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Abstract

In this paper we propose new option pricing models based on class of models with
jump contain in the Lévy-type based models (NIG-Lévy, Merton-jump (Merton 1976)
and Duan based model (Duan 2007)). By combining these different class of models with
several volatility dynamics of the GARCH type, we aim at taking into account the dy-
namics of financial returns in a realistic way. The associated risk neutral dynamics of
the time series models is obtained through two different specifications for the pricing
kernel: we provide a characterization of the change in the probability measure using
the Esscher transform and the Minimal Entropy Martingale Measure. We finally assess
empirically the performance of this modelling approach, using a dataset of European
options based on the S&P 500 and on the CAC 40 indices. Our results show that models
involving jumps and a time varying volatility provide realistic pricing results for options
with different kinds of time to maturities and moneyness. Furthermore, our results pro-
vide evidence of consistency between historical and risk neutral distributions, making
the approach developed here interesting to price option when option markets are illiquid
or when such markets simply do not exist.
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1 Introduction

When the concept of volatility aims at measuring the state of risks at work in finan-
cial markets, jumps offer a unique opportunity to represent the fundamental process
through which market quotes integrate the relevant information flow over trading days.
The inspection of both daily and intraday data sets reveals that the jump activity im-
plied by the returns on various assets should not be ignored: the returns are char-
acterized by tails whose thickness cannot be accounted for through any conditionally
Gaussian model, and whose fit is clearly improved through the use of jumps. Intraday
data based tests improved our understanding over both the size and the intensity of
the jump processes, unveiling how complex the blending of jumps and volatility can be.
These considerations have led to the idea that a valuation model for financial assets
should include both these components. This article proposes an empirical discrete time
Lévy-process approach to the pricing of European options on equity indexes. We dis-
cuss the key ingredients to be considered to achieve this objective and we empirically
circumvent the usual pitfalls of such an approach, as the non-uniqueness of the pricing
measure and the choice of a pricing kernel specification. One of the key aspect of the
proposed pricing method is that option prices are obtained using the historical measure
P and discounting the terminal payoff with the stochastic discount factor. It does not
require liquid option prices to calibrate the risk neutral Q.

The introduction of jumps into financial models present various advantages, either in
terms of time series analysis or in terms of option pricing. The deviation of histori-
cal returns from the Black Scholes (1973) hypothesis of Gaussianity is now well known
and documented, see for example Eberlein and Prause (2002), Bouchaud and Potters
(2003) or Embrecht et al. (2005). It led to the development of various time series models
usually combining a GARCH component with a non-Gaussian distribution or a jump
process. The use of Lévy processes is by no means specific to time series analysis: var-
ious continuous time finance models are built on the combination of a process of the
Heston (1993) type for the conditional variance with a jump component, either in the
dynamics of the variance or of the log-returns. Examples of this sort are available in
Merton (1973), Bates (1996) or Duffie et al. (2000). When the obvious interest of jumps
in time series analysis lies within the fit of the tails of returns’ distribution, the incor-
poration of jumps into a continuous time finance option pricing model is essential to the
pricing of short term options: the convexity of the implied volatility smile is sharper for
such options and stochastic volatility models are unable to replicate this stylized fact
without a jump component. On this point, we refer to Duffie et al. (2000).

Even though continuous time finance provided market participants with a convenient
and fast way to compute prices for various contingent claims, it offers a framework that
can hardly handle the key issue of bringing together the historical and the risk neu-
tral distributions. If the calibration of parameters using option prices is a relatively
straightforward exercise, the estimation of the parameters solely using the historical
time series of returns is often tricky: some references are for example the methodologies
that are used in Eracker et al. (2003), Chacko and Viceira (2003) or Michael and Maria
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(2005). Option pricing in a discrete time framework has over the years proved to be a
fruitful and economically appealing means to understand how the time series of returns
relate to the price of hedging vehicles such as European options, as presented for exam-
ple in Rosenberg et al. (2002), Brown and Jackwerth (2001), Barone-Adesi et al. (2008),
Chorro et al. (2010a,2012) among others. Instead of putting the emphasize on obtaining
closed form expressions for option pricing formulas as for most of the continuous time
literature, this stream of literature rather focuses on turning time series models that
are consistent with the behaviour of returns into option prices. This kind of approach
is all the more important as option prices are not always reliable, as it has been the
case during the liquidity squeeze of 2008. Finally, this research direction is of a primary
importance to compute the price of derivatives for which there is no existing market: for
such cases, the option pricing model’s parameters have to be estimated from the asset’s
returns and time series model are designed for such purposes.

In this article, we present and compare various option pricing models based on Lévy
processes. Each of these models combine different volatility structures, conditional dis-
tributions and pricing kernels, the link between each of them being the use of an uncon-
ditional distribution which characterises a Lévy process. We define the change in the
probability measure based on various assumptions regarding the pricing kernel. The
volatility models used here are the EGARCH (Nelson, 1991), the GARCH-GJR (Glosten
et al, 1993) and the APARCH model1 (Ding et al, 1993). Three Lévy process specifica-
tions are considered under the historical distribution. First, we introduce a structural
Lévy model whose particular model is the Normal Inverse Gaussian model. Second, we
consider the compound Poisson model proposed by Merton (1976). Third, we consider
the compound Poisson model by Duan et al. (2007). These processes are driven by a
finite number of jumps within a finite time interval.

Appealing though the discrete time approach may be, it nonetheless requires coping
with an additional issue: as explained in Chorro et al. (2010a), with such an approach,
the risk neutral distribution is no longer unique and a choice must be made regard-
ing the shape of the market’s aggregated risk aversion implied by the selected pric-
ing kernel. We focus on two representations for the pricing kernel: the Esscher trans-
form (ESS) martingale measure which corresponds to an exponential affine stochastic
discount factor and the Minimal Entropy Martingale Measure (MEMM) (or extended
Girsanov principle) (Elliot and Madan, 1998). The equivalence between these two ap-
proaches has been proved inside a Gaussian framework (Badescu and Kulberger, 2007),
but such equivalence is not available outside this framework. We prove the stability of
the conditional distribution under the historical and risk neutral distribution and we
exhibit the required change in the parameters of the historical distribution to obtain
the risk neutral one. One novelty of our article is to compute the expression under the

1The selected GARCH models differ from the very specific GARCH representation used in Christoffersen
et al. (2006) that relates to the Inverse Gaussian distribution used in their model. The combination of the
two enables the authors to obtain a close form expression for the characteristic function of the return under
the risk neutral distribution. Our approach in this paper is different: we do not seek at computing close
form expression, but rather at using empirically grounded models and test their ability to deliver option
prices close what is observed on financial markets.
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pricing measure of the pricing formula when we use GARCH-type processes with Lévy
innovations, both using the ESS and MEMM approaches. We also provide the expres-
sion of the pricing distribution for a GARCH-type model with Poisson jumps using the
Esscher transform. In the case of the MEMM approach, the result has already been
established by Fujiwara and Miyahara (2003).

Finally, we assess the quality of the modelling approaches selected here using a dataset
of European options on the S&P 500 and on the CAC 40 indices. Our empirical results
point in several directions: first, this type of approach combining an empirical strategy
with discrete time models provides minimum pricing errors that are broadly consistent
with several articles based on a direct calibration of the models’ parameters to option
prices. We also find that a model based on an EGARCH volatility specification combined
with a simple jump process generally provides us with the lowest mispricing errors.
More importantly, our results indicate that the choice of the pricing kernel has a limited
impact on the pricing errors, suggesting that the main driver of these errors is rather
the underlying time series model rather than the specification of the link between the
historical and the risk neutral distributions. Again, this is an essential message for this
time series option pricing approach and its future perspectives.

