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Abstract 
 

In this paper we present an iterative method- ology to 

improve classifier performance by in- corporating 

linguistic knowledge, and propose a way to 

incorporate domain rules into the learning process.  

We applied the methodol- ogy to the tasks of hedge 

cue recognition and scope detection and obtained 

competitive re- sults on a publicly available corpus. 
 

 

1 Introduction 
 

A common task in Natural Language Processing 

(NLP) is to extract or infer factual information from 

textual data. In the field of natural sciences this task 

turns out to be of particular importance, because 

science aims to discover or describe facts from the 

world around us.   Extracting these facts from the 

huge and constantly growing body of research ar- 

ticles in areas such as, for example, molecular biol- 

ogy, becomes increasingly necessary, and has been 

the subject of intense research in the last decade 

(Ananiadou et al., 2006). The fields of information 

extraction and text mining have paid particular atten- 

tion to this issue, seeking to automatically populate 

structured databases with data extracted or inferred 

from text. In both cases, the problem of speculative 

language detection is a challenging one, because it 

may correspond to a subjective attitude of the writer 

towards the truth value of certain facts, and that in- 

formation should not be lost when the fact is ex- 

tracted or inferred. 

When researchers express facts and relations in their 

research articles, they often use speculative lan- guage 

to convey their attitude to the truth of what 

is said. Hedging, a term first introduced by Lakoff 

(1973) to describe ‘words whose job is to make 

things fuzzier or less fuzzy’ is ‘the expression of ten- 

tativeness and possibility in language use’ (Hyland, 

1995), and is extensively used in scientific writing. 

Hyland (1996a) reports one hedge in every 50 words 

of a corpus of research articles; Light et al. (2004) 

mention that 11% of the sentences in MEDLINE 

contain speculative language.  Vincze et al. (2008) 

report that 18% of the sentences in the scientific ab- 

stracts section of the Bioscope corpus correspond to 

speculations. 

Early work on speculative language detection tried 

to  classify a  sentence either as  speculative or 

non-speculative (see, for example, Medlock and 

Briscoe (2007)).  This approach does not take into 

account the fact that hedging usually affects propo- 

sitions or claims (Hyland, 1995) and that sentences 

often include more than one of them. When the Bio- 

scope corpus (Vincze et al., 2008) was developed 

the notions of hedge cue (corresponding to what was 

previously called just ‘hedges’ in the literature) and 

scope (the propositions affected by the hedge cues) 

were introduced.  In this context, speculative lan- 

guage recognition can be seen as a two-phase pro- 

cess: first, the existence of a hedge cue in a sentence 

is detected, and second, the scope of the induced 

hedge is determined.  This approach was first used 

by Morante et al. (2008) and subsequently in many 

of the studies presented in the CoNLL-2010 Confer- 

ence Shared Task (Farkas et al., 2010a), and is the 

one used in this paper. 

For example, the sentence 
 

(1)   This finding {suggests suggests that the BZLF1 

 
 

 



 

promoter {may may be regulated by the degree of 

squamous differentiation}may }suggests. 
 

contains the word ‘may’ that acts as a hedge cue 

(i.e.   attenuating the affirmation); this hedge only 

affects the propositions included in the subordinate 

clause that contains it. 

Each of these phases can be modelled (albeit with 

some differences, described in the following sec- 

tions) as a sequential classification task, using a sim- 

ilar approach to that commonly used for named en- 

tity recognition or semantic labelling:  every word 

in the sentence is assigned a class, identifying spans 

of text (as, for example, scopes) with, for example, a 

special class for the first and last element of the span. 

Correctly learning these classes is the computational 

task to be solved. 

In this paper we present a methodology and ma- 

chine learning system implementing it that, based 

on previous work on speculation detection, studies 

how to improve recognition by analysing learning 

errors and incorporating advice from domain experts 

in order to solve the errors without hurting overall 

performance. The methodology proposes the use of 

domain knowledge rules that suggest a class for an 

instance, and shows how to incorporate them into 

the learning process. In our particular task domain 

knowledge is linguistic knowledge, as hedging and 

scopes issues are general linguistic devices. In this 

paper we are going both terms interchangeably. 

