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Abstract

Ranking methods are fundamental tools in many areas. Popular methods aggregate

the statements of ‘experts’ in different ways. As such, there are various reasonable

ranking methods, each one of them more or less adapted to the environment un-

der consideration. This paper introduces a new method, called the handicap-based

method, and characterizes it through appealing properties. This method assigns not

only scores to the items but also weights to the experts. Scores and weights form an

equilibrium for a relationship based on the notion of handicaps. The method is, in a

sense made precise in the paper, the counterpart to the counting method in environ-

ments that require intensity-invariance. Intensity-invariance is a desirable property

when the intensity of the experts’ statements has to be controlled. Otherwise, both

the counting and handicap-based methods satisfy a property called homogeneity,

which is a desirable property when cardinal statements matter, as is the case in many

applications.
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trix.
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1 Introduction

The use of rankings is becoming pervasive in many areas. In the Web environment and

in academia, popular ranking methods are based on observed data such as hyperlinks

for ranking Web pages or citations for ranking journals. The underlying premise

is that these data reflect preferences: a ranking method aggregates the hyperlinks

toward a Web page or the citations toward an article as positive votes. The Science

Citation Index, for example, uses the counting method, which counts the total number

of citations received by journals. The influence measure introduced by Pinski and

Narin (1976) counts not only direct citations but also indirect ones in a certain way.

PageRank designed by Google (Brin and Page 1998) is based on a similar recursive

approach and uses the invariant method. Different methods produce different results,

which raises the question of the choice of the method. Viewing ranking methods as

tools for aggregating the evaluations of several individuals, no method is universally

good, as is known from social choice theory: an appropriate method depends on

the context under consideration. A useful guide is to list the properties or ‘axioms’

that a method should satisfy in that context. This paper follows this axiomatization

approach. It introduces and characterizes a new method, called the handicap-based

method.

The ranking problems considered here are described by a set of ‘items’ to be ranked

and a set of ‘experts’ who provide statements on the items. A ranking method assigns

a cardinal ranking2 of the items to each profile of experts’ statements. This ranking

describes the relative scores of the items, defined up to a multiplicative scalar. Let

us illustrate the framework first with the ranking of journals based on citations.

This is a peers’ ranking because items are ranked according to data provided by

themselves: the statement of a journal (as an expert) is derived from the number

of its citations toward other journals. Similarly, in the case of ranking Web pages

based on the hyperlink structure, the statement of a page (as an expert) is given by

its hyperlinks toward other pages. In the next example, items and experts differ: the

items are the different issues over which a budget has to be allocated and the experts

are representatives. Representatives state their preferences over the allocation of the

2The term ‘ranking’ might not be appropriate in a cardinal setting but this terminology is stan-

dard.
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budget and a method describes how the final budget will be distributed as a function

of these statements.

This paper proposes a ranking method based on handicaps. The method and the

axioms apply to general settings including the peers’ one. To understand how that

method is built, it is useful to view a method as assigning to experts’ statements

not only scores to the items but also weights to the experts. This encompasses two

properties. First, the ranking forms a weighted average of the experts’ statements.

Second, the scores and the weights form an equilibrium relationship. It turns out

that most existing methods are built that way. For example, the counting method

simply assigns identical weights to the experts whatever their statements. PageRank

instead, which aims to determine the influential Web pages on the basis that there

are heavily cited by other influential pages, equalizes the expert’s weight associated

to a page to its score.

The method introduced in this paper is supported by an equilibrium relationship

built on handicaps. Scores and handicaps are strongly related. Specifically, the

handicap of an item can be seen as the inverse of its score: since the purpose of

handicaps is to adjust items’ marks so as to equalize their ‘strength’, the handicap

of i is half that of ` if i can be said to be twice as good as `, that is, if i’s score is

twice that of `. A handicap-based ranking and the experts’ weights aim at equalizing

the strengths across items and at equalizing the handicap points distributed by the

experts. These two conditions turn out to define a unique ranking and unique experts’

weights under mild conditions (Proposition 1). The handicaps can be viewed as a

tool for building the method. The properties that characterize the method justify its

relevance.

The handicap-based method is characterized by three properties. The first prop-

erty is intensity-invariance. This property has been introduced in environments where

the ‘intensity’ of statements is not controlled. In the Web environment, for example,

the number of (outward) links from a page is not restricted a priori; an intensity-

invariant method deflates a link from that page by its total number of outward links.

This is performed by PageRank to avoid pages to increase their score by inflating

the number of their outward links. Note that intensity-invariance is automatically

satisfied when statements represent shares, as in the budget allocation problem. The

second property is homogeneity. This property is appropriate when statements and
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rankings are cardinal. Let each expert raise its evaluation on item i by the same

factor, say twenty percent. Then the score of i should be raised by twenty percent

relative to other items. The third property is uniformity3 according to which items

are considered as undistinguishable when they all receive the same totals: the method

assigns equal scores when the counting method does.

The handicap-based method is the only method that is intensity-invariant, homo-

geneous, and uniform. Furthermore, the handicap-based method can be seen as the

counterpart to the counting method in environments that require intensity-invariance.

Indeed, the counting method, which is not intensity-invariant, is characterized by ho-

mogeneity and uniformity on the set of statements whose intensity has not been fac-

tored out. To summarize, the handicap-based method provides a tool for aggregating

shares; it is appropriate when experts’ statements are not controlled and intensity-

invariance is perceived as a prerequisite, or when experts’ statements are controlled

and represent shares (in which case intensity-invariance is automatically satisfied).

To illustrate the method, Section 3.4 reports the invariant and handicap-based

rankings of 37 economic journals, based on the same data as in Palacios-Huerta

and Volij (2004). There are differences in the scores computed by these methods,

though they are rather moderate but for some exceptions. An interesting lesson that

can be drawn from this exercise is that the weights of the handicap-based ranking

convey relevant information: they reflect significant and meaningful differences in the

reference behavior across journals.

This paper is related to recent studies that characterize ranking methods based

on citations. In the peers’ context, the invariant method is characterized by several

axiomatizations (Palacios-Huerta and Volij 2004, Slutzki and Volij 2006, and Altman

and Tennenholtz 2005 for its ordinal version). Du, Lehrer and Pauzner (2012) propose

a ’market’ approach to rank Web pages and obtain a family of methods that appear

as variants of the invariant method. In a different context, Woeginger (2008) pro-

vides an axiomatization of the h-index, a much used method for ranking researchers.

The method relies on the number of citations received by each researcher’s paper

independently of citations’ origins. The paper is also related, albeit loosely, to the

studies analyzing incentive compatibility in the peers’ context. For example Altman

3Intensity-invariance and uniformity have been considered in the literature by various authors,

as those cited at the end of this introduction. Homogeneity as defined here is new.
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and Tennenholtz (2008) provide an impossibility theorem and Clippel, Moulin and

Tideman (2008) display a family of methods that satisfy a strong non-manipulability

requirement (the score of an entity must not be affected by its own citations). This

paper does not consider incentive compatibility, though intensity-invariance prevents

a specific form of manipulation.

The rest of the paper is organized as follows. Section 2 presents ranking methods,

defines some properties, and describes the invariant and the HITS methods. Section 3

introduces the handicap-based method under the assumption of strictly positive state-

ments, describes an algorithm to compute the ranking and provides characterizations

for both the handicap-based and counting methods; finally it makes comparisons

between methods and presents three rankings of economic journals. Section 4 inves-

tigates settings in which statements can be nil or binary, a typical situation in the

Web environment in which statements are limited to the presence or absence of a

link. Section 5 concludes. Most proofs are given in Section 6.

2 Ranking methods

2.1 The framework

There are n items to be ranked and m experts who provide statements on the items

on which the ranking will be based. Items can be individuals, journals, or political

parties, and experts can be pundits, journals, or voters, as is illustrated below. N =

{1, . . . , n} and M = {1, . . . ,m} denote respectively the set of items and the set of

experts.

An expert’s statement assigns a non-negative valuation to each item; j’s valuation

to i is denoted by πi,j. There is a feasible set of experts’ statements that depends on

the context, as is illustrated in the next examples. The statement matrix is the n×m
matrix π = (πi,j): column j represents j’s statement, i.e., the valuations of j to all

items and row i represents the valuations of all experts on item i. A matrix is said

to be feasible if the statement of each experts is feasible.

A ranking assigns a non-negative number ri to each item i, called the score of i.

It describes the relative strength of the n items, meaning that the values taken by

the scores matter up to a multiplicative constant. Normalizing the sum of the scores
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to 1, a ranking of N is specified by a vector r in the simplex ∆N : ∆N = {r = (ri) ∈
<n, ri ≥ 0,

∑
i ri = 1}.

A method assigns a ranking to each feasible statement matrix. Formally,

Definition 1 Given N , M , and the set S of feasible statements matrices, a ranking

method F assigns to each matrix π in S a ranking r = F (π) in ∆N .