This article is organized as follows. Section 2 presents the modelling approach retained
here, along with the characterization of the risk neutral distribution associated with
each model. Section 3 presents the empirical results and Section 4 concludes. Proofs are
presented in the appendix.

2 A Lévy-Based Discrete Time Modelling Approach

This Section presents the Lévy-based time series models this article is based on. We dis-
cuss the model properties and then develop the change in probability measures required
to obtain the risk neutral distribution essential to option pricing.

2.1 Lévy-based time series models for financial returns

Our approach combines different time varying volatility dynamics with Lévy processes.
The models considered here are based on three different ways of dealing with jumps:

1. For the first specification, jumps affect both the returns (Yt)t and the volatility
(ht)t:

Yt = log
(

St
St−1

)
= m̃t +

√
htzt, S0 = s, (1)

where m̃t = r + mt, (ht)t is the conditional volatility obtained from any type of
GARCH model. (zt)t is a Lévy process with triplet (c, σ2, U), (Schoutens, 2003),
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c ∈ R, σ2 ≥ 0 and U is the positive Lévy measure defined on R \ {0} satifying∫
R

inf{1, z2}U(dz) <∞.

Inside these models we assume that the innovations (zt)t follow a NIG-Lévy pro-
cess which has no Brownian component and whose Lévy triplet is given by (c, 0, U)
with

c = µ+
2δα
π

∫ 1

0
sinh(βz)K1(αz)dz,

(α, β, δ, µ) ∈ R4 with δ > 0 and 0 < |β| < α, K1 is the modified Bessel function
of the third kind, and the Lévy measure which determines the jump behavior of
discontinuous Lévy processes is:

U(dz) = u(z)dz =
δα

π|z|
exp(βz)K1(α|z|)dz.

2. In the second specification, jumps affect only the returns (Yt)t:

Yt = log
(

St
St−1

)
= m̃t +

√
htzt +

Nt∑
j=1

Vj , S0 = s, (2)

where the innovations zt are characterized by a standard normal distribution, Nt

is a Poisson process with intensity λ, and V1, V2, . . . is a sequence of identically
independent distributed random variables N(µ, σ2), independent of the Poisson
Process Nt.

3. In the third specification, jumps affect both the volatility and the returns:

Yt = log
(

St
St−1

)
= m̃t +

√
ht

zt +
Nt∑
j=1

Vj

 , S0 = s, (3)

where the innovations zt are characterized by a standard normal distribution, Nt

is a Poisson process with intensity λ, and V1, V2, . . . is a sequence of identically
independent distributed random variables N(µ, σ2), independent of the Poisson
Process Nt.

In all models, {
mt = λ0

√
ht − 1

2ht; λ0 ∈ R,
ht = G(ht−1, Yt−1) is a related GARCH model. (4)

λ0 is the constant unit risk premium. The conditional volatility is modelled by different
GARCH models. Denoting εt =

√
htzt, we use:

• the EGARCH(1,1) modelling (Nelson, 1991)

log(ht+1) = α0 + β1 log(ht) + α1(|zt| − E[|zt|]) + γ1zt, (5)
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• the GARCH-GJR(1,1) model introduced by Glosten, Jagannathan and Runkle (1993)

ht+1 = ω + βht + γε2
t + δS−t ε

2
t , (6)

where S−t = 1 if εt < 0, and S−t = 0 if εt ≥ 0, and β + γ + 1
2δ < 1, ω > 0, β ≥ 0, γ ≥ 0,

and γ + δ ≥ 0.

• the APARCH(1,1) model, (Ding, Granger, and Engle, 1993)

h
δ
2
t+1 = ω + a1(|εt| − γ1εt)δ + b1h

δ
2
t , (7)

where δ > 0, |γ1| < 1.

The selected GARCH models are the most widely used in the literature, as, they in-
corporate both the time varying nature of the volatility and leverage effect. The Lévy
and jumps processes introduced in the different equations are consistent with the exis-
tence of extreme events and their impact on the slowly decreasing tails of financial asset
returns.

2.2 The Stochastic Discount Factors and the corresponding risk neu-
tral dynamics

A discrete time approach to option pricing implies the non-uniqueness of the pricing
measure. This uniqueness can be obtained by specifying a stochastic discount factor.
However, there has until now been no criterion to decide on a specific pricing kernel.
In order to highlight the specific ability of Lévy processes to deliver a realistic pricing
for options, we use two existing pricing kernels: first, the exponential affine stochastic
discount factor, also known as the Esscher transform by Gerber and Shiu (1994b); sec-
ond, the extended Girsanov principle developed by Elliott and Madan (1998) based on
the existence of a Minimal Entropy Martingale Measure, as in Fujiwara and Miyahara
(2003). By doing so, we will able to interpret the interest of Lévy processes when it
comes to option pricing, beyond the choice of a pricing kernel.

2.2.1 Pricing options with exponential affine stochastic discount factors

In this Section we consider that the stochastic discount factor Mt is characterized by the
Esscher transform ∀t ∈ {0, . . . , T − 1}:

Mt,t+1 = exp(θt+1Yt+1 + ξt+1) (8)

where Yt+1 is introduced in (1) or in (2), and where θt+1 and ξt+1 are Ft-measurable
random variables. We need to compute explicitly (θt+1, ξt+1). By writing the pricing
formula for the risk-free and risky asset at different dates, we obtain two arbitrage
free conditions that induce restrictions on the relationship between the SDF and the
historical distribution. More precisely, the constraints are:{

EP[Mt,t+1e
r|Ft] = 1

EP[Mt,t+1 exp(Yt+1)|Ft] = 1
⇐⇒

{
ϕP
t (θt+1 + 1) = erϕP

t (θt+1)
ϕP
t (θt+1 + 1) = exp(−ξt+1)

(9)
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where ϕP
t (u) = EP[euYt+1 |Ft] is the moment generating function under the historical

distribution P of Yt+1, given Ft. This system admits a unique solution (θt+1, ξt+1). Thus,
to characterize the process (Yt)t under the risk neutral distribution that is denoted Q,
the following equation must be solved:

EP [Mt,t+1Φt+1|Ft] = e−rEQ [Φt+1|Ft] , (10)

where Φt+1 is the payoff at t+ 1.

Then the distribution of Yt under the risk neutral distribution Q is obtained through the
moment generating function under Q of Yt+1, given Ft.

Proposition 2.1 The associated unique risk-neutral conditional distribution Q of Yt+1,
given Ft, has a probability density function (p.d.f.) with respect to the corresponding
historical distribution given by Mt,t+1

EP[Mt,t+1|Ft] and a moment generating function given by:

ϕQ
t (v) =

ϕP
t (θt+1 + v)
ϕP
t (θt+1)

. (11)

This proposition derives from Proposition 2 in Chorro et al. (2012) as we introduce the
stochastic process: (

Lt =
t∏

k=1

eθkYk

ϕP
k−1(θk)

)
t∈{1,...,T}

(12)

that is a martingale under P.

Generally speaking, we obtain θt and ξt solving (9). We derived the unicity of θt in the
annex and we see its existence in Gerber and Shiu (1994a, page 664).

Note that the equation (12) corresponds to the risk neutral measure obtained through
the conditional Esscher transformed measure with respect to the filtration Ft. The re-
lationship (11) is fundamental as it gives explicitely the conditional distribution of the
log returns under the risk neutral distribution Q. We now adapt Proposition 2.1 to the
three types of Lévy process-based models presented earlier.