The paper is organized as follows.  In Section 2 we 

review previous theoretical work on speculative 

language and the main computational approaches to 

the task of detecting speculative sentences. Section 

3 briefly describes the corpus used for training and 

evaluation. In Section 4 we present the specific com- 

putational task to which our methodology was ap- 

plied. In Section 5 we present the learning method- 

ology we propose to use, and describe the system 

we implemented, including lexical, syntactic and se- 

mantic attributes we experimented with. We present 

and discuss the results obtained in Section 6. Finally, 

in Section 7 we analyse the approach presented here 

and discuss its advantages and problems, suggesting 

future lines of research. 

2 Related work 
 

The grammatical phenomenon of modality, defined 

as ‘a category of linguistic meaning having to do 

with the expression of  possibility and necessity’ 

(von Fintel, 2006) has been extensively studied in 

the linguistic literature. Modality can be expressed 

using different linguistic devices: in English, for ex- 

ample, modal auxiliaries (such as ‘could’ or ‘must’), 

adverbs (‘perhaps’), adjectives (‘possible’), or other 

lexical verbs (‘suggest’,‘indicate’), are used to ex- 

press the different ways of modality. Other lan- 

guages express modality in different forms, for ex- 

ample using the subjunctive mood.  Palmer (2001) 

considers  modality  as  the  grammaticalization of 

speakers’ attitudes and opinions, and epistemic 

modality, in particular, applies to ‘any modal sys- 

tem that indicates the degree of commitment by the 

speaker to what he says’. 

Although hedging is a  concept that is closely 

related to epistemic modality,  they are different: 

modality is a grammatical category, whereas hedg- 

ing is a pragmatic position (Morante and Sporleder, 

2012). This phenomenon has been theoretically 

studied in different domains and particularly in sci- 

entific writing (Hyland, 1995; Hyland, 1996b; Hy- 

land, 1996a). 

From a computational point of view, speculative 

language detection is an emerging area of research, 

and it is only in the last five years that a relatively 

large body of work has been produced.  In the re- 

mainder of this section, we survey the main ap- 

proaches to hedge recognition, particularly in En- 

glish and in research discourse. 

Medlock and Briscoe (2007) applied a weakly su- 

pervised learning algorithm to classify sentences as 

speculative or non-speculative, using a corpus they 

built and made publicly available. Morante and 

Daelemans (2009) not only tried to detect hedge 

cues but also to identify their scope, using a met- 

alearning approach based on three supervised learn- 

ing methods.   They achieved an F1 of 84.77 for 

hedge identification, and 78.54 for scope detection 

(using gold-standard hedge signals) in the Abstracts 

sections of the Bioscope corpus. 

Task 2 of the CoNLL-2010 Conference Shared 

Task (Farkas et al.,  2010b) proposed solving the 

problem of  in-sentence hedge cue phrase identi- 



 

 

fication and scope detection in two different do- 

mains (biological publications and Wikipedia arti- 

cles), based on manually annotated corpora.   The 

evaluation criterion was in terms of precision, recall 

and F-measure, accepting a scope as correctly clas- 

sified if the hedge cue and scope boundaries were 

both correctly identified. 

The best result on hedge cue identification (Tang et 

al., 2010) obtained an F-score of 81.3 using a su- 

pervised sequential learning algorithm to learn BIO 

classes from lexical and shallow parsing informa- 

tion,  also including certain linguistic rules. For 

scope detection, Morante et al. (2010) obtained an 

F-score of 57.3, using also a sequence classification 

approach for detecting boundaries (tagged in FOL 

format, where the first token of the span is marked 

with an F, while the last one is marked with an 

L). The attributes used included lexical information, 

dependency parsing information, and some features 

based on the information in the parse tree. 

The approximation of Velldal et al. (2010) for scope 

detection was somewhat different:  they de- veloped 

a set of handcrafted rules, based on depen- dency 

parsing and lexical features.   With this ap- proach, 

they achieved an F-score of 55.3, the third best for 

the task.  Similarly, Kilicoglu and Bergler (2010) 

used a pure rule-based approach based on 

constituent parse trees in addition to syntactic de- 

pendency relations, and achieved the fourth best F- 

score for scope detection, and the highest precision 

of the whole task (62.5).  In a recent paper, Vell- 

dal et al. (2012) reported a better F-score of 59.4 on 

the same corpus for scope detection using a hybrid 

approach that combined a set of rules on syntactic 

features and n-gram features of surface forms and 

lexical information and a machine learning system 

that selected subtrees in constituent structures. 
 