The counting method, for example, assigns scores proportional to the totals of the

valuations:

ri =
πi+∑
` π`+

for each i where πi+ =
∑
j∈M

πi,j. (1)

More sophisticated methods are introduced in Section 2.3. Let us illustrate ranking

problems in different contexts.

1. Ranking journals based on citations. The ranking is based on the citations

between a set of journals: N and M coincide. The statement of journal j is

given by the number of its citations per article towards all journals. To be more

precise, let Ci,j denote the total number of citations by articles in j to articles in

i and nj denote the total number of articles in j in a relevant period; the matrix

π is given by πi,j =
Ci,j

nj
. A ranking method assigns a ranking based on π.

The sum of column j represents the average number of references in an article

published in j and is called j’s reference intensity. Reference intensities differ

across journals or across fields, which raises the issue of whether these differences

should have an impact on the ranking (see Palacios-Huerta and Volij (2004) for

such an analysis on economic journals).

2. Representation problem. The problem is to assign voting weights to various

categories based on the votes of electoral bodies: N is the set of categories

(items) and M is the set of electoral bodies (experts). In the political domain

for instance, a category is a political party and an electoral body represents a

constituency, say a district. In the context of a scientific association, a category

represents a field and an electoral body represents a geographical area. The

statement πi,j of j on category i is the number of votes cast by the electoral

body j in favor of i. The counting method assigns voting weights to categories

in proportion to their votes’ totals; therefore it treats all votes equally without
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distinguishing from which electoral body they have been cast. Other methods

distinguish the votes according to the electoral body, as we will explain in

section 2.2.

3. Budget allocation. The problem is to allocate a budget to different issues (trans-

port, sanitation, education,...) as a result of the desiderata of citizens or rep-

resentatives: the items are the issues and the experts are the representatives.

A representative’s statement describes the proportions of the budget she would

like to allocate to the different issues:4 a statement is represented by a non-

negative vector that sums to one. A ranking is interpreted as the shares of the

final budget. Thus, a ranking method describes a rule that distributes the final

budget as a function of the representatives’ statements.

4. Ranking Web pages based on the link structure. The two sets of items and ex-

perts, N and M , coincide, both given by a set of relevant Web pages. A method

ranks the pages based on the links within N , as is performed by PageRank (us-

ing the invariant method) or by the HITS method described in Section 2.3. The

statement of a page is given by its outward links towards other pages and π

is the (transpose of) adjacency matrix of the Web network: πi,j is equal to 1

if page j points to i and 0 otherwise. Such a binary representation also arises

in approval voting, in which an expert is asked to name the items he finds ac-

ceptable (without being allowed to state intensity). Here items and experts can

differ. An expert’s statement is described by the vector of 1 and 0 indicator of

the set of items he approves. Such a setting where the statement matrix has

only zeros and ones is called the 0-1 setting in the remainder of the paper.

In all these examples but the last one, the statements are cardinal and the precise

relative values stated by the experts have a meaning. It is thus natural to assign a

4This is in the spirit of the Participatory Budgeting procedures implemented in Porto Alegre (see

e.g. Souza 1998). These procedures are more complex than our method because they involve two

levels of voting, first at the neighborhoods’ level (the city is divided into regions, themselves divided

into neighborhoods) and second at the regional level. All inhabitants in a neighborhood can vote

both to formulate priority demands over investment spendings and to elect representatives at the

region level. These representatives aggregate the neighborhoods’ demands to set regional priorities.

Finally all these regions’ priorities are used by the city to derive a general priority ranking over

issues and an allocation to regions.
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cardinal ranking. In the last example, though statements are not cardinal, a cardinal

ranking still makes sense. For example, in approval voting, the counting method

produces the proportions of the votes received by the candidates and these proportions

are relevant. However an axiom that makes sense when statements are cardinal may

have no sense in such a 0-1 setting. This will be the case for the homogeneity axiom

introduced in the next section.

Statement matrices are restricted to be positive, πi,j > 0 for each i, j, except in

Section 4. This is a reasonable assumption in the three first examples. Two feasible

sets will be considered: the full set of positive matrices, denoted by P , representing

absolute statements (the journal and representation examples) and the set of posi-

tive matrices for which each column sums to 1, denoted by R, representing relative

statements (the budget example). The possibility of zeros and the 0-1 setting will be

analyzed in Section 4.

Notation 11N denotes the vector in <N whose components are equal to 1, and

eN = 1
N

11N the ranking that assigns equal scores to items.

Given a finite set I and a vector x in <I , dg(x) denotes the diagonal I× I matrix

with xi as the i-th element on the diagonal.

Given a matrix π = (πi,j), πi+ denotes the total in row i, πi+ =
∑

j∈M πi,j, and

π+j the total in column j, π+j =
∑

i∈N πi,j.

2.2 Some properties

Let us start by describing four natural properties that one may want a method to

satisfy. Three properties - intensity-invariance, uniformity, and exactness - appear in

the literature (under various names). The homogeneity property has not yet been

considered in the literature, as far as I know.

Intensity-invariance Intensity-invariance requires the ranking not to be affected

by a multiplicative scaling of a column. Justifications are provided below. Formally,

let π′ be the matrix obtained from π by multiplying a column, say column j, by a

positive scalar µj: π
′ = πdg(µ) where µ is the m-vector whose j-th component is

equal to µj and others are equal to 1. Intensity-invariance requires the method to

assign the same ranking to π and π′: F (πdg(µ)) = F (π). The property is required
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for each column j; multiplying each column j by a positive µj, iteration yields the

following equivalent definition.

Definition 2 A method F defined on P is intensity-invariant if

F (πdg(µ)) = F (π) for each positive m-vector µ = (µj), each π in P . (2)

An intensity-invariant method is fully determined by its restriction on the set of

matrices whose column totals are fixed. To see this, let c = (cj) specify a positive

value for each column total, cj for column j. Given matrix π, scale each column j

so that its total meets the required total cj. The scaled matrix is equal to πdg(µ)

where µj satisfies π+jµj = cj. Intensity-invariance of F implies F (π) = F (πdg(µ)):

F is fully determined by its restriction on the set of matrices whose column totals are

equal to c.

This suggests a way to transform a method F that is not intensity-invariant into

an intensity-invariant one. Let us consider the restriction of F on the matrices with

given column totals c and extend it as follows: given a matrix, scale each column j

so that it sums to cj and apply F to the scaled matrix. Formally, define [F ]c by: for

each π, [F ]c(π) = F (πdg(α)) where π+jαj = cj. [F ]c is intensity-invariant since the

scaled matrix of πdg(µ) is the same as that of π.

In the above construction, the methods [F ]c vary with c (except if F is intensity-

invariant). Take for instance the counting method, which is not intensity-invariant.

[F ]c assigns scores proportional to the weighted totals of the valuations: [F ]c(π) is

proportional to (
∑

j
πi,j
π+j

cj). As a result, the influence of j’ statement is increasing in

its assigned value cj. This shows that intensity-invariance is not related with fairness.

Let us illustrate intensity-invariance in our examples.

In the case of journals, intensity-invariance means that the ranking depends only

on the proportions of the citations by journals to other journals, i.e. on
Ci,j

C+j
where

Ci,j is the number of cites made by articles in j to articles in i (recall that πi,j is

defined as
Ci,j

nj
the average number of references of an article from j to i). As a result,

a proportional increase in the number of citations per article in a journal j, keeping

the shares received by each journal unchanged, has no impact on the ranking. In

particular, the ranking is not influenced by distinct citations’ practice across journals

or fields.
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In the case of Web pages, intensity-invariance implies that a link from a page

is divided by the number of links from that page. Intensity is ’factored out’. A

justification is that factoring out intensity avoids a page to improve its score by

increasing the number of pages it points to. This is why PageRank uses the invariant

method, which is the intensity-invariant version of another method, as is described

in the next section.

In the representation problem, an expert represents the electoral body of a con-

stituency whose statement is the number of votes to the parties in that constituency.

Intensity-invariance requires the final representation to be independent of the turnout

in the constituencies. Using the construction described above, an intensity-invariant

method is obtained by assigning a total to each electoral body. The totals are not

necessarily proportional to the sizes of the electoral bodies. This is often the case in

practice: constituencies are assigned a number of representatives degressive in their

sizes.

Finally, in the budget example, intensity-invariance is automatically satisfied since

representatives are asked to state how the budget should be distributed over a set of

issues, i.e., the statement of an expert sums to 1.

In the sequel, we work with matricesR, whose column totals are equal to 1, namely

matrices in R, and with the associated intensity-invariant versions.5 Specifically let

[π] be the matrix in R associated to π:

[π]i,j =
πi,j
π+j

for each i, j. (3)

The intensity-invariant version [F ]11 of F , denoted simply as [F ], is defined by

[F ](π) = F ([π]) for each π ∈ P . (4)

Finally, note that any method that is defined on R, such as in the budget example,

can be extended in a unique way to an intensity-invariant method on P .