– In the particular case of model (1) when the innovations zt are characterized by
a NIG(µ, α, β, δ) distribution with triplet (c, 0, U),2 then (

√
htzt)t is a form of NIG

process with triplet (c′, 0, ν), with:

c′ = c
√
ht +

∫
R
z
√
ht

(
1{|z|≤ 1√

ht
}(z)− 1{|z|≤1}(z)

)
u(z)dz,

then we will use the following result:

Proposition 2.2 Given Ft−1, assuming that the process (Yt)t is defined in (1), un-
der Q, the process (

√
htzt)t is again a Lévy process with triplet (cQ, 0, νQ) where:

cQ = c
√
ht −

∫
{|z|≤1}

z
√
ht u(z)dz +

∫
{|z|≤ 1√

ht
}
z
√
hte

θt
√
htz u(z)dz

2The full characterization of the risk neutral dynamics is provided in the appendices.
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and
νQ(dx) = eθtxu

(
x√
ht

)
dx√
ht
.

The unique value of θt is the solution of:

m̃t + µ
√
ht + δ

(√
α2 − (β + θt

√
ht)2 −

√
α2 − (β + (θt + 1)

√
ht)2

)
= r,

and the distribution of Yt given Ft−1 under Q is a (Chorro et al. (2012))

NIG

(
m̃t + µ

√
ht,

α√
ht
,
β√
ht

+ θt, δ
√
ht

)
. (13)

We can check that under Q, the conditional mean return is not m̃t but m̃t + m̃shift
t

with m̃shift
t =

∫
R z
√
ht(eθt

√
htz − 1)U(dz). Moreover, the process (Yt)t is no longer

centered and its variance is not ht but var(Yt) = ht

(
σ2 +

∫
R z

2eθt
√
htzU(dz)

)
.

– When the returns are governed by model (2), the moment generating functions
under P and Q are given in the following proposition.

Proposition 2.3 Given Ft−1, the moment generating functions under P and Q of
the process (Yt)t introduced in (2) are respectively:

ϕP
t−1(u) = exp

[
um̃t +

1
2
htu

2 + λ(eµu+ 1
2
σ2u2 − 1)

]
and

ϕQ
t−1(u) = exp

[
um̃t + ht

(
θtu+

1
2
u2

)
+ λeµθt+

1
2
σ2θ2t

(
eµu+σ2(θtu+ 1

2
u2) − 1

)]
.

The unique value of θt is the solution of:

m̃t +
1
2
ht(2θt + 1) + λ

[
eµ(θt+1)+ 1

2
σ2(θt+1)2 − eµθt+

1
2
σ2θ2t

]
= r.

Therefore, the risk neutral dynamics for the returns (Yt)t belongs to the same
family introduced under the historical measure P, with

zt
Q∼ N(

√
htθt, 1) , Nt

Q∼ P
(
λeµθt+

1
2
σ2θ2t

)
and Vj

Q∼ N(µ+ σ2θt, σ
2)3. (14)

The characteristic triplets are (m̃t+htθt, ht, νQ), where νQ(x) = λeθtxf(x)dx and f is
the density of the normal distribution with mean µ and variance σ2. Consequently,
under Q, the returns distribution is obtained shifting the conditional mean and the
conditional variance.

– When the returns are governed by model (3), the moment generating functions
under P and Q are given in the following proposition.

3The proof of this proposition is included in the annex
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Proposition 2.4 Given Ft−1, the moment generating functions under P and Q of
the process (Yt)t introduced in (3) are respectively:

ϕP
t−1(u) = exp

[
um̃t +

1
2
htu

2 + λ(eµ
√
htu+ 1

2
σ2htu2 − 1)

]
and

ϕQ
t−1(u) = exp

[
um̃t + ht

(
θtu+

1
2
u2

)
+ λeµ

√
htθt+

1
2
σ2htθ2t

(
eµ
√
htu+σ2ht(θtu+ 1

2
u2) − 1

)]
.

The unique value of θt is the solution of:

m̃t +
1
2
ht(2θt + 1) + λ

[
eµ
√
ht(θt+1)+ 1

2
σ2ht(θt+1)2 − eµ

√
htθt+

1
2
σ2htθ2t

]
= r.

Therefore, the risk neutral dynamics for the returns (Yt)t belongs to the same
family introduced under the historical measure P, with

zt
Q∼ N(

√
htθt, 1), Nt

Q∼ P
(
λeµ
√
htθt+

1
2
σ2htθ2t

)
and Vj

Q∼ N(µ
√

ht+σ2htθt, σ
2ht). (15)

The characteristic triplets are (m̃t + htθt, ht, ν
Q), where νQ(x) = λeθtxf(x)dx and

f is the density of the normal distribution with mean µ
√
ht and variance σ2ht.

Consequently, under Q, the returns distribution is again obtained shifting the con-
ditional mean and the conditional variance.

2.2.2 Pricing options with a Minimal Entropy Martingale Measure

In this subsection, we derive the risk neutral dynamics of the previous models using
another pricing kernel, namely the Extended Girsanov Principle introduced by Elliot
and Madan (1998). This approach is based on a multiplicative Doob decomposition of the
discounted stock price into a predictable finite variation component and a Martingale
one.

Under mild conditions Elliot and Madan (1998) built a risk neutral probability under
which the conditional distribution of the discounted stock price is equal to the condi-
tional distribution of its martingale component under the historical probability with
changes in the parameters. The drift of the process is the only one being affected by this
correction. Nevertheless, unlike the stochastic discount factor that leads to change the
value of more than one moment of the return distribution. Beyond this statement draw-
ing a theoretical comparison of the two methods is difficult because of the complexity of
the MEMM approach. In the empirical section, we provide an empirical comparison of
the two methods which permits to provide the reader with an economic intuition of the
two methods4.

The Esscher transform and the Minimal Entropy Martingale Measure are equivalent
when the conditional distribution of the returns is Gaussian. This equivalence has not
been proved for the models considered here.

4Given the complexity of these risk neutralization, we are not able to pinpoint precisely volatility pre-
mium. What is more, given that, the parameter correction associated to the risk neutralisation is time
varying, we want be able to present “risk neutral estimates” of the parameters.
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– When the returns follow the dynamics specified by equation (1) with NIG-Lévy
innovations (zt)t and assuming that:5

(i)
∫
{z>1}

ezeβ(ez−1)U(dz) <∞;

(ii) m̃t + c′ +
∫
{|x|≤1}

[
(ex − 1)eβ(ex−1) − x

]
U

(
dx√
ht

)
+
∫
{|x|>1}

(ex − 1)eβ(ex−1)U

(
dx√
ht

)
= r

where

c′ =

c+
∫
{|z|≤ 1√

ht
}
z U(dz)−

∫
{|z|≤1}

z U(dz)

√ht.
Then, we obtain the following result:

Proposition 2.5 Assuming that (Yt)t is given by (1) with NIG-Lévy innovations
(zt)t under P, then the process (

√
htzt)t is a Lévy process under Q conditionnally to

Ft−1, with triplet (cQ, 0, νQ):

cQ = c
√
ht −

∫
{|z|≤1}

z
√
ht u(z)dz +

∫
{|z|≤ 1√

ht
}
z
√
hte

β(ez
√
ht−1) u(z)dz,

νQ(dx) = eβ(ex−1) u

(
x√
ht

)
dx√
ht
.

The characteristic functions of the process (Yt)t given Ft−1 under P and Q are:

log φP
t−1(u) = ium̃t + iuc

√
ht +∫

R
(eiuz

√
ht − 1− iuz

√
ht1{|z|≤1}) U(dz) and

log φQ
t−1(u) = ium̃t + iuc

√
ht +∫

R
(eiuz

√
ht − 1− iuz

√
hte
−β(ez

√
ht−1)1{|z|≤1})e

β(ez
√
ht−1) U(dz).

