially lagged dependent 

variable is positive and significant. This means that spatial autocorrelation is a relevant 

factor that needs to be controlled for. However, the signs and the significance for the 

density variables do not change as compared with the previous estimates, even in 

presence of control variables. Still, we observe a positive coefficient on D and a 

negative coefficient on D
2
. In table 5 we report the results we yielded by applying the 

spatial error model. 
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INSERT TABLE 5 ABOUT HERE 

Even in this case the coefficient for the spatial autocorrelation is positive and 

significant. Once more, the whole results are much in line with what described so far. 

The lagged levels of productivity retain the negative and significant coefficient. This 

captures possible mean reversion effects and signals that some (conditional) 

convergence dynamics might be at stake. The coefficients on D and D
2 

still show the 

expected signs. Productivity growth rates and the density of innovation activities are 

featured by a quadratic relationship characterized by a downward concavity. This 

results turned out to be robust to a pretty large of alternative specifications and 

robustness checks, and is quite consistent with the hypothesis according to which PKE 

are such that the net positive gains are likely to increase as the agglomeration of 

knowledge production processes increases, up to a critical point after which pecuniary 

losses start increasing at a more than proportionate rate with respect to pecuniary gains. 

As an effect net pecuniary gains turn out to decrease when the density levels go beyond 

the critical point, making the entry in markets for knowledge less and less attractive. 

 

4 Conclusions 
 

Building upon the notions of markets for knowledge and PKE, as distinct from 

technological externalities, we have been able to specify a quadratic relationship 

between the concentration of innovative activities at the regional level and their net 

positive effects. We were able to qualify the relationship between knowledge 

externalities and agglomeration as a quadratic function. Agglomeration yields positive 

net knowledge externalities only until a given threshold. Too much agglomeration and 

too dense knowledge transactions progressively dissipates the advantages in terms of 
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knowledge externalities due to the emerging losses engendered by reduced 

appropriability.  

 

The paper has provided a strong test for the hypotheses that a quadratic relationship 

takes place between technological concentration and total factor productivity growth for 

a large sample of European regions, in the time span ranging from 1995 to 2003.  

 

The quadratic specification is a powerful result because it enables to identify the 

shifting relative advantage of regions in the location of knowledge intensive activities.  

 

The identification of the notion of relative advantage in the location of knowledge 

intensive activities enables to identify the regions where it is not appropriate to invest in 

knowledge generating activities, the regions where it is ‘more’ convenient to invest in 

knowledge generating activities, and the regions where it would be better to reduce the 

levels of knowledge generating activities.  

 

The strong econometric results enable to appreciate the implications of the quadratic 

specification in terms of output elasticity to additional knowledge intensive activities. It 

is clear in fact that by definition in a quadratic function the first derivative is stronger, 

the smaller the level of the concentration. Hence our findings confirm the hypothesis 

that the output elasticity of additional knowledge intensive activities is higher in 

peripheral rather than in core regions. 

 

At a more practical level the quadratic specification and the results of the estimates 

according to which the maximum is well within the actual data, is a powerful and quite 



34 

 

 

 

innovative tool to articulate the view that the dissemination of knowledge intensive 

activities may yield better results than their concentration. The implications for both 

innovation and regional policy in fact are relevant. First, it is not efficient to create 

excessive agglomeration of knowledge intensive activities: beyond a threshold, negative 

effects of agglomeration begin to take place. Second and most important, it is also clear 

that all investments in knowledge intensive activities are much more profitable, at the 

margin, in regions with lower level of agglomeration.  

 

Innovation and regional policy interventions aimed to exploiting the positive effects of 

knowledge externalities stemming should design appropriate incentives to favor the 

dissemination of knowledge generating activities in regions with low levels of 

concentration in knowledge generating activities and prevent their excess concentration 

in a few spots.  

 

At a more general level, the process of cluster formation and evolution should be 

viewed as a dynamic process driven by the interaction between centripetal and 

centrifugal forces, according to the mix of positive and negative effects of externalities. 

This allows us to revisit and re-appreciate the traditional Arrovian knowledge trade-off 

at a geographical level, with important policy implications. When centrifugal forces 

prevail, and firms valorize more the negative effect of spillovers in terms of non-

appropriation of the returns to knowledge investments than their benefits, incentives to 

entering the cluster are not sufficient, the cluster can be undersized, interactions too 

weak and agglomeration economies cannot display their full positive effect. On the 

contrary, firms can agglomerate too much because of overcoming centripetal forces, 

with the effect that clusters are too big and the benefits of knowledge externalities are 
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spoiled. The fine-tuning between centripetal and centrifugal forces drives the ‘correct’ 

evolution of the cluster, with a crucial role given to the intervention of the policy 

maker
16

. Public intervention should not aim to favoring the generic agglomeration of 

knowledge intensive activities to reap the advantages of knowledge externalities but 

rather design selective incentives able to make, at the same time knowledge 

communication and dissemination more effective within local clusters and yet favor and 

help the appropriation of the returns to private investments in knowledge and 

innovation. The specific support to knowledge transactions and knowledge outsourcing 

between co-localized public research centers and private research and development 

activities within the frame of well designed intellectual property rights such as non-

exclusive patents might at the same time favor the dissemination of knowledge and the 

process of knowledge sharing and yet implement the necessary conditions for 

knowledge appropriation and exploitation. 