Uniformity and exactness The next two properties bear on some specific matri-

ces, hereafter called row-balanced. A matrix is said to be row-balanced if each row

receives the same total, or, equivalently, each row obtains the same score 1/n under

5By doing so, no intensity-invariant method is neglected since G = [G]11 for G intensity-invariant.

In particular, [F ]c = [[F ]c]11.
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the counting method. A row-balanced matrix constitutes a ’neutral’ situation in the

sense that there is no rationale for distinguishing between items if experts are not

discriminated a priori. This is what is required by uniformity: A method is uniform

if it assigns equal scores to each row-balanced feasible statement matrix. Exactness

asks the converse property that items obtain equal scores only if they receive identical

totals. Formally

Definition 3 A method F is uniform on S if F (π) = eN for each row-balanced π

in S. F is exact on S if F (π) = eN for π in S implies that π is row-balanced.

The intensity-invariant version of a uniform method F on P is uniform on R (but not

necessarily on P). To see this, let π be in R. We have [π] = π and [F ](π) = F (π).

Hence, if F is uniform, then [F ](π) = eN for each row-balanced π in R: [F ] is

uniform. Similarly the intensity-invariant version of an exact method F on P is exact

on R (but not necessarily on P). Let π be in R such that [F ](π) = eN , thus,

F (π) = eN ; if F is exact, this implies that π is row-balanced : [F ] is exact.

No intensity-invariant method is both uniform and exact on P . To see this, start

with a row-balanced matrix π with distinct columns. Its ranking is eN by uniformity.

The distinct columns can be multiplied by some factors so as to obtain a matrix that

is not row-balanced. Intensity-invariance requires the ranking of this new matrix to

be eN , in contradiction with exactness.

Homogeneity The homogeneity property is very natural when statements are car-

dinal6 as is the case in the three first examples presented in Section 2. The relative

valuations stated by an expert have a precise meaning. If there is a single expert, the

cardinal ranking must keep these relative valuations, hence be proportional to this

expert’s statement. In particular, if the expert doubles the valuation on i, either in

absolute or relative terms, the final score of i is doubled relative to all other items.

Homogeneity extends this property to the multi-expert setting. Starting with experts’

statements and multiplying each valuation on i by a factor, i’s relative position should

be multiplied by the same factor. I spell out the property for the two situations in

which absolute or relative statements matter.

6The homogeneity axiom introduced in Palacios-Huerta and Volij (2004) is different since it bears

on a given matrix that has two proportional rows.
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Let us start with the situation in which statements are absolute. Let π be in

P and multiply each valuation on item i by a positive scalar ρi. Homogeneity of

F requires i’s score relative to other items to be multiplied by ρi. Formally, let us

consider the matrix dg(ρ)π where ρ is the vector whose i-th component is equal to

ρi and all others are equal to 1; the ranking F (dg(ρ)π) is the ranking proportional to

dg(ρ)F (π). The property is required for each row i and iteration yields the following

equivalent definition.

Definition 4 A method F is homogeneous on absolute statements if for each

π in P and positive n-vector ρ = (ρi), F (dg(ρ)π) is the ranking proportional to

dg(ρ)F (π).

Clearly, the counting method is homogeneous on absolute statements. Let us illustrate

the property in the two first examples of section 2.1.

In the case of journals, assume that, between two periods, each journal in-

creases its citations toward journal 1 by ten percent and leaves unchanged the others:

ρ1 = 1.1. Homogeneity on absolute statements requires the score of journal 1 to

be increased by ten percent relative to others: it becomes 1.1·r1
Σiri+0.1·r1 = 1.1·r1

1+0.1·r1 if r1

denotes the initial score.

In the representation problem, let the number of votes in favor of party i be raised

by 5 percent in all districts between two elections, other numbers of votes unchanged

(such an rise implies an increase in the total number of votes; this is possible since

larger participation and demographic modifications make the number of cast votes

variable). Homogeneity on absolute statements requires i’s voting weights to be raised

by 5 percent relative to other parties.

Homogeneity on relative statements requires the same behavior when a factor

modifies the relative valuations on an item: multiplying the shares on i relative to

other items by a positive scalar ρi multiplies i’s score relative to other items by ρi.

In matrix form, F ([dg(ρ)π]) is the ranking proportional to dg(ρ)F (π) where ρ is

the vector with i’s component equal to ρi and all others equal to 1. The property is

required for each row i, so iteration yields the following equivalent definition.

Definition 5 A method is homogeneous on relative statements if for each π

in R and positive n-vector ρ = (ρi), F ([dg(ρ)π]) is the ranking proportional to

dg(ρ)F (π).

12



In the budget example, recall that experts state their preferred budget shares over

issues, so that their statements are in R. Let us consider two cities which have

the same number of representatives and face the same set of issues. Assume their

statements differ only by the fact that each representative in the second city assigns α

percent more to education relative to other issues than in the first (i.e. multiplied by

the factor ρ = 1 +α). Homogeneity on relative statements requires the share devoted

to education to be α percent larger relative to other issues in the second community

than in the first; if the education share is 20 percent in the first community for

example, it is (20 + 20α)/(100 + 20α) in the second. The following statements with

three experts and two issues, say education and health, illustrate:

city 1 :

(
2/3 1/3 1/2

1/3 2/3 1/2

)
city 2 :

(
4/5 1/2 2/3

1/5 1/2 1/3

)
Each expert wants the share on education relative to health in city 2 to be twice that

in city 1; homogeneity requires the budget’s share on education relative to health in

city 2 to be twice that in city 1. For example, if the method is both uniform and

homogeneous, education and health receive each half of the budget in city 1 (since

statements are balanced), and education receives 2/3 and health 1/3 of the budget

in city 2.

The distinction between homogeneity on absolute and relative statements does

not matter for intensity-invariant methods. This is stated in the next lemma (the

proof is in the appendix).

Lemma 1 Let F be intensity-invariant. F is homogeneous on absolute statements if

and only if it is homogeneous on relative statements.

Thus, in the sequel, we simply refer to homogeneity for an intensity-invariant method.

When a method is homogeneous on absolute statements but not intensity-invariant,

its intensity-invariant version [F ] may not be homogeneous (in whatever sense), as is

illustrated with the counting method.

The counting method is homogeneous on absolute statements but not intensity-

invariant. In the following example, π′ is obtained by multiplying the first row of π

by 2:

π =

(
2 1

1 2

)
,π′ =

(
4 2

1 2

)
, [π′] =

(
4/5 1/2

1/5 1/2

)
.
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The intensity-invariant version of the counting method assigns equal scores, (1/2, 1/2),

to π but (13/20, 7/20) to π′ (and to [π′]) instead of (2/3, 1/3) as required by homo-

geneity. The reason is that expert 1 likes relatively more item 1 than expert 2 does,

hence its total increases more than that of expert 2 when item 1’s statements are

doubled. Thus, when normalizing π′, the adjustment on expert 1’s statements is

larger than on 2’s. This explains why the total of item 1’s shares is less than doubled

relative to that of item 2.

It should be noted that homogeneity is not appropriate in some contexts. For

example, in a setting where a statement is ordinal, represented, say, by valuations from

1 to n, multiplying a valuation by some constant does not make sense. Similarly, in a

0-1 setting such as in the Web where a zero reflects the absence of a link, multiplying

a valuation by some constant makes the statement non-feasible. In those cases, the

homogeneity axiom does not apply. Finally, anticipating on Section 4 which treats

statements with null valuations, note that multiplying a null valuation by a factor

leaves it null. Thus, the homogeneity axiom makes sense when an expert assigns a

null valuation to an item because he finds it not acceptable or infinitely below an

item with a positive valuation.

2.3 Examples: the Invariant and HITS methods

This section introduces well-known methods that differ from the counting one in two

ways. First, they are defined in peers’ settings in which items and experts coin-

cide (N = M). Second, they treat experts differently according to their statements

whereas the counting method treats them equally.

The next two methods, often called eigenvalue methods, are the Liebowitz-Palmer

(LP) method7 and its intensity-invariant version, called the invariant method. The

methods are based on the premise that the statements made by a peer (as an expert)

should be weighed by his score (as an item). This induces a loopback definition: up

to a multiplicative factor, the score of an item is the sum of the received valuations

where each one is weighted by the expert’s score. Specifically, the method looks for

7This terminology refers to the work of Liebowitz and Palmer (1984), who use an approximation

of the method for ranking economic journals. The methods or some variants have been (re)defined

and used in various contexts: in sociology by Katz (1953) and Bonacich (1987), in academics for

ranking journals by Pinski and Narin (1976).
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r in ∆N that satisfies

for some positive λ, ri = λ
∑
j∈N

πi,jrj for each i. (5)

According to (5), the positive vector r is an eigenvector of matrix π. By Perron-

Frobenius theorem on matrices with positive elements, such an eigenvector exists,

and is unique up to a scalar: (5) well defines a method.