3 Corpus 
 

The system presented in this paper uses the Bio- 

scope corpus (Vincze et al.,  2008) as a learning 

source and for evaluation purposes.  The Bioscope 

corpus is a freely available corpus of medical free 

texts, biological full papers and biological abstracts, 

annotated at a token level with negative and specu- 

lative keywords, and at sentence level with their lin- 

guistic scope. 

 

 Clinical Full Abstract 
#Documents 

#Sentences 

%Hedge Sentences 

#Hedge cues 

954 

6383 

13.4 

1189 

9 

2670 

19.4 

714 

1273 

11871 

17.7 

2769 
 

Table 1: Bioscope corpus statistics about hedging 
 

 
 
 
 
 

Table 1, extracted from Vincze et al. (2008), gives 

some statistics related to hedge cues and sentences 

for the three sub corpora included in Bioscope. 

For the present study, we usee only the Abstract 

sub corpus for training and evaluation. We randomly 

separated 20% of the corpus, leaving it for evalu- 

ation purposes. We further sub-divided the remain- 

ing training corpus, separating another 20% that was 

used as a held out corpus. All the models presented 

here were trained on the resulting training corpus 

and their performance evaluated on the held out cor- 

pus. The final results were computed on the previ- 

ously unseen evaluation corpus. 
 

4 Task description 
 

From a computational point of view, both hedge 

cue identification and scope detection can be seen 

as a sequence classification problem: given a sen- 

tence, classify each token as part of a hedge cue (or 

scope) or not.  In almost every classification prob- 

lem, two main approaches can be taken (although 

many variations and combinations exist in the lit- 

erature): build the classifier as a set of handcrafted 

rules, which, from certain attributes of the instances, 

decide which category it belongs to, or learn the 

classifier from previously annotated examples, in a 

supervised learning approach. 

The rules approach is particularly suitable when 

domain experts are available to write the rules, and 

when features directly represent linguistic informa- 

tion (for example, POS-tags) or other types of do- 

main information.  It is usually a time-consuming 

task, but it probably grasps the subtleties of the lin- 

guistic phenomena studied better, making it possible 

to take them into account when building the classi- 

fier. The supervised learning approach needs tagged 

data; in recent years the availability of tagged text 



 

has grown, and this type of method has become the 

state-of-the-art solution for many NLP problems. 

In our particular problem, we have both tagged data 

and expert knowledge (represented by the body of 

work on modality and hedging), so it seems rea- 

sonable to see how we can combine the two methods 

to achieve better classification performance. 
 

4.1 Identifying hedge cues 

The best results so far for this task used a token 

classification approach or sequential labelling tech- 

niques, as Farkas et al. (2010b) note. In both cases, 

every token in the sentence is assigned a class la- 

bel indicating whether or not that word is acting as a 

hedge cue. To allow for multiple-token hedge cues, 

we identify the first token of the span with the class 

B and every other token in the span with I, keeping 

the O class for every token not included in the span, 

as the following example shows: 
 

(2)   The/O findings/O indicate/B that/I MNDA/O 

expression/O is/O . . . [ 401.8] 
 

After token labelling, hedge cue identification can be 

seen as the problem of assigning the correct class to 

each token of an unlabelled sentence. Hedge cue 

identification is a sequential classification task: we 

want to assign classes to an entire ordered sequence 

of tokens and try to maximize the probability of as- 

signing the correct classes to every token in the se- 

quence, considering the sequence as a whole, not 

just as a set of isolated tokens. 
 

4.2 Determining  the scope of hedge cues 

The second sub-task involves marking the part of the 

sentence affected by the previously identified hedge 

cue. Scopes are also spans of text (typically longer 

than multi-word hedge cues), so we could use the 

same reduction to a token classification task.  Be- 

ing longer, FOL classes are usually used for clas- 

sification, identifying the first token of the scope 

as F, the last token as L and any other token in 

the sentence as O. Scope detection poses an addi- 

tional problem:  hedge cues cannot be nested, but 

scopes (as we have already seen) usually are.   In 

example 1, the scope of ‘may’ is nested within the 

scope of ‘suggests’. To overcome this,  Morante 

and Daelemans (2009) propose to generate a dif- 

ferent learning example for each cue in the sen- 

tence. In this setting, each example becomes a pair 

hlabelled sentence, hedge cue positioni.  So, for ex- 

ample 1, the scope learning instances would be: 
 