Thus the characteristic function of (Yt)t under the risk neutral distribution Q has
the same expression as the historical characteristic function with shift σ2htβ in
the coefficient of iu and integrand (eiuz

√
ht − 1)eβ(ez

√
ht−1) over R.

In order to compute option prices, we simulate paths of the asset price under the
historical measure P. Then, we compute option prices as a weighted average of
the payoff for each of the corresponding paths, where the weights are given by the
Radon-Nikodym derivative that is defined by:

Lt =
dQ
dP

∣∣∣∣
Ft

= eβX̂t−bt, with (16)

5A full mathematical developpement is provided in the appendices.
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b = βc′ +
∫

R\{0}

[
eβ(ex−1) − 1− βx1{|x|≤1}

]
U

(
dx√
ht

)
, and

X̂t = Xt +
1
2
〈Xc〉t +

∑
u∈(0,t]

(e∆Xu − 1−∆Xu), (17)

where (Xc
t ) is the continuous martingale part of (Xt), and ∆Xu = Xu −Xu−.

The same representation for the conditional mean as the one obtained using the
exponential affine Stochastic Discount Factor can be derived as follows: m̃shift

t =∫
R z
√
ht(eβ(ez

√
ht−1) − 1)U(dz) and var(Yt) = ht

(
σ2 +

∫
R z

2eβ(ez
√
ht−1)U(dz)

)
.

– When the returns (Yt)t are governed by model (2) under P, then the risk neutral
dynamics are characterized as follows:

Proposition 2.6 Let the price process (St)t be defined by model (2), assuming that
the condition (i) above holds, and there exists β ∈ R verifying:

m̃t +
(

1
2

+ β

)
ht + λ

∫
{|z|≤1}

[
(ez − 1)eβ(ez−1) − z

]
f(z)dz

+ λ

∫
{z>1}

(ez − 1)eβ(ez−1)f(z)dz = r,

where f is the density of the normal distribution with mean µ and variance σ2, then
the following holds:

1. There exists an unique constant b such that Lt is a P-martingale, where Lt =
dQ
dP |Ft = eβX̂t−bt, X̂t being given by (17) and b verifies:

b =
β

2
(1 + β)ht + βm̃t + λ

∫
R\{0}

[
eβ(ez−1) − 1− βz1{|z|≤1}

]
f(z)dz.

2. Under Q the stochastic process (Yt)t is still a Lévy process, and the character-
istics associated with the truncation function τ(z) := z1{|z|≤1} is given by(

βht + m̃t + λ

∫
{|z|≤1}

z(eβ(ez−1) − 1)f(z)dz, ht, νQ

)
where, (18)

νQ(dz) = λeβ(ez−1)f(z)dz. (19)

Fujiwara and Miyahara (2003) proved this result in a particular case. The re-
sult provided here has been derived directly from theirs. When the characteristic
triplets of the returns (Yt)t under Q are known, then we can define the prices under
the risk neutral Q.

– When the returns follow the dynamics specified by equation (3) under P, then the
risk neutral dynamics are characterized as follows:
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Proposition 2.7 Let the price process (St)t be defined by model (3) and there exists
β ∈ R verifying:

m̃t +
(

1
2

+ β

)
ht + λ

∫
{|z|≤1}

[
(ez − 1)eβ(ez−1) − z

]
f(z)dz

+ λ

∫
{z>1}

(ez − 1)eβ(ez−1)f(z)dz = r,

where f is the density of the normal distribution with mean µ
√
ht and variance

σ2ht, then:
There exists a unique constant b such that Lt is a P-martingale, where Lt = dQ

dP |Ft =
eβX̂t−bt, X̂t being given by (17) and b verifying:

b =
β

2
(1 + β)ht + βm̃t + λ

∫
R\{0}

[
eβ(ez−1) − 1− βz1{|z|≤1}

]
f(z)dz.

3 Empirical Results

This Section is devoted to an empirical assessment of the option pricing models pre-
sented above.

3.1 The dataset

We use two types of data. First, we use daily returns on the S&P 500 and on the CAC 40
indices. These returns are computed from closing prices. Both datasets start on March
1, 1990 and end on October 26, 2007. Descriptive statistics are available in Table 1.

[Table 1 here]

In spite of very similar maximum and minimum values for both series of returns, the
first four moments are nonetheless different: the S&P 500 returns have a more negative
skewness and a higher kurtosis than CAC 40 returns, suggesting a more important tail
activity in the US market. Beyond these differences, both empirical distributions have
fat tails, driving us to investigate what kind of conditional distribution could provide us
with an interesting statistical fit.
Table 2 presents the results of two adequation tests: the Kolmogorov and Smirnov test
and the Anderson and Darling test. We apply these tests to the residuals of the three
different GARCH models used in this article: the EGARCH, the GARCH-GJR and the
APARCH models. Our test results indicate a conditionally Gaussian model would not
make it possible to replicate the residuals’tail behavior, as shown on Figure (1) and (2).
In contrast, every conditional disrtibution used for our models are found to be consistent
with our datasets. This is an essential starting point for our option pricing approach.

[Figure 1 here]
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[Figure 2 here]

[Table 2 here]

A second dataset is made of option prices. This dataset starts on December 6, 2006
and ends on October 26, 2007. During this period, the CAC 40 and the S&P 500 were
sufficiently liquid to provide us with reliable prices. It contains call option prices for a
large range of moneyness and maturities. These options are marketed options for the
next four quarterly maturities: March, June, September and December. These contracts
are the most liquid ones over an extended period of time such as ours.

[Table 3 here]

Table 3 presents a breakdown of the number of option contracts used depending on their
moneyness. The moneyness is defined as the ratio between the forward price of the un-
derlying asset and the option’s strike price. The number of option prices is higher for
moneyness between 0.9 and 1, which implies a higher accuracy of our results for this
type of options. The lowest number of option prices is obtained for moneynesses higher
than 1.1. The results presented later for this type of moneyness should therefore be
treated with caution. The total number of option prices used in our empirical investi-
gations is 33,400 in the S&P 500 and 52,292 in the CAC 40 case. This amounts to an
average of 163 prices per day in the CAC 40 case and of 104 in the S&P 500 case

3.2 Estimation

To estimate the parameters of models (1)-(7), we first select a subsample containing 4000
working days and ending on a date t. Using a Quasi Maximum Likelihood estimation
strategy6 (Gourieroux et al. 1984a), we estimate the parameters driving the volatility
dynamics ht+1. We then move to date t+ 1, in a rolling window fashion, and reestimate
the parameters from the last 4000 observations. Tables 4 to 6 provide the values of
the average estimated parameters of the EGARCH, GARCH-GJR and APARCH models
respectively with their standard deviations.

[Table 4 here]

[Table 5 here]

[Table 6 here]
6Our approach is very different from the methodology in Christoffersen et al. (2006, 2011), and Duan et

al. (2007): our primary interest lies in the comparison of different existing kernels (exponential affine and
MEMM) jointly with three different empirically grounded models. One key difference with the three cited
papers is that we do not use options in the estimation procedure. With this choice, we intend to shed light
on the ability of these pricing kernels and models to replicate the empirical behavior of options, given that
we compare the computed prices to the actual ones from our option dataset.
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Our estimates are statistically significant at a 5% risk level. The comparison of the re-
sults in the two cases deliver interesting insights regarding the behavior of each market:
consistently with the stronger S&P 500 skewness found in the descriptive statistics, we
obtain stronger leverage in our EGARCH, GARCH-GJR and APARCH estimates for the
S&P 500. For example, in the GARCH-GJR model, δ controls the leverage effect: in the
S&P case its estimation is equal to 0.104 whereas in the CAC case it is equal to 0.072.
Beyond this difference, most of our estimates are pretty similar.