                                                 
16

 This is not to put forward an argument for policy intervention against agglomeration and concentration, 

i.e. anti-urban regional policy. Instead, in the paper we wanted to draw attention on the possible negative 

consequences of excessive density of local innovation networks. These negative effects can harm the 

benefits stemming from agglomeration of knowledge-generating activities and should be taken into 

account by the policy maker when designing innovation policies and actions. 
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Appendix 1 

Table A - Correlation matrix, pooled sample 

 dLogA(t)/dt 1ln tA  
1tD  

2

1tD  1tSPEC 
1tD ∙ 1tSPEC 1tLOCQ 1tAGGL 

dLogA(t)/dt 1        

1ln tA  0.083 1       

1tD  0.065 0.253 1      
2

1tD  0.040 0.067 0.886 1     

1tSPEC -0.069 -0.258 -0.035 0.032 1    

1tD ∙ 1tSPEC 0.065 0.188 0.978 0.925 0.027 1   

1tLOCQ 0.002 -0.147 -0.169 -0.079 -0.171 -0.161 1  

1tAGGL 0.103 0.305 0.212 0.066 -0.260 0.161 -0.251 1 
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Figure 1 – The costs and revenues from Knowledge Production as a function of z. 
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Figure 2 – The costs and revenues from Knowledge Production as a function of D. 
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Figure 3 
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Figure 4 
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Figure 5 - Regional Distribution of Patent Applications per 1000 Workers  
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Table 1 - Descriptive Statistics for the Key Variables 

 Mean St. Deviation Min Max 

  Within Between   
Growth rate of TFP 

 
0.012 0.043 0.036 -0.136 0.293 

Growth rate of capital 

 
0.029 0.081 0.068 -0.344 0.515 

Growth rate of labour 

 
0.011 0.016 0.015 -0.111 0.173 

Patents per  

Millions employees 
11.0834 8.704 20.272 0 579.273 

      

 



 

 

 

 
Table 2 - Region TFP growth, panel data fixed effects estimates 

 1 2 3 4 5 6 7 

Constant 0.157*** 
(0.065) 

0.178*** 
(0.066) 

-0.039 
(0.061) 

-0.041 
(0.061) 

-2.14*** 
(0.648) 

-0.011 
(0.061) 

-0.081 
(0.516) 

1ln tA  -0.051** 
(0.024) 

-0.061*** 
(0.024) 

0.017 
(0.022) 

0.017 
(0.023) 

0.032 
(0.024) 

0.002 
(0.022) 

0.034 
(0.025) 

1tD  0.181* 
(0.11) 

1.096*** 
(0.405) 

1.484*** 
(0.356) 

1.443*** 
(0.459) 

1.348*** 
(0.379) 

0.844*** 
(0.277) 

0.717*** 
(0.287) 

2

1tD   -2.441*** 
(1.030) 

-3.52*** 
(0.903) 

-3.509*** 
(0.907) 

-3.294*** 
(0.961) 

-2.051*** 
(0.707) 

-1.707** 
(0.707) 

1tSPEC   0.015 
(0.012) 

0.015 
(0.012) 

0.009 
(0.013) 

-0.013 
(0.012) 

 

1tD ∙ 1tSPEC    0.012 
(0.841) 

   

1tAGGL     0.399*** 
(0.127) 

 -0.081 
(0.101) 

1tLOCQ      0.054** 
(0.0273) 

0.029 
(0.038) 

        

Obs. 827 827 701 701 633 514 457 

        
R2 0.21 0.22 0.27 0.27 0.30 0.40 0.43 
Note: * p<0.1; ** p<0.05; *** p<0.0.01. Unbalanced panel. Standard errors between parentheses. All regressions include time dummies. 