(3)   hThis/O finding/O suggests/F that/O the/O 

BZLF1/O promoter/O may/O be/O regulated/O 

by/O the/O degree/O of/O squamous/O 

differentiation/L./O, 3i 
 

(4)   hThis/O finding/O suggests/O that/O the/F 

BZLF1/O promoter/O may/O be/O regulated/O 

by/O the/O degree/O of/O squamous/O 

differentiation/L./O, 8i 
 

Learning on these instances, and using a similar 

approach to the one used in the previous task, we 

should be able to identify scopes for previously un- 

seen examples. Of course, the two tasks are not in- 

dependent: the success of the second one depends 

on the success of the first. Accordingly, evaluation 

of the second task can be done using gold standard 

hedge cues or with the hedge cues learned in the first 

task. 
 

5 Methodology and System Description 
 

To approach both sequential learning tasks, we fol- 

low a learning methodology (depicted in Figure 1), 

that starts with an initial guess of attributes for su- 

pervised learning and a learning method, and tries 

to improve its performance by incorporating domain 

knowledge. We consider that expressing this knowl- 

edge through rules (instead of learning features) is a 

better way for a domain expert to suggest new use- 

ful information or to generalize certain relations be- 

tween attributes and classification results when the 

learning method cannot achieve this because of in- 

sufficient training data. These rules, of course, have 

to be converted to attributes to incorporate them into 

the learning process.  These attributes are what we 

call knowledge rules and their generation will be de- 

scribed in the Analysis section. 
 

5.1 Preprocessing 

Before learning, we propose to add every possible 

item of external information to the corpus so as to 

integrate different sources of knowledge (either the 

result of external analysis or in the form of seman- 

tic resources).  After this step, all the information 

is consolidated into a single structure, facilitating 



 

subsequent analysis.   In our case, we incorporate 

POS-tagging information, resulting from the appli- 

cation of the GENIA tagger (Tsuruoka et al., 2005), 

and deep syntax information obtained with the ap- 

plication of the Stanford Parser (Klein and Manning, 

2003), leading to a syntax-oriented representation of 

the training data.  For a detailed description of the 

enriching process, the reader is referred to Moncec- 

chi et al. (2010). 
 

5.2 Initial Classifier 

The  first step  for  improving  performance is,  of 

course, to select an initial set of learning features, 

and learn from training data to obtain the first clas- 

sifier, in a traditional supervised learning scenario. 

The sequential classification method will depend on 

the addressed task.  After learning, the classifier is 

applied on the held out corpus to evaluate its per- 

formance (usually in terms of Precision, Recall and 

F1-measure), yielding performance results and a list 

of errors for analysis. This information is the source 

for subsequent linguistic analysis. As such, it seems 

important to provide ways to easily analyse instance 

attributes and learning errors.   For our tasks, we 

have developed visualization tools to inspect the tree 

representation of the corpus data, the learning at- 

tributes, and the original and predicted classes. 
 

5.3 Analysis 

From the classifier results on the held-out corpus, 

an analysis phase starts, which tries to incorporate 

linguistic knowledge to improve performance. 

One typical form of introducing new information is 

through learning features:  for example, we can add 

a new attribute indicating if the current instance (in 

our case, a sentence token) belongs to a list of 

common hedge cues. 

However,  linguistic or  domain knowledge can 

also naturally be stated as rules that suggest the class 

or list of classes that should be assigned to instances, 

based on certain conditions on features, linguistic 

knowledge or data observation. For example, based 

on corpus annotation guidelines, a rule could state 

that the scope of a verb hedge cue should be the verb 

phrase that includes the cue, as in the expression 
 

(5)   This finding {suggests suggests that the BZLF1 

promoter may be regulated by the degree of 

squamous differentiation}suggests. 
 

We assume that these rules take the form ‘if a con- 

dition C holds then classify instance X with class Y’. 

In the previous example, assuming a FOL format 

for scope identification, the token ‘suggest’ should 

be assigned class F and the token ‘differentiation’ 

should be assigned class L, assigning class O to ev- 

ery other token in the sentence. 