Then, using the previous volatility dynamics, we estimate the unknown parameters
(α, β, δ, µ) of the NIG distribution for model (1), and the parameters λ, (µ, σ2) of the
Poisson and the normal distributions for models (2) and (3), by maximum likelihood
estimation. Tables 7, 8 and 9 provide the average estimated parameters with their
standard deviation for the NIG distribution and the Poisson based distributions, using
the EGARCH, GARCH-GJR and APARCH’s residuals obtained in the previous steps.

[Table 7 here]

[Table 8 here]

[Table 9 here]

Here again, the estimated parameters are different from zero. We obtain minor differ-
ences between the parameters estimated in the S&P and in the CAC cases. Over all
the estimated conditional distributions, the CAC 40 residuals seem to be more agitated
than the S&P ones. For example in the NIG case, α controls the tails of the distribution:
the higher the α and the fatter the tails. In the CAC case, α is estimated to be equal to
2.5 roughly speaking whereas in the S&P case it is closer to 1.8. A similar message is
obtained from Table 8: the variance of the jumps in the CAC case is broadly speaking
three times as big as that of the S&P 500.

3.3 Pricing results

Now, using the previous estimates for the time series models presented earlier, we com-
pute option prices using two ways to obtain the risk neutral distribution: the MEMM
and the affine pricing kernel methodologies. We remind the reader that we use a rolling
window analysis, estimating first the parameters using 4000 days of returns and then
turning the historical distribution into a risk neutral one, from which we compute op-
tion prices. We then compare these prices to the actual market prices. By doing so, we
hope that when the selected data generating process is as close as possible to the reality
of financial markets, the option prices derived from the “risk neutralization” are not too
far away from market prices themselves.

Let P (t, T,K) be the price of a call option on date t with a maturity equal to T and a
strike price equal to K. Insofar as we cannot compute the moment generating function
of sums of returns under the various models considered here, we compute option prices

14

Documents de Travail du Centre d'Economie de la Sorbonne - 2011.37 (Version révisée)



by Monte Carlo simulation. These simulations are done using the Duan and Simonato
(1998)’s method to impose martingality within the sampled processes.

We now present the two ways to obtain these prices with respect to the pricing kernels
that we use:

– The price of the European call option under Q obtained using an exponential affine
Stochastic Discount Factor is:

P (t, T,K) =
1
N

N∑
i=1

e−r(T−t)f(Y i
T ) (20)

where f(Y i
T ) = (SiT −K)+ is the payoff with SiT = Ste

∑T
k=t+1 Y

i
k , T is the maturity,

K is the strike price, and (Y i
T ) for i = 1, . . . , N are independent realizations of YT

under Q.

– The price of the European call option under Q obtained using the Minimal Entropy
Martingale Measure is given by:

P (t, T,K) =
1
N

N∑
i=1

e−r(T−t)LiT f(Y i
T ) (21)

where (Y i
T ) for i = 1, . . . , N are independent realizations of YT under P and LiT are

realizations of LT introduced in (16).

For each set of option prices we run N = 10, 000 Monte Carlo simulations. In order
to compare the pricing performances of the EGARCH, GJR and APARCH respectively
with NIG and Poisson distributions as defined in (1)-(7) using both the Esscher trans-
form (ESS) and the Minimal Entropy Martingale Measure (MEMM), we use the average
absolute relative pricing errors criterion given by:

AARPE =
1
M

τ2∑
t=τ1

Jt∑
j=1

Gt,j∑
i=1

∣∣∣∣P (t, Tj ,Ki)− P (t, Tj ,Ki)
P (t, Tj ,Ki)

∣∣∣∣,
where P (t, Tj ,Ki) is the corresponding quoted market option price, M is the total num-
ber of option prices involved in the computation of the criterion, Jt is the number of
call option maturities Tj available at time t (t runs from December 6, 2006 (τ1) to Oc-
tober 26, 2007 (τ2)), and Gt,j is the number of strikes Ki available at time t for this
particular maturity Tj . In Tables 10 and 11, we provide the pricing errors for different
moneyness for the CAC 40 and the S&P 500 using the three previous models respec-
tively with the Esscher transform and with the Minimal Entropy Martingal Measure.
Results have been gathered by time to maturity buckets: 7 days ≤ T − t ≤ 30 days,
3 months ≤ T− t ≤ 6 months, and T − t > 6 months.

[Table 10 here]
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[Table 11 here]

Tables 10 and 11 deliver the following messages:

(1) First of all, despite the fact that the various models’ parameters have not been
estimated from option prices, the scale of the errors obtained is rather small for
both the S&P 500 and the CAC 40. In the S&P 500 case for example, when the time
to maturity is between 7 and 30 days and with a moneyness below 1, the AARPE
ranges between 10.5% and 21.6%. In the CAC 40 case, with a time to maturity
greater than 6 months and for a moeyness below 1 again, the AARPE ranges from
5% to 38.1% (but for the model (3) whose pricing errors are larger than usual).
These results are close to what is obtained with estimation methodologies that use
option prices directly, as presented in Christoffersen et al. (2006) or Barone Adesi
et al. (2008), and Miyahara and Moriwaki (2009). This is a very positive message
for the potential use of these discrete time option pricing approaches: when the
data generating process used in the option pricing model aims at being realistic,
the option prices obtained can be realistic themselves. This is essential in the case
of options for which liquidity is low - which happens even for S&P 500 options
during liquidity squeezes - or for options for which there is no organized market.

(2) Then, comparing results with each others, we obtain very positive results in the
case of the model (2)-EGARCH, both for the S&P 500 and for CAC 40 datasets. It
is selected to be the best model - as measured with the AARPE criteria - in the
S&P 500 case for a moneyness below 1 for the three types of time to maturity re-
tained here7. For a moneyness higher than 1, the model (2)-EGARCH dominates
the other competitors when the time to maturity is either between 7 and 30 days or
higher than 6 months. In the case of a time to maturity between 3 and 6 months,
the model (3)-EGARCH dominates. However, here again, the model (2)-EGARCH
is not far away from that. Finally, and to be fair, the model (3)-EGARCH and the
model (2)-EGARCH actually deliver fairly comparable results across our pricing
results: the fact that jumps have an impact on the conditional variance or not does
not seem to have a strong impact on the option pricing results.

Moving to the CAC 40 results, we find a similar conclusion when it comes to money-
ness below 1: either the model (2)-EGARCH or the model (3)-EGARCH deliver usu-
ally the best results. This holds but for short term options for which the APARCH
based model (3) and model (2) deliver the best results. For moneyness higher than
1, we obtain in the CAC 40 case something different from what we obtained in
the S&P 500 case: here, it seems that the NIG-based model dominates the others
when the time to maturity is higher than 3 months. However, the limited number
of observations for this type of options prevents us from reaching a more definitive
conclusion.