The invariant method is the intensity-invariant version8 of the LP method. Since

a normalized matrix has its largest eigenvalue equal to one,9 the invariant ranking of

π is the unique r in the simplex that satisfies

ri =
∑
j∈N

[π]i,jrj for each i. (6)

The method is intensity-invariant, uniform and exact. It is not homogeneous; its

behavior with respect to the multiplication of items’ valuations is illustrated in sec-

tion 3.3.

In the network setting, Du et al. (2012) propose methods that turn out to general-

ize the invariant method. An exchange economy is associated to each network and the

resulting equilibrium prices of the nodes are defined as their scores. For Cobb-Douglas

preferences, the invariant ranking is obtained. Though different ranking methods are

obtained for different families of preferences, all methods reflect the idea that the

higher the score of a node is, the more valuable its recommendation is. This property

qualifies a method as a ’pure’ peer’s method.10 The property is questionable in some

contexts, as is illustrated below after presenting the next method.

The Hyperlink-Induced Topic Search (HITS) method, introduced by Kleinberg (1999)

assigns scores to a set of Web pages on the basis of their link structure, as does

PageRank. Thus, the two sets of items and experts coincide. The method however

distinguishes two weights for each Web page, one associated with the relevance or au-

thority of a page, the other with the adequacy of a page to point toward the relevant

8The invariant method serves as a basis to PageRank to rank Web pages, using the incidence

matrix associated to the links between pages (see example 4). Because the matrix has many zeros,

a perturbation is used to make it irreducible.
9Recall that a matrix and its transpose have identical eigenvalues. The set of equations

∑
i πi,j =

1 for each j implies that 11N , is an eigenvector of the transpose of π with eigenvalue 1. Since 11N

positive, 1 is the dominant eigenvalue.
10See Demange (2013) for a definition and an analysis in a dynamical framework.
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pages. The first set of weights defines the ranking, which should help users to find the

relevant pages. The second set of weights identifies the pages -called ’hubs’- that are

important because they point to relevant pages (but might not be useful to Internet

users). Specifically, the method assigns the ranking r and the experts’ weights q in

∆N that satisfy

ri =
∑
j

πi,jqj for each i and qj = λ
∑
i

πi,jri for each j (7)

for some positive λ. As argued by Kleinberg (1999), hubs and authorities exhibit a

mutually reinforcing relationship: a good authority is a page that is pointed to by

many good hubs, a good hub is one that points to many good authorities. The HITS

method is well defined: (7) writes in matrix form as r = πq and q = λπ̃r where π̃

is the transpose of π, which implies r = λππ̃r and q = λπ̃πq. Thus the ranking (or

’authority’ weights) r and the (’hub’) weights q are respectively the unique normalized

principal eigenvectors of the positive matrices ππ̃ and π̃π.11 The method is uniform,

exact, but not homogeneous on absolute statements.

Supporting weights The counting, invariant, and HITS methods can all be viewed

as assigning not only scores to items but also weights to experts. As can be seen from

(1), (6) and (7), each of the three methods assigns to each π a ranking r = F (π) and

experts’ weights q = Q(π) so that each item receives a score that is the weighted

sum of its valuations:

ri =
∑
j∈M

πi,jqj for each i in N or F (π) = πQ(π). (8)

Furthermore, the weights Q(π) are related to the ranking F (π) by a relationship.

Let us spell out this relationship in each case. The counting method assigns equal

weights to the experts, whatever the statements are: Q(π) = (1/m). The relationship

is trivial, based on the premise that no distinction should be made between experts.

The invariant method, by its very definition, assigns weights to experts equal to

their scores: Q(π) = F (π). The HITS method assigns weights so that Q(π) is the

normalized vector proportional to π̃F (π).

111/λ is the dominant eigenvalue of ππ̃ and is not equal to 1 in general even for a normalized π.
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Except for the counting method, the weights typically differ across experts. Fur-

thermore, this differential treatment varies with the whole profile of statements: it

is endogenous, determined by the relationship between rankings and weights. The

following example illustrates the impact of this relationship. It also shows that the

invariant method does not perform well in some situations, as has been recognized by

computer scientists (see e.g. Boldi, Santini and Vigna 2007 from which the following

example is taken).

Example There are ten items/experts, whose statements are represented by the

graph in Figure 1 where an arrow form a node j to i means that j cites i. Perturb

these statements by adding a small constant positive α to each element so that all

valuations become positive (this is the type of perturbation that is used by PageRank).

Intuitively, item 0 should receive a high score since it is cited by 7 experts.

0

6 7 8 9

2

1

4

3

5

For α = 10−3, the invariant method12 assigns high scores to items 4 and 5, respectively

0.4943 and 0.4939, and small ones to others, in particular to item 0 which receives

0.0049. The HITS method instead assigns a high score to item 0, 0.9152, and small

scores to other items. (The handicap-based method, defined in Section 3, produces

similar results to the HITS method.)

The reason for why item 0 does not obtain a high score in the invariant ranking

is because it cannot obtain a high expert’s weight. To see this, observe that 1 cites

only 4, and 4 and 5 only cite each other. For α small, this implies r5 ≈ r4 and

r4 ≈ r1 + r5: r1 must be small (as an expert’s weight). But 1 is cited by 0, hence r1

12The invariant scores are 0.0049, 0.0015, 0.0009, 0.0001, 0.4943, 0.4939 for i = 0, .., 5 and 0.0011 for

i = 6..., 9. The HITS scores are 0.9152, 0.0602, 0.0028, 0.0024, 0.0037, 0.0032 for for i = 0, .., 5 and

0.0031 for i = 6..., 9. The handicap-based scores are 0.9595, 0.0064, 0.0018, 0.0001, 0.0248, 0.0066

for i = 0, .., 5 and 0.0002 for i = 6..., 9. The HITS (resp.handicap-based) weights are

0.0034, 0.0008, 0.1142, 0.0234, 0.0008, 0.0009 (resp. 0.0002, 0.0033, 0.0125, 0.0003, 0.0065, 0.0230) for

i = 0, .., 5 and 0.2141 (resp. 0.2385) for i = 6..., 9.
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(as a score) satisfies r1 ≈ r0/5, which implies that r0 (as an expert’s weight) must be

small as well. Thus, the bad behavior of the invariant method in this example comes

from the identification of the scores, which are related with the citations received (the

valuations), with the experts’ weights, which are related with the citations made (the

statements).

The notion of supporting weights is useful for defining a variety of methods by

varying the relationship between rankings and weights. More precisely, given a rela-

tionship, the method simultaneously assigns to each statement a ranking and experts’

weights so that (a) the ranking is the weighted average of the experts’ statements and

(b) the ranking and the weights follow the relationship (of course, some conditions on

the relationship are required for the method to be well-defined). This is the approach

followed in the next section.

3 The handicap-based method

This section first introduces a method based on the notion of handicaps (Proposi-

tion 1). This method is defined in all settings, including the peers’ ones. Proposition 2

provides two characterizations in terms of the axioms introduced in the previous sec-

tion and Proposition 3 does the same for the counting method. These axiomatizations

show the similarities between the two methods, except for intensity invariance.

In this section, statements are assumed to be all positive. Null entries are consid-

ered in Section 4.

3.1 Definition and properties

The purpose of handicaps is to equalize the strengths between items and a handicap

may be defined as the inverse of the score: saying that the handicap of i is twice that

of ` means that the score of i is half that of `. Thus, we assign handicaps h = (hi)

to a ranking r by hi = 1/ri. The handicap-based method is based on an equilibrium

relationship between handicaps and experts’ weights: it looks for handicaps that

equalize items’ weighted counts and for experts’ weights that equalize the distributed
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handicap ’points’ across experts:∑
j

(πi,jqj)hi = 1 for each i where
∑
i

(πi,jhi)qj =
n

m
for each j. (9)

The next proposition states that this leads to a well defined ranking method where

the ranking is proportional to the vector (1/hi).

Proposition 1 Given a positive matrix π, there is a unique r = (ri) in ∆N such

that ∑
j

(πi,jqj)
1

ri
= 1 for each i where

∑
i

(
πi,j
ri

)qj =
n

m
for each j. (10)

The handicap-based method H assigns to each matrix this unique ranking r and

the supporting weights q. H is intensity-invariant, uniform, exact, and homogeneous.

The proof is in the appendix.

Let us first discuss the relationship between the experts’ weights and their state-

ments. When the experts are unanimous and provide the same statement, r, the

handicap-based ranking is r and all experts’ weights are all equal to 1/m. Thus, it

is the diversity in statements that generates differences in experts’ weights. When

statements differ, the experts whose statements have a high correlation with the

handicaps receive a lower weight than those whose statements have a low correlation:

weights are decreasing in the correlation between statement and handicap vector

(since
∑

i πi,jhi = cov(π.j,h) +
∑

i hi). Section 3.3 compares this behavior with the

weights’ behavior of the other methods introduced previously.