The general problem with these rules is that as 

we do not know in fact if they always apply, we do 

not want to directly modify the classification results, 

but to incorporate them as attributes for the learning 

task.  To do this, we propose to use a similar ap- 

proach to the one used by Rosá (2011), i.e. to incor- 

porate these rules as a new attribute, valued with the 

class predictions of the rule, trying to ‘help’ the clas- 

sifier to detect those cases where the rule should fire, 

without ignoring the remaining attributes. In the pre- 

vious example, this attribute would be (when the rule 

condition holds) valued F or L if the token corre- 

sponds to the first or last word of the enclosing verb 

phrase, respectively. We have called these attributes 

knowledge rules to reflect the fact that they suggest 

a classification result based on domain knowledge. 

This configuration allows us to incorporate 

heuristic rules without caring too much about their 

potential precision or recall ability:  we expect the 

classification method to do this for us, detecting cor- 

relations between the rule result (and the rest of the 

attributes) and the predicted class. 

There are some cases where we do actually want to 

overwrite classifier results: this is the case when 

we know the classifier has made an error, because 

the results are not well-formed.  For example, we 

have  included  a  rule  that  modifies the  assigned 

classes when the classifier has not exactly found one 

F token and one L token, as we know for sure that 

something has gone wrong. In this case, we decided 

to assign the scope based on a series of postprocess- 

ing rules: for example, assign the scope of the en- 

closing clause in the syntax tree as hedge scope, in 

the case of verb hedge cues. 

For sequential classification tasks, there is an ad- 

ditional issue: sometimes the knowledge rule indi- 

cates the beginning of the sequence, and its end can 

be determined using the remaining attributes.  For 

example, suppose the classifier suggests the class 
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O 
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O O 
O O 
F O 
O O 
O O 
O O 
L O 

O 
O O 
O F 
O O 
O O 
O O 
O O 
O O 
L O 

O 
O O 
O F 
O O 
O O 
O O 
O O 
O O 
O O 

 
Table 2:  Evaluation instance where the scope ending 

could not be identified 
 
 
 
 
 

scope in the learning instance shown in table 2 (us- 

ing as attributes the scopes of the parent and grand- 

parent constituents for the hedge cue in the syntax 

tree).  If we could associate the F class suggested 

by the classifier with the grand parent scope rule, 

we would not be concerned about the prediction for 

the last token, because we would knew it would al- 

ways correspond to the last token of the grand par- 

ent clause. To achieve this, we modified the class we 

want to learn, introducing a new class, say X, instead 

of F, to indicate that, in those cases, the L token must 

not be learned, but calculated in the postprocessing 

step, in terms of other attributes’ values (in this ex- 

ample, using the hedge cue grandparent constituent 

limits). This change also affects the classes of train- 

ing data instances (in the example, every training 

instance where the scope coincides with the grand 

parent scope attribute will have its F-classified to- 

ken class changed to X). 

In the previous example, if the classifier assigns 

class X to the ‘the’ token, the postprocessing step 

will change the class assigned to the ‘differentiation’ 

token to L, no matter which class the classifier had 

predicted, changing also the X class to the original 

F, yielding a correctly identified scope. 

After adding the new attributes and changing the 

relevant class values in the training set, the process 

starts over again. If performance on the held out cor- 

pus improves, these attributes are added to the best 

configuration so far, and used as the starting point 

for a new analysis.  When no further improvement 

can be achieved, the process ends, yielding the best 

 
 
Figure 1: Methodology overview 
 
 
 
 
 
classifier as a result. 

We applied the proposed methodology to the tasks of 

hedge cue detection and scope resolution.  We 

were mainly interested in evaluating whether sys- 

tematically applying the methodology would indeed 

improve classifier performance. The following sec- 

tions show how we tackled each task, and how we 

managed to incorporate expert knowledge and im- 

prove classification. 
 