7For a time to maturity greater than 6 months and a moneyness between 0.9 and 1, the model (2)-
APARCH actually dominates, with an AARPE equal to 15.5%, but the model (2)-EGARCH is really close to
this, with an AARPE equal to 15.8%.
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(3) A last message conveyed by our empirical results is related to the pricing kernels
used here. When comparing the pricing results obtained with each of the two pos-
sibilities considered here, we globally find limited differences in terms of pricing
accuracy. When focusing for example on the EGARCH model with Gaussian jumps
in the CAC 40 case, we obtain an AARPE of 6.6% for options with a time to ma-
turity higher than 6 months and a moneyness between 0.8 and 0.9 with the affine
pricing kernel, when the MEMM yields 7.1%. On top of that, we find that for some
models with specific time to maturities and moneyness that the affine pricing ker-
nel dominates the MEMM, whereas the contrary is also possible in some other
cases. This can be explained by two different factors: first, the martingalization
method of Duan and Simonato (1998) have a strong impact on the option pricing
results. For example, Chorro et al. (2010a) empirically show how this method
helps computing accurate option prices without having to assume any pricing ker-
nel. Beyond that, we compared these pricing kernels through the risk aversion
function that they imply8.

From Proposition 2.1 and relationship (16), the ratio of the risk-neutral conditional
distribution f∗t of (Yt+1, . . . , YT ) given Ft to the corresponding historical conditional
distribution ft is proportional to the stochastic discount factor9 Mt,T (or marginal
rate of substitution (MRS)) between consumption at dates t and T of the represen-
tative agent:

ζt(ST ) ≡ f∗t (ST )
ft(ST )

∝Mt,T =
U
′
(ST )

U ′(St)
. (22)

So, we can write the Arrow-Pratt (Arrow, 1964; Pratt, 1964) measure of absolute
risk aversion (ARA) ρt(ST ) by:

ρt(ST ) ≡ −ζ
′
t(ST )
ζt(ST )

= −U
′′
(ST )

U ′(ST )
=
f
′
t (ST )
ft(ST )

− f∗
′
t (ST )
f∗t (ST )

= −d logMt,T . (23)

In the Black and Scholes model, the marginal rate of substitution and the absolute
risk aversion are:

ζBS,t(ST ) = C

(
ST
St

)−a
and ρBS,t(ST) =

a
ST
, (24)

where C denotes a constant and a = (µ− r)/σ2.

We estimate risk aversion from equation (23): using 10,000 Monte Carlo simula-
tions of three months samples of returns under the historical and risk neutral dis-
tribution, we estimate f∗t (ST ) and ft(ST ) using a non parametric estimator based
on a Gaussian kernel. Once these densities have been estimated, we deduce the
absolute risk aversion using the relation presented in equation (23). It has been
applied in the literature by Jackwerth (2000), Rosenberg and Engle (2002) and
more recently in Chevallier et al. (2008) .

8Given the path dependency of the “risk neutralization” that these pricing kernels imply, it is not pos-
sible to derive a closed form expression for the pricing kernel between date t and date T . We however
estimate the three months ahead pricing kernel in the S&P 500 and in the CAC 40 cases using the full
sample parameter estimates, using then Monte Carlo simulations.

9On this relation see Aït Sahalia and Lo (1998, 2000)
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In Figure 3, we present the Absolute Risk Aversion using the affine pricing kernel
(solid lines), the MEMM pricing kernel (dashed) and the Absolute Risk Aversion of
the Black and Scholes model (dotted) of the CAC 40 and the S&P 500 indexes for
3 months time to maturity. Each panel corresponds to the three models associated
to the three types of GARCH models.

[Figure 3 here]

For each type of models and pricing kernels, we obtain a decreasing risk aversion
when future wealth (that is the moneyness) is increasing, hence being consistent
with the basic intuitions regarding this economic parameter. The analysis of these
graphs provides us with two main conclusions: first, for both pricing kernels the
slope of the risk aversion is less steep that in the Black and Scholes case. With
these pricing kernels, risk aversion vanishes less rapidly when the moneyness in-
creases. Second - and more importantly - both pricing kernels look very similar
when they are compared on this common scale: for most of these graphs the solid
and the dashed lines overlap. This should partly explain why the choice of the
pricing kernel seems to have a limited impact on the pricing errors. In some sense
- and given that we use the two main pricing kernels used in the literature - this
delivers the message that the specification of the data generating process under
the historical distribution may matter more than the specification of the represen-
tative agent’s risk preferences.

4 Conclusion

This article presents different types of discrete time Lévy processes for option pricing
purposes. These models are based on three different volatility dynamics and two differ-
ent kinds of pricing kernels. We derive the characterization of the risk neutral distribu-
tion associated with each of these models. Combining jumps to volatility should provide
us with a realistic model of financial returns’ dynamics, which is one of the major short-
comings of the Black and Scholes (1973) model. We provide an empirical assessment of
these models using a dataset of option prices on the S&P 500 and the CAC 40 indices.
We find that these empirically grounded models provide minimum mispricing errors
that are broadly consistent with the results obtained in the literature estimating the
models’ parameters using option prices. This is all the more interesting as the approach
developed here can be thus applied to price options that are illiquid - preventing the use
of their prices to estimate the parameters of the pricing model - or to price derivatives
for which there is no existing market. A key point of this paper is that the choice of
the pricing kernel has a limited impact on the pricing errors, suggesting that the main
driver of these errors is rather the underlying time series model rather than the specifi-
cation of the pricing kernels. We have also observed this fact for hedging: the choice of
the pricing kernels does not appear determinant.
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5 Appendix:

5.1 Unicity of θt+1

Here, we presente the unicity of θt in Proposition 2.1.

θt+1 is solution of
ϕP
t (θt+1 + 1) = erϕP

t (θt+1),

which is equivalent to

log(ϕP
t (θt+1 + 1))− log(ϕP

t (θt+1)) = r. (25)

Following Gerber and Shiu (1994), we consider the function

g(θ) = log(ϕP
t (θ + 1))− log(ϕP

t (θ)).

Then,

g′(θ) =
1

ϕP
t (θ + 1)

d

dθ
(ϕP

t (θ + 1))− 1
ϕP
t (θ)

d

dθ
(ϕP

t (θ))

= EQ(Yt+1, θ + 1|Ft)− EQ(Yt+1, θ|Ft),

since

1
ϕP
t (θ)

d

dθ
(ϕP

t (θ)) = EP
[
Yt+1e

θYt+1

ϕP
t (θ)

|Ft
]

= EQ(Yt+1, θ|Ft),

And EQ(Yt+1, θ|Ft) is an increasing function of θ. In fact,

d

dθ
EQ(Yt+1, θ|Ft) =

1
[ϕP
t (θ)]2

(
EP(Y 2

t+1e
θYt+1 |Ft)ϕP

t (θ)− [EP(Yt+1e
θYt+1 |Ft)]2

)
= EQ(Y 2

t+1|Ft)− [EQ(Yt+1|Ft)]2

= V arQ(Yt+1, θ|Ft) > 0.

So, g′(θ) > 0, showing that g(θ) is an increasing. This proves the uniqueness of the
solution of equation (25).

5.2 The general results for the returns modelled by (1)

(a) - Model with an exponential affine SDF:

Using the relationship (11), we provide for model (1) the moment generating function of
the log-returns under P and Q.
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Proposition 5.1 Given Ft−1, the moment generating functions under P and Q of the
process (Yt)t introduced in (1) are respectively:

logϕP
t−1(u) = um̃t + uc

√
ht +

u2

2
σ2ht +∫

R
(euz

√
ht − 1− uz

√
ht1{|z|≤1}) U(dz)

and

logϕQ
t−1(u) = um̃t + uc

√
ht +

u2

2
σ2htθt +∫

R
(euz

√
ht − 1− uz

√
hte
−θtz

√
ht1{|z|≤1})e

θtz
√
ht U(dz),

where m̃t, c, θt have been defined previously.