The existence of a ranking solution to (10) relies on the following observation. The

method can be seen as searching for a ranking and experts’ weights that transform

the statements into a matrix that is both row- and column-balanced. Specifically,

(10) requires the matrix p of general element pi,j = 1
ri
πi,jqj obtained from π by

multiplication of its rows by the items’ handicaps and of its columns by the experts’

weights to satisfy∑
j

pi,j = 1 for each i and
∑
i

pi,j = n/m for each j. (11)

The problem of adjusting a given matrix π by multiplication of its rows and its

columns by some numbers so as to meet constraints on totals is a standard problem
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known as matrix scaling.13 The matrix p is unique. It remains to show that the

multipliers are uniquely defined when r is in the simplex.

The matrix p, the handicap-based ranking and the supporting weights can be

computed through the iterative scaling algorithm RAS (Bacharach 1965). Let π be a

positive normalized matrix. The procedure starts by assigning the handicap vector h0

associated to the counting ranking and equal weights to experts: h0
i (
∑

i πi,j)/m = 1

for each i and q0
j = 1/m each j. Define the handicap points distributed by j as∑

i h
0
iπi,j. If these points are all identical across experts, then the handicap-based

ranking is the counting ranking with experts’ weights all equal to 1/m and the process

stops. Otherwise, the handicap points differ and experts’ weights q1 are defined so

as to equalize them:

(
∑
i

h0
iπi,j)q

1
j =

n

m
for each j.

(The vector q1 is not necessarily in the simplex.) The items’ totals weighted by q1

are then computed,
∑

j πi,jq
1
j for each i, and the handicaps h1 are defined so as to

equalize these totals across items: h1
i (
∑

j πi,jq
1
j ) = 1 for each i. The procedure starts

over again, alternating row-scaling and column-scaling: for each τ = 1, ..

hτi (
∑
j

πi,jq
τ
j ) = 1 for each i (12)

(
∑
i

hτi πi,j)q
τ+1
j =

n

m
for each j. (13)

The sequences hτ and qτ can be shown to converge14 to some positive vectors h and

q that satisfy (9). Let r be the ranking associated to handicap h: ri = λ/hi where λ

is chosen to have the sum
∑
ri equal to 1. Since the vectors (r, λq) satisfy (10) and

r belongs to the simplex, r is the handicap-based ranking supported by the weights

λq.

13The problem appears in various areas, in statistics for adjusting contingencies tables, in eco-

nomics for balancing international trade accounts and for filling missing accounting data, or in voting

problems (see for example Balinski and Demange 1989). In these cases, the object of interest is the

final adjusted matrix p. We are interested instead in the (relative) values of the adjustment on rows

and columns so as to define the handicaps and experts’ weights.
14The convergence is not straightforward, especially when some elements of π are null (see the

recent survey of Pukelsheim 2012 for example). When all elements of π are positive, convergence is

ensured at a geometric rate that depends on the final matrix p (Soules 1999).

20



3.2 Characterization of the handicap-based and the counting

methods

The next two propositions provide characterizations of the handicap-based and count-

ing methods.

Proposition 2

(a) The handicap-based method is the only ranking method that is uniform on R,

intensity-invariant, and homogeneous.

(b) The handicap-based method is the only ranking method that is exact on R,

intensity-invariant, and homogeneous.

Proposition 3

(a) The counting method is the only method that is homogeneous on absolute

statements and uniform on P.

(b) The counting method is the only method that is homogeneous on absolute state-

ments and exact on P.

The comparison between Proposition 2 and 3 shows that the main difference between

the handicap-based and counting methods stems from intensity-invariance and the

domain on which uniformity holds, R or P . This suggests that the handicap-based

method is adequate for relative statements and the counting method for absolute

ones.

The ordinal ranking associated to the counting method has been axiomatized in

the ’tournament’ setting. Rubinstein (1976) considers a simple tournament in which

either i wins over j or j wins over i (πi,j is 0 or 1 and πi,j + πj,i = 1) and Brink

and Gilles (2003) consider the more general 0-1 setting. Both papers rely on an

axiom of Independence of Irrelevant Alternatives (IIA). Say that i beats j if πi,j = 1.

IIA requires that the ordering of two items, say i and k, only depend on the items

beaten by i or k and on those that beat one of them; thus, the ordering of the two

items is determined by their neighbors in the graph representing the matrix π. Our

characterization of the counting method clearly differs since it does not rely on IIA.

Finally, Brink and Gilles (2009) consider weighted directed graphs, which correspond

to non-negative matrices with null elements on the diagonal. They use an axiom

dealing with the sum of matrices, hence their characterization also differs from ours.
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Let us add a final remark on IIA. IIA is violated by all the methods considered in

this paper, except the counting method. For the three methods, invariant, HITS and

handicap-based, the experts’ weights vary with the whole statement matrix. Thus,

the score of an item depends on the statements over all items via the values taken

by the experts’ weights; this is also typically true for the ratio of the scores on two

items (or their ordering): IIA is violated. In some sense, the aim of these methods

is precisely to account for the whole statement matrix to derive expert’s weights. In

my view, this justifies to give up IIA.

3.3 Comparison between methods

Let us first compare the relationships between the experts’ weights and their state-

ments for the various methods. When the experts are unanimous and state the same

r, the counting, HITS, handicap-based and invariant ranking all coincide with r. In

that case, the experts’ weights are equal across experts (qj = 1/m for each j) for

all methods but the invariant ranking, which assigns weights equal to r. As a re-

sult, when the statements do not differ much across experts, the counting, HITS

and handicap-based methods produce close rankings but not the invariant method.

Specifically, Let πi,j = ri + εi,j where
∑

j εi,j = 0 and εi,j are small enough to have

πi,j > 0. i’s score writes
∑

j qj(π)πi,j = 1
m

∑
j πi,j+

∑
j(qj(π)−1/m)πi,j. The weights

for the handicap-based method are continuous so that i’s score is approximated by
1
m

∑
j πi,j for εi,j small enough. The same approximation holds for the HITS method.

As for the invariant ranking, a similar argument shows that i’s score is approximated

by
∑
riπi,j.

The handicap-based and HITS methods differ in the way experts’ weights depend

on a given ranking r, as shown by the expressions (10) and (7). For the former, the

weight of an expert is the harmonic mean of r weighted by the expert’s statement,

whereas for the HITS (up to a multiplicative factor), the weight is its average mean.

This difference in the way the weights relate to a given ranking induces a difference

in the final rankings, which is not easy to assess. Providing an axiomatization of the

HITS method would help us to understand better the differences between the two

methods.
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Homogeneity: An example The invariant method is intensity-invariant and ex-

act but not homogeneous. The following example shows that its behavior with respect

to changes in statements may present serious drawbacks in some contexts. Let π and

π′ be

π =


0 1/3 1

1 0 1/3

1/3 1 0

 π′ =


0 10/19 10/13

9/10 0 3/13

1/10 9/19 0

 ,

(Diagonal elements are null so as to show that the described behavior is not due to

self-citations.) Comparing the statements in the two matrices, those for 1 relative to

2 are 10/9 times larger in π′ than in π, and those for 2 relative to 3 are 3 times larger.

That is, π′ = [dg(ρ)π] for ρ = (10/9, 1, 1/3). Since π is balanced, both the invariant

and handicap-based methods assign (1/3, 1/3, 1/3) to π. For π′, the handicap-based

ranking is proportional to (10/9, 1, 1/3) by homogeneity and the invariant ranking

is (approximately) (0.38, 0.395, 0.225) to π′. Thus, although the statements on 1

relative to 2 increase from π to π′, each one multiplied by ρ1 = 10/9, the invariant

score of 2 becomes larger than 1’s in π′.

This non-monotone behavior is explained by the dual role of the scores in the

invariant method and the induced loopback effect. Item 1 receives a high valuation

from expert 3 at π. As item 3 gets less support (the scaling down by ρ3 = 1/3), its

score is decreased, hence its weight as well. As a result, the high valuation from 3

counts less and this produces a negative effect on item 1’s score that counterbalances

the direct positive effect due to ρ1. As for item 2, it receives a high valuation from

1 at π. So it benefits indirectly from both the increase in 1’s valuations and the

decrease in 3’s, since they result in an increase in 1’s score and a decrease in 3’s score.

This explains why the score of 2 not only increases but ends up larger than 1’s score.