 



 

 

 

 
Table 3 - Region TFP growth, panel data fixed effects estimates 

 1 2 3 4 5 6 7 

Constant 0.153** 
(0.69) 

0.176*** 
(0.070) 

0.005 
(0.063) 

-0.001 
(0.0645) 

-1.763*** 
(0.595) 

0.020 
(0.061) 

0.515 
(0.478) 

1ln tA  -0.052** 
(0.025) 

-0.064*** 
(0.026) 

0.006 
(0.024) 

0.008 
(0.024) 

0.028 
(0.025) 

-0.006 
(0.021) 

0.014 
(0.026) 

1tD  0.178* 
(0.103) 

1.026*** 
(0.384) 

1.502*** 
(0.342) 

1.360*** 
(0.442) 

1.365*** 
(0.359) 

0.742*** 
(0.270) 

0.604** 
(0.275) 

2

1tD   -2.239** 
(0979) 

-3.522*** 
(0.864) 

-3.479*** 
(0.869) 

-3.281*** 
(0.904) 

-1.774*** 
(0.688) 

-1.402** 
(0.707) 

1tSPEC   0.010 
(0.013) 

0.009 
(0.013) 

 -0.016 
(0.013) 

 

1tD ∙ 1tSPEC    0.406 
(0.797) 

   

1tAGGL     0.331*** 
(0.118) 

 0.014 
(0.038) 

1tLOCQ      0.029 
(0.030) 

-0.109 
(0.093) 

        

Obs. 560 560 472 472 424 424 424 

        
R2 0.21 0.22 0.26 0.26 0.29 0.46 0.47 
Note: * p<0.1; ** p<0.05; *** p<0.0.01. Balanced panel. Standard errors between parentheses. All regressions include time dummies. 

 



 

 

 

 
Table 4 – Regional TFP Growth, Spatial Autoregressive Model for panel data 

 1 2 3 4 5 6 

 dtAdW /log  0.256** 
(2.054) 

0.403*** 
(3.822) 

0.257** 
(2.049) 

0.399*** 
(3.757) 

0.243** 
(1.941) 

0.380*** 
(3.53) 

1ln tA  -0.315*** 
(-7.77) 

-0.288*** 
(-7.551) 

-0.316*** 
(.7.794) 

-0.289*** 
(-7.57) 

-0.327*** 
(-7.955) 

-0.301*** 
(-7.824) 

1tD  2.48*** 
(4.105) 

2.079*** 
(3.899) 

2.491*** 
(4.117) 

2.103*** 
(3.939) 

3.345*** 
(4.176) 

3.070*** 
(4.422) 

2

1tD  -5.313*** 
(-3.435) 

-4.389*** 
(-3.123) 

-5.323*** 
(-3.447) 

-4.447*** 
(-3.161) 

-5.608*** 
(-3.587) 

-4.594*** 
(-3.265) 

1tSPEC   0.010 
(0.436) 

0.011 
(0.483) 

0.018 
(0.782) 

0.022 
(0.942) 

1tD ∙ 1tSPEC     -2.417** 
(-1.72) 

-2.990*** 
(-2.176) 

       

Regional dummies Yes Yes Yes Yes Yes Yes 

Time dummies No Yes No Yes No Yes 

       

Obs. 424 424 424 424 424 424 

       

Log-likelihood 792.083 757.624 792.201 757.583 793.397 761.846 

       

R
2 0.27 0.24 0.27 0.24 0.28 0.24 

Note: * p<0.1; ** p<0.05; *** p<0.0.01. Balanced panel. t of Student between parentheses.  

 



 

 

 

 
Table 5 - Regional TFP Growth, Spatial Error Model for panel data 

 1 2 3 4 5 6 

1ln tA  -0.316*** 
(-7.904) 

-0.312*** 
(-7.860) 

-0.316*** 
(-7.922) 

-0.313*** 
(-7.856) 

-0.328*** 
(-8.095) 

-0.329*** 
(-8.271) 

1tD  3.105*** 
(4.966) 

2.906*** 
(5.046) 

3.084*** 
(4.925) 

2.913*** 
(5.051) 

3.889*** 
(4.734) 

4.288*** 
(5.810) 

2

1tD  -6.715*** 
(-4.233) 

-6.327*** 
(-4.186) 

-6.669*** 
(-4.199) 

-6.344*** 
(-4.194) 

-7.044*** 
(-4.396) 

-6.547*** 
(-4.377) 

1tHHI   0.015 
(0.663) 

0.006 
(0.256) 

0.022 
(0.937) 

0.022 
(0.895) 

1tD ∙ 1tHHI     -2.132 
(-1.523) 

-4.256*** 
(-2.961) 

Spatial 
Autocorrelation 

0.503*** 
(4.341) 

0.469*** 
(3.801) 

0.507*** 
(4.409) 

0.475*** 
(3.891) 

0.491*** 
(4.143) 

0.439*** 
(3.379) 

       

Regional dummies Yes Yes Yes Yes Yes Yes 

Time dummies No Yes No Yes No Yes 

       

Obs. 424 424 424 424 424 424 

       

Log-likelihood 795.629 759.848 795.847 759.879 796.993 764.164 

       

R
2 0.29 0.16 0.29 0.16 0.30 0.19 

Note: * p<0.1; ** p<0.05; *** p<0.0.01. Balanced panel. t of Student between parentheses. 

 

 

 