5.4 Hedge Cue Identification 

To identify hedge cues we started with a sequen- 

tial classifier based on Conditional Random Fields 

(Lafferty et al., 2001), the state-of-the-art classifi- 

cation method used for sequence supervised learn- 

ing in many NLP tasks. The baseline configuration 

we started with included a size-2 window of surface 

forms to the left and right of the current token, pairs 

and triples of previous/current surface forms.  This 

led to a highly precise classifier (an F-measure of 

95.5 on the held out corpus).  After a grid search 

on different configurations of surface forms, lemmas 

and POS tags, we found (somewhat surprisingly) 

that the best precision/recall tradeoff was obtained 

just using a window of size 2 of unigrams of sur- 

face forms, lemmas and tokens with a slightly worse 

precision than the baseline classifier, but compen- 



 

 

Configuration P R F1 
Baseline 

Conf1 

Conf2 

95.5 

94.7 

91.3 

74.0 

80.3 

84.0 

83.4 

86.9 

87.5 
 

Table 3: Classification performance on the held out cor- 

pus for hedge cue detection. Conf1 corresponds to win- 

dows of Word, Lemma and POS attributes and Conf2 in- 

corporates hedge cue candidates and cooccuring words 
 

 
 
 
 
 

sated by an improvement of about six points in re- 

call, achieving an F-score of 86.9. 

In the analysis step of the methodology we found 

that most errors came from False Negatives, i.e. 

words incorrectly not marked as hedges.  We also 

found that those words actually occurred in the train- 

ing corpus as hedge cues, so we decided to add new 

rule attributes indicating membership to certain se- 

mantic classes.   After checking the literature, we 

added three attributes: 
 

• Hyland words membership: this feature was set to 

Y if the word was part of the list of words identified 

by Hyland (2005) 
 

• Hedge cue candidates: this feature was set to Y 

if the word appeared as a hedge cue in the training 

corpus 
 

• Words co-occurring with hedge cue candidates: 

this feature was set to Y if the word cooccured with 

a hedge cue candidate in the training cor- pus.  This 

feature is based on the observation that 43% of the 

hedges in a corpus of scientific articles occur in the 

same sentence as at least another device (Hyland, 

1995). 
 

After adding these attributes and tuning the win- 

dow sizes, performance improved to an F-score of 

87.5 in the held-out corpus 
 

5.5 Scope identification 

To learn scope boundaries, we started with a similar 

configuration of a CRF classifier, using a window of 

size 2 of surface forms, lemmas and POS-tags, and 

the hedge cue identification attribute (either obtained 

from the training corpus when using gold standard 

 

hedge cues or learned in the previous step), achiev- 

ing a performance of 63.7 in terms of F-measure. 

When we incorporated information in the form of a 

knowledge rule that suggested the scope of the con- 

stituent of the parsing tree headed by the parent node 

of the first word of the hedge cue, and an attribute 

containing the parent POS-tag, performance rapidly 

improved about two points measured in terms of F- 

score. 

After several iterations, and analyzing classifica- 

tion errors, we included several knowledge rules, at- 

tributes and postprocessing rules that dramatically 

improved performance on the held-out corpus: 
 

• We included attributes for the scope of the next 

three ancestors of the first word of the hedge cue 

in the parsing tree,  and their respective POS-

tags, in a similar way as with the parent. We also 

included a trigram with the ancestors POS from the 

word upward in the tree. 
 

• For parent and grandparent scopes, we incor- 

porated X and Y classes instead of F, and mod- ified 

postprocessing to use the last token of the 

corresponding scope when one of these classes was 

learned. 
 

• We modified the ancestors scopes to reflect 

some corpus annotation guidelines or other cri- teria 

induced after data examination.  For ex- ample,  we 

decided not to include adverbial phrases or 

prepositional phrases at the begin- ning of scopes, 

when they corresponded to a clause, as in 
 

(6)   In addition,{unwanted and potentially 

hazardous specificities may be 

elicited. . . } 
 

• We added postprocessing rules to cope with 

cases where (probably due to insufficient train- ing 

data), the classifier missclasified certain in- stances. 

For example, we forced classification to use the 

next enclosing clause (instead of verb phrase), when 

the hedge cue was a verb conju- gated in passive 

voice, as in 
 

(7)   {GATA3 , a member of the GATA family that 

is abundantly expressed in the 

T-lymphocyte lineage , is thought to 

participate in ...}. 