Finally, note that 1’s invariant score may end up larger than 2’s if we choose

different values for ρ1 and ρ3 (still respectively larger and smaller than 1). As should

be clear from the above argument, there are effects possibly in opposite directions due

to the double role of the scores in the invariant method. The final order of the scores

depends on the relative intensity of these various effects, which, in turn, depends on

the matrix and the values of the ρi.
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3.4 Illustration: Journals Rankings

This section illustrates the differences between the invariant, the handicap-based and

the HITS methods for the rankings of 37 journals, using the same data as in Palacios-

Huerta and Volij (2004). Scores and weights are given per article. Let πi,j =
Ci,j

C+,j

be the total share of citations sent by (all articles of) j received by (all articles of) i

and ni denote the number of articles in journal i. The invariant ranking r per article

satisfies

rini =
∑
j

πi,jrjnj for each i

and the handicap-based scores and weights r and q satisfy

niri =
∑
j

πi,jnjqj for each i and
1

njqj
=
∑
i

πi,jni
ri

for each j,

i.e. (niri) and (njqj) are the scores and weights of journals.

Table 1 reports the handicap-based, HITS, and invariant rankings in the three

first columns, the ratio of the handicap-based score over the invariant one in the

fourth, the weights for the handicap-based and HITS methods in the fifth and sixth

and finally the correlation between the overall citations with a journal’s citations

in the seventh column (i.e. the correlation between
∑

j C.,j and C.,j). Rankings are

normalized with a constant sum for
∑

i rini instead of a constant sum for
∑

i ri. Since

the weights satisfy
∑

i rini =
∑

i qini, such a normalization gives the same total to

the weights for each method. The results are presented so that
∑

i rini = 100a where

a = (
∑
ni)/37 is the average number of articles per journal, which yields an average

score (
∑

i rini)/(
∑
ni) equal to 2.7.

The weights produced by the handicap-based and HITS methods are similar and

convey relevant information. Interestingly Journal of Economic Literature (JEL) has

by far the largest weight, which supports the meaningfulness of the methods, followed

by Review of Economic Studies (RES), Quarterly Journal of Economics (QJE), and

Rand Journal of Economics (Rand). As an illustration of the fact that weights pertain

to a different property than the scores, the handicap-based score is roughly equal to its

weight for JEL, is much lower for International Journal of Game Theory or Economic

Inquiry, and much larger for AER. The rather low weight of AER, little less than the

average under both the handicap-based and the HITS methods, suggests that AER

tends to refer no more than the average to the top journals (see the discussion on
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HB HITS Inv HB/Inv qHB qHITS Corr

Quarterly J. of Economics 10.018 9.7381 11.4412 0.8756 5.3430 4.6379 0.7272

Econometrica 9.6496 9.7683 11.7444 0.8216 3.4210 3.4836 0.6771

J. of Economic Literature 9.6480 9.4887 9.2594 1.0420 8.1585 8.4002 0.6116

J. of Political Economy 7.2226 7.0028 7.5573 0.9557 4.1462 3.7403 0.8151

American Economics Review 7.0113 6.9074 7.5236 0.9319 2.4798 2.5582 0.7873

Review of Economic Studies 5.9858 5.8574 7.4224 0.8064 5.5907 5.4340 0.7224

J. of Monetary Economics 4.2653 4.1510 5.2428 0.8136 4.3299 3.9331 0.5466

J. of Economics Perspectives 3.6309 3.4951 3.6507 0.9946 3.6657 3.3049 0.5460

J. of Economic Theory 3.2109 3.3893 4.0030 0.8021 1.8915 1.9902 0.4856

Rand J. of Economics 3.1024 2.9416 2.2646 1.3700 4.8855 4.3174 0.4445

Games and Economic Behavior 3.0573 3.3397 3.7402 0.8174 2.5863 2.7514 0.4168

J. of Financial Economics 2.9606 2.4102 1.7404 1.7010 3.7100 2.8174 0.1117

J. of Econometrics 2.9066 2.8103 2.4406 1.1909 1.8608 1.7978 0.3742

J. of Labor Economics 2.8038 2.8306 2.1191 1.3231 3.8302 4.3557 0.4292

J. of Human Resources 2.5879 2.6167 2.0470 1.2643 3.4522 3.3428 0.2456

J. of Risk and Uncertainty 2.4000 2.5413 1.8740 1.2807 3.5808 3.8032 -0.0186

J. of Env. Econ. and Management 2.3330 2.2943 1.4148 1.6490 3.1345 2.9811 0.1441

Econometric Theory 2.3312 2.2006 1.8501 1.2601 3.2729 2.7537 0.2903

J. of Business and Ec. Stat. 2.1956 2.2257 1.6560 1.3258 3.0493 3.1691 0.4229

Review of Economics and Stat. 2.0609 2.0573 1.8967 1.0865 2.3898 2.3346 0.6789

Social Choice and Welfare 2.0237 2.3635 1.4593 1.3868 3.2979 3.8801 0.1242

J. of Public Economics 2.0046 2.0367 1.8640 1.0754 2.2278 2.1119 0.6344

J. of International Economics 1.8998 1.9417 1.3240 1.4349 3.0395 3.2132 0.3459

International Economic Review 1.8632 1.8813 1.8004 1.0349 3.4277 3.3640 0.8604

J. of Applied Econometrics 1.7499 1.8086 1.4695 1.1909 3.6414 4.0607 0.3097

Economic Journal 1.7492 1.7849 1.3943 1.2546 1.8269 1.7183 0.5090

AER Proceedings 1.6863 1.6471 1.6315 1.0336 2.1315 1.9946 0.5815

European Economic Review 1.6466 1.6414 1.5101 1.0904 1.8436 1.6745 0.7475

Int. J. of Game Theory 1.4510 1.7037 1.4368 1.0099 4.1551 5.3043 0.2916

Economic Theory 1.4370 1.4534 2.1151 0.6794 2.1391 2.3458 0.4543

J. of Ec. Dyn. and Control 1.1781 1.2508 1.2210 0.9649 2.0642 2.2980 0.4078

J. of Mathematical Economics 1.0797 1.2176 1.1731 0.9204 1.9834 2.3951 0.0467

Economic Inquiry 0.8495 0.8886 0.7209 1.1784 3.0400 3.1831 0.6491

J. of Econ. Behavior and Org. 0.8029 0.8895 0.5882 1.3651 1.7462 2.1252 0.4844

Scandinavian J. of Economics 0.7770 0.8062 0.4717 1.6470 3.8152 4.3015 0.6248

Oxford Bull. of Ecs. and Stat. 0.6922 0.7536 0.3138 2.2058 2.8363 3.3401 0.2086

Economics Letters 0.4573 0.4739 0.3554 1.2866 0.6645 0.6700 0.4839

Table 1: Rankings and weights per article. HB= handicap-based, Inv= invariant
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the weights in section 3.1). Finally, the weights produced by the handicap-based and

HITS methods differ significantly from the invariant weights (which are the invariant

scores) and are not predicted by the correlations with the overall citations, as can be

seen from the last column (this can also be expected from section 3.1).

As for the rankings, the top six journals remain the same without any ambiguity

but the order varies depending on the used method. For instance, the order be-

tween the two first journals (QJE and Econometrica) is reversed when comparing the

handicap-based ranking to the HITS and invariant rankings. However, since their

scores are very close in each ranking, ordering amplifies small differences in scores

(which elicits the benefit of considering a cardinal ranking). Apart from JEL, the

scores of the five other journals in the top six are lower than their invariant scores,

with the largest decrease realized for RES. The main intuition for this decrease is

that these journals receive proportionately more citations from top journals than the

average. Since the weights of top journals are typically lower than their invariant

scores, this explains the decrease in their score. JEL instead has a more disperse

scope of citations (again, recall that this is not related to the fact that JEL has a

large weight). This type of argument also explains why the scores of most theory

journals (except Journal of Mathematical Economics and Social of Choice and Wel-

fare (SCW)) decrease because they receive proportionately more citations from top

journals. The journals with the largest handicap-based score relative to their invari-

ant score are Journal of Financial Economics, Rand , Oxford Bulletin of Economics

and Statistics, and SCW.

In my view, one should not pay too much attention to the differences in these

rankings; however the weights, as computed by the handicap-based or the HITS

method, convey interesting information.

4 Extending the handicap-method to non-negative

matrices

The handicap-based method has been defined in Section 3 for positive statements. In

some settings however, experts are allowed to assign a zero to an item, meaning that

they find this item not acceptable, or ’infinitely below’ an item with a positive grade.
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The handicap-based method cannot be extended to all non-negative matrices. This

section characterizes the matrices for which a handicap-based ranking is well defined,

or ’exists’, meaning that there is a unique ranking that satisfies (10). Uniqueness

is important not only to have a well-defined ranking but also because it relates to

the continuity of the method: without uniqueness, perturbing a matrix by replacing

non-zeros by small but positive elements produces different answers depending on the

perturbation. Similarly, the invariant and the HITS rankings are not well-defined

for all non-negative matrices. I discuss the differences in the conditions for existence

across the methods.