The expression of the process under the risk neutral measure is now available:

Proposition 5.2 If the returns (Yt)t are modelled by (1) under P, then under the risk
neutral measure Q, the process (Yt)t follows the same process where (Xt)t is a Lévy pro-
cess with triplet (cQ, σ2ht, ν

Q) given by:

cQ = c
√
ht + σ2θtht −

∫
{|z|≤1}

z
√
ht U(dz) +

∫
{|z|≤ 1√

ht
}
z
√
hte

θt
√
htz U(dz)

and
νQ(dx) = eθtxU

(
dx√
ht

)
.

We observe that the conditional distribution of (Yt)t under Q belongs to the same family
of distributions than under P. Nevertheless, there are changes in the mean and in the
variance.

(b) - Model with Minimal Entropy Martingale Measure:

To apply this methodology we recall briefly the framework in which we work, and spec-
ify some notations.

Let G = (Gt)t∈[0,T ], T > 0, be a geometric Lévy process defined on a probability space
(Ω,F ,P), such that:

Gt = G0e
zt , (26)

where G0 > 0 is a constant and z = (zt)t∈[0,T ] is a one-dimensional Lévy process. Let
(c, σ2, U) be the characteristics of (zt)t associated with the truncation function τ(z) :=
z1{|z|≤1}. For a constant r ∈ R, we set Bt := ert, and we also define G̃t := Gt

Bt
= e−rtGt: it

is still a geometric Lévy process because (zt − rt) is a Lévy process, and is the discount
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price process of Gt. Now if U = 0, that is if (Gt)t does not have any jump, then this setup
is nothing but the Black and Scholes model. Let (R̃t)t be the return process for (G̃t)t.
We now introduce a condition on the driving Lévy process (zt):

(C): There exists a constant β ∈ R that satisfies the following conditions (i) and (ii):
(i) ∫

{z>1}
ezeβ(ez−1)U(dz) <∞; (27)

(ii)

c+
(

1
2

+ β

)
σ2 +

∫
{|z|≤1}

[
(ez − 1)eβ(ez−1) − z

]
U(dz)

+
∫
{|z|>1}

(ez − 1)eβ(ez−1)U(dz) = r. (28)

Then, we have the following result due to Fujiwara and Miyahara (2003).

Theorem 5.3 Given the previous return process (R̃t), and assuming that the previous
condition (C) holds, then
(1) We can define a probability measure Q on FT by means of the Esscher transformation:

dQ
dP

∣∣∣∣
Ft

:=
eβR̃t

EP [eβR̃t ]
:=

eβẑt

EP [eβẑt ]
= eβẑt−bt, (29)

for every t ∈ [0, T ], where β is the constant in (C), and

ẑt = zt +
1
2
σ2t+

∫
(0,t]

∫
R\{0}

(ez − 1− z)Np(du dz) (30)

= σWt + c1t+
∫

(0,t]

∫
{|z|≤1}

(ez − 1)Ñp(du dz)

+
∫

(0,t]

∫
{|z|>1}

(ez − 1)Np(du dz) (31)

with
c1 :=

1
2
σ2 + c+

∫
{|z|≤1}

(ez − 1− z)U(dz). (32)

and
b =

β

2
(1 + β)σ2 + βc+

∫
R\{0}

[
eβ(ez−1) − 1− βz1{|z|≤1}

]
U(dz). (33)

(2) The stochastic process (zt) is still a Lévy process under the probability measure Q
defined in (29), and the characteristics associated with the truncation function τ(z) :=
z1{|z|≤1} are: (

βσ2 + c+
∫
{|z|≤1}

z(eβ(ez−1) − 1)U(dz), σ2, UQ

)
, (34)

where:
UQ(dz) := eβ(ez−1)U(dz). (35)
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We now apply these theoretical results to model (1) we introduced previously for the
stock price (St)t defined by:

St = St−1e
m̃t exp(Xt) (36)

where St−1e
m̃t is Ft−1−measurable, and Xt =

√
htzt. Following Fujiwara and Miyahara

(2003), we define a new probability measure Q equivalent to P, introducing the following
technical condition on the driving Lévy process (zt):
(C1): Constants c and β ∈ R exist and satisfy the following conditions (i) and (ii):
(i) ∫

{z>1}
ezeβ(ez−1)U(dz) <∞;

(ii)

m̃t + c′ +
(

1
2

+ β

)
σ2ht +

∫
{|x|≤1}

[
(ex − 1)eβ(ex−1) − x

]
U

(
dx√
ht

)
+
∫
{|x|>1}

(ex − 1)eβ(ex−1)U

(
dx√
ht

)
= r

where:

c′ =

c+
∫
{|z|≤ 1√

ht
}
z U(dz)−

∫
{|z|≤1}

z U(dz)

√ht,
Proposition 5.4 Let the price process (St)t be defined by (36), and the condition (C1)
holds, then:
(i) there exists a probability measure Q defined on FT :

Lt =
dQ
dP

∣∣∣∣
Ft

= eβX̂t−bt, with (37)

b =
β

2
(1 + β)σ2ht + βc′ +

∫
R\{0}

[
eβ(ex−1) − 1− βx1{|x|≤1}

]
ν(dx),

X̂t = Xt +
1
2
〈Xc〉t +

∑
u∈(0,t]

(e∆Xu − 1−∆Xu), (38)

where (Xc
t ) is the continuous martingale part of (Xt), and ∆Xu = Xu −Xu−.

(ii) Under Q, the price process (St)t is an exponential-Lévy process St = St−1 exp(m̃t +Xt)
where m̃t is introduced in (1), and (Xt)t is a Lévy process with Lévy triplet (cQ, σ2ht, ν

Q)
given by:

cQ = c
√
ht + σ2βht −

∫
{|z|≤1}

z
√
ht U(dz) +

∫
{|z|≤ 1√

ht
}
z
√
hte

β(ez
√
ht−1)U(dz),

νQ(dx) = eβ(ex−1) U

(
dx√
ht

)
.
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Thus the dynamics of (St)t under Q follows the same class of models than under P, with
changes inside the parameters of the Lévy process.

From the Theorem 5.3, we can derive the expression of the conditionnal moment gener-
ating functions for the process (St)t under P and under Q , and we will use them through
Monte Carlo simulations to get option prices.

logϕP
t−1(u) = um̃t + uc

√
ht +

u2

2
σ2ht +∫

R
(euz

√
ht − 1− uz

√
ht1{|z|≤1}) U(dz)

and

logϕQ
t−1(u) = um̃t + uc

√
ht +

u2

2
σ2htβ +∫

R
(euz

√
ht − 1− uz

√
hte
−β(ez

√
ht−1)1{|z|≤1})e

β(ez
√
ht−1) U(dz)

5.3 The Relationship (10)

In this subsection, we prove the relationship (10), and the p.d.f of the conditional risk
neutral distribution with respect to the corresponding historical distribution in Propo-
sition 2.1.
The price Ct at time t of a European derivative asset with payoff g(Yt+1, . . . , YT ) at T is

Ct(g, T ) = EP[Mt,t+1 × . . .×MT−1,T × g(Yt+1, . . . , YT )|Ft]
= EP[Mt,T × g(Yt+1, . . . , YT )|Ft]

which can be written as

Ct(g, T ) = EP[Mt,T |Ft]× EP

[
Mt,T

EP[Mt,T |Ft]
g(Yt+1, . . . , YT )|Ft

]
= e−r(T−t) × EP

[
Mt,T

EP[Mt,T |Ft]
g(Yt+1, . . . , YT )|Ft

]
.

Defining dQ
dP = Mt,T

EP[Mt,T ] , Ct(g, T ) can be rewritten as

Ct(g, T ) = e−r(T−t)EP

[
dQ
dP

g((Yt+1, . . . , YT )|Ft
]

= e−r(T−t)EQ [g(Yt+1, . . . , YT )|Ft] .