 

Configuration Gold-P P R F1 
Baseline 

Conf1 

Conf2 

Conf3 

Conf4 

66.4 

68.7 

73.3 

80.9 

88.2 

68.6 

71.3 

75.6 

82.1 

82.0 

59.6 

61.8 

65.4 

71.3 

76.3 

63.8 

66.2 

70.1 

76.3 

79.1 

 

 

Configuration P R F1 

Baseline 

Conf1 

Conf2 

97.9 

95.9 

94.1 

78.0 

84.9 

88.6 

86.8 

90.1 

91.3 
 
 

 
 
Table 4: Classification performance on the held out cor- 

pus.   The baseline used a window of Word, Lemma, 

POS attributes and hedge cue tag; Conf1 included parent 

scopes, Conf2 added grandparents information; Conf3 

added postprocessing rules. Finally, Conf4 used adjusted 

scopes and incorporated new postprocessing rules 
 

 
 
 
 
 

• We excluded references at the end of sentences 

from all the calculated scopes. 
 

• We forced classification to the next S,VP or NP 

ancestor constituent in the syntax tree (depend- ing 

on the hedge cue POS), when full scopes could not 

be determined by the statistical clas- sifier (missing 

either L or F, or learning more than one of them in 

the same sentence). 
 

Table 4 summarizes the results of scope identifi- 

cation in the held out corpus. The first results were 

obtained using gold-standard hedge cues, while the 

second ones used the hedge cues learned in the pre- 

vious step (for hedge cue identification, we used the 

best configuration we found).  In the gold-standard 

results,  Precision,  Recall and  the  F-measure are 

the same because every False Positive (incorrectly 

marked scope) implied a False Negative (the missed 

right scope). 
 

6 Evaluation 
 

To determine classifier performance, we evaluated 

the classifiers found after improvement on the eval- 

uation corpus.  We also evaluated the less efficient 

classifiers to see whether applying the iterative im- 

provement had overfitted the classifier to the corpus. 

To evaluate scope detection, we used the best con- 

figuration found in the evaluation corpus for hedge 

cue identification. Tables 5 and 6 show the results 

for the hedge cue recognition and scope resolution, 

respectively.  In both tasks, classifier performance 

Table 5:  Classification performance on the evaluation 

corpus for hedge cue detection 
 

 
Configuration Gold-P P R F1 
Baseline 
Conf1 

Conf2 

Conf3 

Conf4 

74.0 
76.5 

80.0 

83.1 

84.7 

71.9 
74.4 

77.2 

80.0 

80.1 

68.1 
70.2 

72.9 

75.2 

75.8 

70.0 
72.3 

75.0 

77.3 

77.9 
 

Table 6:  Classification performance on the evaluation 

corpus for scope detection 
 

 
 
 
 
 

improved in a similar way to the results obtained on 

the held out corpus. 

Finally, to compare our results with state-of-the- art 

methods (even though that was not the main 

objective of the study), we used the corpus of de 

CoNLL 2010 Shared Task to train and evaluate our 

classifiers, using the best configurations found in the 

evaluation corpus, and obtained competitive results 

in both subtasks of Task 2. Our classifier for hedge 

cue detection achieved an F-measure of 79.9, bet- 

ter than the third position in the Shared Task for 

hedge identification.  Scope detection results (us- 

ing learned hedge cues) achieved an F-measure of 

54.7, performing better than the fifth result in the 

corresponding task, and five points below the best 

results obtained so far in the corpus (Velldal et al., 
 
 
 
 
 

 Hedge cue iden- 

tification 
Scope detection 

Best results 
Our results 

81.7/81.0/81.3 
83.2/76.8/79.9 

59.6/55.2/57.3 
56.7/52.8/54.7 

 

Table  7: Classification  performance  compared  with 

best results in CoNLL Shared Task.  Figures represent 

Precision/Recall/F1-measure 



 

2012). Table 7 summarizes these results in terms of 

Precision/Recall/F1-measure. 
 

7 Conclusions and Future  Research 
 

In this paper we have presented an iterative method- 

ology to improve classifier performance by incor- 

porating linguistic knowledge, and proposed a way 

to incorporate domain rules to the learning process. 

We applied the methodology to the task of hedge 

cue recognition and scope finding, improving per- 

formance by incorporating information of training 

corpus occurrences and co-occurrences for the first 

task, and syntax constituents information for the sec- 

ond.  In both tasks, results were competitive with 

the best results obtained so far on a publicly avail- 

able corpus. This methodology could be easily used 

for other sequential (or even traditional) classifica- 

tion tasks. 