4.1 A characterization

Given a statement matrix π, πi,j ≥ 0, we assume that π has no null row nor null

column (these could be deleted). Let us introduce some notation. Let I(j) = {i|πi,j >
0} denote the set of items cited by j. For J subset of M , I(J) = ∪j∈JI(j) is the set

of items cited by at least one expert in J . Consider the bipartite graph G with sets of

nodes N and M where (i, j) is an edge if πi,j is positive. In the peers’ setting in which

the items are also the experts, the two sets N and M are replica of each other so that

the bipartite graph distinguishes the two roles as item as expert for each element. G

is items-connected if each pair of items is linked by a path: for each pair of items i,

`, there is a sequence alternating items and experts, starting at i and ending at `:

i = i0, j0, i1, . . . , it, jt, . . . , jk, ik+1 = ` such that each expert jt in the sequence cites

the two adjacent items it and it+1. When G is items-connected, G is connected as

well: since each expert assigns a positive valuation to one item at least, there is a

path between any two elements, item or expert.15

The following proposition characterizes statement matrices for which the handicap-

based ranking is defined in a unique way.

Proposition 4 Given a non-negative matrix π, there is a unique ranking r = (ri) in

15To obtain a path between an expert and an item i, take a link between the expert and an item

that is cited by the expert and add the path linking that item to i (if the items differ). The same

argument applies for finding a path between two experts.
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∆N such that (10) holds:∑
j

(πi,jqj)
1

ri
= 1 for each i where

∑
i

(
πi,j
ri

)qj =
n

m
for each j

if and only if the bipartite graph G associated to π is items-connected and

1

m
|J | < 1

n
|I(J)| for any strict subset J of M. (14)

The proof is in the appendix. The items-connectedness of graph G ensures the unique-

ness of the ranking. This is a natural condition. If G is not items-connected, then

there are two disjoint sets of experts who cite two disjoint sets of items: these experts

do not share any common interest. In such a situation, it makes sense that no unique

ranking can reflect the statements of all experts.

To get an intuition for why conditions (14) are necessary, observe that the matrix

p defined by pi,j = 1
ri
πi,jqj is balanced and has exactly the same null cells as π. The

existence of such a matrix can be put as a flow problem in the bipartite graph G:

there must exist a flow in G such that each j in M sends 1/m units and each node i in

N receives 1/n units, and, in addition, the flow is positive on each link. Relaxing this

positivity requirement, the existence of such a flow is solved by well-known supply-

demand conditions, which are the weak version of the inequalities (14). Assuming

these inequalities to hold strictly ensures that the flow can be made positive on each

link.

Conditions (14) when n = m require that the number of items cited by a given

subgroup of experts should exceed the number of these experts: cites should be

sufficiently ’disseminated’. When n 6= m the conditions bear on the proportions of

each subset in N or M . Conditions (14) also require the dual property that the

proportion of experts who cite a given subset of items should exceed the proportion

of these items in the whole set N : taking the complements to the subsets in N and

M , (14) write16

1

n
|I| < 1

m
|J(I)| for any strict subset I of N. (15)

16Given a strict subset I, let J = M − J(I). If J is empty, (15) is met. It not, apply (14) to J :
1
m (m− |J(I)|) < 1

n |I(J(I))|. By definition, the experts cited by M − J(I) do not cite any items in

I. So I(J(I)) ⊂ N − I, which implies |I(J(I))| ≤ n− |I|, and finally |I| < n
m |J(I)| .
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These conditions for the existence of a unique handicap-based ranking are strong,

which can be understood as follows. Consider perturbations on a statement ma-

trix π that transform null valuations into small but positive elements. When the

handicap-based ranking of π is well-defined, all perturbations lead to the same rank-

ing. However, perturbing a null valuation into a small but positive element changes

an expert’s statement substantially when a null valuation means ’non-acceptable’.

This interpretation is reflected by the homogeneity axiom: multiplying the valuations

on an item by some factor leaves unchanged those which are null. This explains why

the conditions for the existence of a handicap-based ranking are rather strong: they

require a large enough overlap over the items that are considered as acceptable by

the experts.

4.2 A comparison with the invariant and the HITS methods

As for the handicap-based method, the invariant and the HITS methods cannot be

extended in a unique way to all non-negative matrices. The matrix π or ππ̃ should

admit a unique largest eigenvalue, as is ensured by its irreducibility17, thanks to

Perron-Frobenius theorem. Let us comparing these conditions with those in Propo-

sition 4.

Let us consider first the HITS method. We first note that the items-connectedness

of G is equivalent to the irreducibility of ππ̃. To see this, note that the element (i, `)

of a = ππ̃,
∑

j πi,jπ`,j, is positive if and only if there is an expert who cites both

i and `. Thus a
(t)
i,` is positive if there is a path with t experts linking i to ` in the

bipartite graph G. Hence the irreducibility of ππ̃ is equivalent to the existence of a

path between any two items, i.e. equivalent to the items-connectedness of G. Thus,

the items-connectedness of G ensures that the HITS ranking is uniquely defined;

furthermore , as we have seen, G is then also experts-connected so that the matrix π̃π

is irreducible: the experts’ weights are uniquely defined as well. Thus, the conditions

on the statements for the existence of a unique handicap-based ranking are stronger

than for the HITS ranking. This can be traced back to the interpretation of a zero

and the homogeneity axiom, as we have just discussed above. The HITS is not

17Recall that a non-negative square matrix a is irreducible if for each pair (i, `) there is an integer

t such that the (i, `) element of the t-product matrix a(t) is positive.
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homogeneous, hence perturbing a zero valuation into a small but positive element

does not involve a drastic change in an expert’s statement. As a result, there are

more chances for the HITS method to be continuous at a non-negative statement

matrix.

For the invariant method, the ranking is uniquely defined when the matrix π is

irreducible. This condition differs from the irreducibility of ππ̃, as shown by the

following example. There are three items/experts; 1 cites 2, 2 cites 3, and 3 cites

1. The matrix18 π is irreducible but ππ̃ is null because each expert cites a different

item. Thus, we find again that the invariant method behaves quite differently from

the HITS and handicap-based methods.

To end this section, let us make about the Web setting. As already said, the

homogeneity axiom does not apply to the 0-1 setting.19 Furthermore page j may not

point to page i, represented by a null valuation, because j finds i ’non-acceptable’ or

simply because j does not know i. Nevertheless, it would be interesting to investigate

how the handicap-based method behaves on Internet data using the same perturbation

technique as PageRank.

5 Concluding remarks

This paper has introduced and characterized the handicap-based ranking method.

This method is adequate in environments where either the ‘intensity’ of statements

is not controlled and intensity-invariance is required, or statements are relative eval-

uations (for example when individuals express their preferences as to how a budget

should be allocated between various issues). The handicap-based method is, in a sense

that has been made precise in the paper, the counterpart to the counting method in

these environments. Furthermore, it applies to a variety of settings. In particular, it

is not restricted to peers’ settings where items and experts coincide, as is the case for

the invariant method. Finally, even in these peers’ settings, two indices are assigned

18π =


0 0 1

1 0 0

0 1 0

.

19The same remark applies to some of the axioms used by Palacios-Huerta and Volij (2004) and

Slutzki and Volij (2006).
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to each item -a score and a weight- thereby providing more information than a single

ranking.

Several developments are worth investigating. Firstly, it can be fruitful to analyze

in a systematic way the ranking methods that assign simultaneously scores to items

and weights to experts. As the weights reflect how the differences across the state-

ments of different experts are interpreted, such an approach may provide a useful tool

for deriving new methods. Secondly, in environments where many valuations are null,

most methods need to perturb the data in order to be applied. This raises questions

concerning the robustness of the outcome to such perturbations. Specifically, without

a minimum of agreement among the experts about the acceptable items, the outcome

may be sensitive to the perturbation. Alternatives to perturbation techniques should

be investigated; for example the set of experts could be determined endogenously

(in a peers’ context, this set could differ from the set of items to rank). Thirdly,

the analysis of rankings in a dynamical setting and the extent of their influence are

important topics that need to be explored.20

6 Proofs

Proof of Lemma 1 Let F be intensity-invariant:

F ([π]) = F (π) and F ([dg(ρ)π]) = F (dg(ρ)π). (16)

Let F be homogeneous on absolute statements: F (dg(ρ)π) is proportional to dg(ρ)F (π)

for any π in P , in particular for π in R. Thus F ([dg(ρ)π]), which is equal to

F (dg(ρ)π), is proportional to dg(ρ)F (π): F is homogeneous on relative statements.

To show the converse, let F be homogeneous on relative statements and π be in

P . Observe that [dg(ρ)π] = [dg(ρ)[π]]. Hence by (16) F (dg(ρ)π) = F ([dg(ρ)[π]]).

Since [π] is in R, homogeneity on R implies that F ([dg(ρ)[π]]) is proportional to

dg(ρ)F ([π]). Using F ([π]) = F (π), we finally obtain that F (dg(ρ)π) is proportional

to dg(ρ)F (π). This proves that F is homogeneous on absolute statements.

Proof of Proposition 1. The proof of existence and uniqueness of H involves two

steps.