Two directions are planned for future research: first, 

to improve the classifier results by incorporat- ing 

more knowledge rules such as those described by 

Velldal et al. (2012) or semantic resources, specially 

for the scope detection task. Second, to improve the 

methodology, for example by adding some way to 

select the most common errors in the held out cor- 

pus and write rules based on their examination. 
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Gyö rgy Mó ra, and János Csirik, editors. 2010b. Pro- 

ceedings of the Fourteenth Conference on Computa- 

tional Natural Language Learning.   Association for 

Computational Linguistics, Uppsala, Sweden, July. 

Ken Hyland. 1995. The author in the text: Hedging sci- 

entific writing.  Hongkong Papers  in Linguistics and 

Language Teaching, 18:33–42. 

Ken Hyland. 1996a.  Talking to the academy: Forms of 

hedging in science research articles. Written Commu- 

nication, 13(2):251–281. 

Ken Hyland. 1996b. Writing without conviction? Hedg- 

ing in science research articles.  Applied Linguistics, 

17(4):433–454, December. 

Ken Hyland.  2005.  Metadiscourse: Exploring Interac- 

tion in Writing. Continuum Discourse. Continuum. 

Halil Kilicoglu and Sabine Bergler. 2010. A high- 

precision approach to detecting hedges and their scopes.  

In Proceedings of the Fourteenth Conference on 

Computational Natural Language Learning, pages 

70–77, Uppsala, Sweden, July. Association for Com- 

putational Linguistics. 

Dan Klein and Christopher D. Manning.  2003.  Accu- 

rate unlexicalized parsing.  In ACL ’03:  Proceedings of 

the 41st Annual Meeting on Association for Compu- 

tational Linguistics, pages 423–430, Morristown, NJ, 

USA. Association for Computational Linguistics. 

John Lafferty, Andrew McCallum, and Fernando Pereira. 

2001.  Conditional random fields: Probabilistic mod- els 

for segmenting and labeling sequence data. In Pro- 

ceedings of ICML-01, pages 282–289. 

George Lakoff. 1973. Hedges: A study in meaning crite- 

ria and the logic of fuzzy concepts. Journal of Philo- 

sophical Logic, 2(4):458–508, October. 

Marc Light, Xin Y. Qiu, and Padmini Srinivasan. 2004. 

The language of bioscience: Facts, speculations, and 

statements in between. In Lynette Hirschman and 

James Pustejovsky, editors, HLT-NAACL 2004 Work- 

shop:  BioLINK 2004, Linking Biological Literature, 

Ontologies and Databases, pages 17–24, Boston, 

Massachusetts, USA, May. Association for Computa- 

tional Linguistics. 

Ben Medlock and Ted Briscoe. 2007. Weakly supervised 

learning for hedge classification in scientific literature. In 

Proceedings of the 45th Annual Meeting of the As- 

sociation of Computational Linguistics. 

Guillermo Moncecchi, Jean-Luc Minel, and Dina Won- 

sever. 2010. Enriching the bioscope corpus with lex- 

ical and syntactic information. In Workshop in Natu- ral 

Language Processing and Web-based Tecnhologies 

2010, pages 137–146, November. 

Roser Morante and Walter Daelemans.   2009.   Learn- 

ing the scope of hedge cues in biomedical texts.  In 

Proceedings of the BioNLP 2009 Workshop, pages 28– 

36, Boulder, Colorado, June. Association for Compu- 

tational Linguistics. 

Roser Morante and Caroline Sporleder.  2012.  Modal- 

ity and negation: An introduction to the special issue. 

Computational Linguistics, pages 1–72, February. 

Roser Morante,  Anthony Liekens,  and Walter Daele- 

mans. 2008. Learning the scope of negation in 

biomedical texts. In EMNLP ’08:   Proceedings  of 

the Conference on Empirical Methods in Natural Lan- 

guage Processing,  pages 715–724, Morristown, NJ, 

USA. Association for Computational Linguistics. 



 

Roser Morante, Vincent Van Asch, and Walter Daele- 

mans. 2010. Memory-based resolution of in-sentence 

scopes of hedge cues.   In Proceedings of the Four- 

teenth  Conference on  Computational  Natural  Lan- 

guage Learning, pages 40–47, Uppsala, Sweden, July. 

Association for Computational Linguistics. 

R. F. Palmer.  2001.  Mood and Modality.  Cambridge 

Textbooks in Linguistics. Cambridge University Press, 

New York. 
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