20For some studies on the subject, see Demange (2012) and (2013).
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The first step shows the existence of r in the simplex that satisfies (10). As

said in the text, this is equivalent to the fact that matrix p with general element

pi,j = 1
ri
πi,jqj is (1, n/m)-balanced. The proof relies on the known result about

matrix scaling: there is a unique (1, n/m)-balanced matrix p that is obtained from π

by multiplication of its rows and its columns by some numbers. A simple proof relies

on a convex program. We recall the argument here for positive matrices. Consider

the program (ln denotes the natural logarithm):

P : minimize
p

∑
i,j

pi,j[ln(πi,j/pi,j)− 1] over the p = (pi,j) > 0

subject to
∑
j

pi,j = 1 for each i and
∑
i

pi,j = n/m for each j. (11)

The program is convex with a strictly convex objective function and a feasible set with

a non empty relative interior. Hence the solution p is unique, characterized by the

first order conditions on the Lagrangian: There are multipliers αi and βj associated

respectively to the constraints (11) on the totals of row i and column j such that

ln(πi,j)− ln(pi,j) = αi + βj. (17)

Set ri = exp(αi) and qj = exp(−βj), (17) writes pi,j = 1
ri
πi,jqj. Plugging these

expressions into the constraints (11) give (10). It remains to show that r can be

chosen to be in the simplex. The multipliers α and β are defined up to an additive

constant, i.e., (αi + c), (βj − c) satisfy (17) for any c if α,β does (this is due to the

fact the linear system (11) is formed with linearly dependent equations). Thus there

is a vector r, ri = exp(αi + c), that belongs to the simplex for an appropriate value

of c.

The second step proves that r is unique. Given r that satisfies (10), the matrix

p defined by pi,j = 1
ri
πi,jqj satisfies the constraints (11). Furthermore, taking the log

of pi,j = 1
ri
πi,jqj, the first order conditions (17) are met for αi = ln(ri), βj = − ln(qj).

Hence p is the unique solution to P . So if there are two rankings that satisfy (10),

r and r′, the corresponding values (αi) (βj) and (α′i) (β′j) satisfy (17) for the same

matrix p. Taking the difference yields

(αi − α′i) + (βj − β′j) = 0 for each i, j. (18)

Hence α′i = αi + c for some scalar c. There can be only one value for c so that r

defined by ri = exp(αi) belongs to ∆N . This proves that H is a well defined method.
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Let us now prove the properties of H.

H is intensity-invariant. Let π′ be obtained from π by multiplying column j of π

by µj. Letting q′ be the vector obtained from q by dividing qj by µj, the vectors r

and q′ satisfy (10) for π′. By the uniqueness result proved previously, H(π′) is equal

to r.

H is uniform onR. Let matrix π inR be row-balanced. It satisfies
∑

j πi,j = m/n

for each i and
∑

i πi,j = 1 for each j. Hence, the conditions∑
j

(πi,jqj)
1

ri
= 1 for each i where

∑
i

(
πi,j
ri

)qj =
n

m
for each j (10)

are satisfied by taking equal scores and equal experts’ weights, that is, each ri equals

to 1/n and each qj equals to 1/m. (Equivalently p = π n
m

satisfies (11).) Hence, by

the uniqueness result, H(π) = eN .

H is exact on R. Let H(π) = eN for a matrix π in R. We need to show that

π is row-balanced. Applying r = eN to the second equation in (10) yields that the

weight vector q satisfies (
∑

i πi,j)qj = 1/m for each j. This implies qj = 1/m since π

is in R. Plugging ri = 1/n and qj = 1/m for each i, j into the first set of equations of

(10) we obtain that each row’s total is equal to m/n: the matrix π is row-balanced.

H is homogeneous. Let π′ = dg(ρ)π for a positive vector ρ. By the definition of

H, we have πi,j =
ripi,j
qj

where p is a (1, n/m)-balanced matrix. Hence π′i,j = ρiπi,j =
ρiripi,j
qj

so that p is obtained from π′ by dividing each row i by ρiri and multiplying

each column j by qj. By the uniqueness result stated in the first part of Proposition 1,

this implies that the handicap-based ranking r′ associated to π′ is the vector in ∆N

proportional to (ρiri). Thus, H(π′) = ( ρiri∑
i ρiri

), namely multiplying the rows of π by

some vector multiplies the scores in the same proportions: this proves homogeneity.

Proof of Proposition 2.

Proof of (a). Let method F be uniform on R, intensity-invariant and homoge-

neous.

F and H coincide if they coincide on the set R of relative statement matrices

since both methods are intensity-invariant. Given π consider r = H(π), q, and

the balanced matrix p associated by the handicap-based method, pi,j =
qjπi,j
ri

. By

uniformity on R, F (p) = eN . Let p′ = dg(r)p. Homogeneity implies F (p′) = r. The

normalized matrix of p′ is π: since matrix π is in R,
∑

i πi,j = 1 for each j, which
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writes
∑

i pi,jri = qj thus [p′] = π. By intensity-invariance F ([p′]) = F (p′) = r,

which finally gives F (π) = H(π), the desired result.

Proof of (b). Let method F be exact on R, intensity-invariant and homogeneous.

Given r = F (π), divide each row i by ri so as to obtain matrix π′ = dg(1/r1, . . . , 1/rn)π.

Homogeneity implies that the scores are equalized: F (π′) = eN thanks to Lemma 1.

By intensity-invariance of F we have F ([π′]) = F (π′) = eN . Now, exactness onR im-

plies that [π′] is row-balanced, hence each row sums to m/n. Since [π′]i,j =
πi,j

ri
∑

` π`,j/r`
,

this writes ∑
j

πi,j
ri
∑

` π`,j/r`
=
m

n
for each i,

or ri =
∑
j

πi,jqj for each i, where
1

qj
=
m

n

∑
`

π`,j
r`

for each j.

Thus r and q satisfy (10). Since r is in ∆N , r is equal to H(π), the desired property.

Proof of Proposition 3.

Proof of (a). Clearly the counting method is homogeneous on absolute statements

and uniform on P . To show the reverse, let method F satisfies these properties.

Given a matrix π, divide each row i by its total πi+ =
∑

j∈M πi,j and denote by π′

the obtained matrix: π′ = dg(1/π1+, · · · , 1/πn+)π. By the a-homogeneity of F , the

ranking assigned by F to π′ is obtained by dividing each component i of F (π) by

πi+ and normalizing: for some positive λ, Fi(π
′) = λFi(π)/πi+ for each i. Since π′ is

row-balanced F (π′) = eN . This yields that Fi(π)/πi+ is constant across i: F (π) is

the counting ranking of π, the desired result.

Proof of (b). Clearly the counting method is homogeneous on absolute statements

and exact on P . To show the reverse, let method F satisfy these properties. Given

r = F (π), divide each row i by ri so as to obtain matrix π′ = dg(1/r1, . . . , 1/rn)π.

F is a-homogeneity implies that the scores are equalized: F (π′) = eN thanks to

Lemma 1. Exactness implies that π′ is row-balanced: for some positive λ,
∑

j π
′
i,j = λ

for each i. Hence
∑

j πi,j = λri for each i: r is the counting ranking of π, the desired

result.

Proof of Proposition 4 Under the stated conditions, the proof of Proposition 1

extends to a matrix π with some null elements as follows. The objective in P takes
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the sum over the (i, j) for which πi,j is positive, namely the (i, j) in G:

P : minimize
p

∑
i,j∈G

pi,j[ln(πi,j/pi,j)− 1] over the p = (pi,j) ≥ 0

subject to
∑
j

pi,j = 1 for each i and
∑
i

pi,j = n/m for each j. (11)

Under conditions (14), the feasible set defined by (11) has a nonempty interior. Hence

the Kuhn and Tucker theorem applies. A solution p is associated to multipliers αi

and βj such that

ln(πi,j)− ln(pi,j) = αi + βj, for each (i, j) ∈ G (19)

Following the same arguments as in Proposition 1, setting ri = exp(αi) for each i up

to a multiplicative constant ensures the existence of r that satisfies (10).

Let us consider uniqueness. Let r a solution to the conditions (10) on a handicap-

based ranking. r is associated to a balanced matrix p and the values defined by

αi = ln(ri), βj = − ln(qj) satisfy (19). Hence p,α,β satisfy the Kuhn and Tucker

conditions associated to P . Since the program P is strictly convex a solution p is

unique. Thus, if there are two rankings solutions to (10), r and r′, taking the difference

in (19) for their corresponding values yields

(αi − α′i) + (βj − β′j) = 0 for each (i, j) ∈ G. (20)

This implies that along a path linking two items the values (αi − α′i) are all equal.

Using the same argument as for Proposition 1, the uniqueness of r follows if G is

connected: α′i − αi is constant across all i, and there can be only one r defined by

ri = exp(αi) that belongs to ∆N . On the other hand, if G is not connected, there are

no links between the values on each component and uniqueness fails.
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