Thus, the price Ct at time t of an asset with payoff g(Yt+1) at time t+ 1 is:

Ct(g) = e−rEQ [g(Yt+1)|Ft]

and
dQ
dP

=
Mt,t+1

EP[Mt,t+1]
.
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5.4 Proof of Proposition 2.3

The moment generating function under P of the process (Yt)t introduced in (2) can be
written as

ϕP
t−1(u) = EP

exp

um̃t + uXt + u

Nt∑
j=1

Vj

 |Ft−1


= exp

[
um̃t +

1
2
u2ht + λ

(
eµu+ 1

2
σ2u2 − 1

)]
,

and the moment generating function under Q is also derived from

ϕQ
t−1(u) =

ϕP
t−1(θt + u)
ϕP
t−1(θt)

.

5.5 Proof of Proposition 2.4

The moment generating function under P of the process (Yt)t introduced in (3) can be
written as

ϕP
t−1(u) = EP

exp

um̃t + uXt + u

Nt∑
j=1

Vj

 |Ft−1


= exp

[
um̃t +

1
2
u2ht + λ

(
eµ
√
htu+ 1

2
σ2htu2 − 1

)]
,

and the moment generating function under Q is also derived from

ϕQ
t−1(u) =

ϕP
t−1(θt + u)
ϕP
t−1(θt)

.

5.6 Proof of Proposition 5.1

The moment generating function under P of the process (Yt)t introduced in (1) is

ϕP
t−1(u) = EP [exp(uYt)|Ft−1]

= EP

[
exp(um̃t) exp(

√
htuzt)|Ft−1

]
= exp(um̃t)EP

[
exp(u

√
htzt)|Ft−1

]
since m̃t is Ft−1-measurable

= exp(um̃t)EP

[
exp(u

√
htz1)

]
since zt is i.i.d.

= exp(um̃t) exp[κ(u
√
ht)] by the Lévy-Kintchine formula,

and the moment under Q is derived from (11).
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5.7 Proof of Proposition 5.2

In order to prove Proposition 5.2, we first introduce a lemma:

Lemma 5.5 If zt is a Lévy process with triplet (c, σ2, U), then Xt =
√
htzt is also a Lévy

process with triplet (c′, σ2ht, ν) where:

c′ = c
√
ht +

∫
R
x
(
1{|x|≤1}(x)− 1S(x)

)
ν(dx)

where S is the image by
√
ht of a unit ball in R:

S = {
√
htz : |z| ≤ 1}

and
ν(dx) = U

(
dx√
ht

)

Proof Using Lévy-Itô decomposition, Xt =
√
htzt has the representation:

Xt = σ
√
htWt + c

√
ht t+

∫
(0,t]

∫
{|z|≤1}

z
√
htÑp(du dz)

+
∫

(0,t]

∫
{|z|>1}

z
√
htNp(du dz). (39)

In order to know the characteristics of (Xt)t, we transform the point process (pt)t defined
by pt := ∆Xt, where ∆Xt = Xt −Xt−, into another one (qt)t by

Dq := Dp and qt := J(pt),

where J(z) := z
√
ht for z ∈ R, then:

N̂q(du dx) = du ν(dx),
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where ν(dx) := U ◦ J−1(dx) and

Xt = σ
√
htWt + c

√
ht t+

∫
(0,t]

∫
R
x1S(x)Ñq(du dx)

+
∫

(0,t]

∫
R
x1ScNq(du dx)

where S = {
√
htz : |z| ≤ 1} and Sc = {

√
htz : |z| > 1}

= σ
√
htWt + c

√
ht t+

∫
(0,t]

∫
{|x|≤1}

xÑq(du dx) +
∫

(0,t]

∫
{|x|>1}

xNq(du dx)

−
∫

(0,t]

∫
R
x1S(x) du ν(dx) +

∫
(0,t]

∫
{|x|≤1}

x du ν(dx)

= σ
√
htWt +

[
c
√
ht +

∫
{|x|≤1}

x ν(dx)−
∫

R
x1S(x) ν(dx)

]
t

+
∫

(0,t]

∫
{|x|≤1}

xÑq(du dx) +
∫

(0,t]

∫
{|x|>1}

xNq(du dx)

= σ
√
htWt +

[
c
√
ht +

∫
R
x
(
1{|x|≤1}(x)− 1S(x)

)
ν(dx)

]
t

+
∫

(0,t]

∫
{|x|≤1}

xÑq(du dx) +
∫

(0,t]

∫
{|x|>1}

xNq(du dx)

We obtain the Lévy-Itô decomposition of (Xt) associated with the truncation function
τ(x) := x1{|x|≤1}, and we derive the corresponding characteristics (c′, σ2ht, ν), where

c′ = c
√
ht +

∫
R
x
(
1{|x|≤1}(x)− 1S(x)

)
ν(dx).

We now come back to the proof of Proposition 5.2. From Proposition 2.1, we derive ϕQ(v)

ϕQ(v) =
ϕP(θt + v)
ϕP(θt)

= exp[(θt + v − θt)m̃t]exp
{[
κ
(

(θt + v)
√
ht

)
− κ

(
θt
√
ht

)]
t
}

= exp(vm̃t)exp
{[
κ
(

(θt + v)
√
ht

)
− κ

(
θt
√
ht

)]
t
}

= exp(vm̃t)exp[κQ(v
√
ht)t]
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where

κQ(v
√
ht) =

= κ
(

(θt + v)
√
ht

)
− κ

(
θt
√
ht

)
= c(θt + v)

√
ht +

σ2

2
(θt + v)2ht +

∫ [
e(θt+v)

√
htx − 1− τ(x)(θt + v)

√
ht

]
U(dx)

−cθt
√
ht −

σ2

2
θ2
t ht −

∫ [
eθt
√
htx − 1− τ(x)θt

√
ht

]
U(dx)

= cv
√
ht +

σ2

2
v2ht + σ2θthtv +

∫ [
ev
√
htx − 1− τ(x)v

√
ht

]
eθt
√
htxU(dx) +∫

(eθt
√
htx − 1)τ(x)

√
htvU(dx)

=
[
c+ σ2θt

√
ht +

∫
(eθt
√
htx − 1)τ(x)U(dx)

]
v
√
ht +

σ2

2
(v
√
ht)2 +∫ (

ev
√
htx − 1− τ(x)v

√
ht

)
eθt
√
htxU(dx).

Thus, under Q, (zt)t is a Lévy process with triplet (b, σ2, UQ) where

b = c+ σ2θt
√
ht +

∫
(eθt
√
htz − 1)τ(z)U(dz)

and
UQ(dx) = eθt

√
htxU(dx).

Using Lemma 5.5, Xt =
√
htzt is a Lévy process with triplet (c′, σ2ht, ν

Q) where

c′ = cQ = b
√
ht +

∫
R
x
(
1{|x|≤1}(x)− 1S(x)

)
νQ(dx),

and

νQ(dx) = UQ
(
dx√
ht

)
= eθtxU

(
dx√
ht

)
. �
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6 Tables and Figures

CAC 40
Number of observations Mean Minimum Maximum

5052 0.036 -0.095 0.106
Median Standard Deviation Skewness Kurtosis

3.375e-004 0.222 -0.044 7.703

S&P 500
Number of observations Mean Minimum Maximum

5040 0.061 -0.095 0.109
Median Standard Deviation Skewness Kurtosis

5.230e-004 0.190 -0.203 9.147

Table 1: Descriptive statistics for the CAC 40 and the S&P 500 log returns.
This table presents the descriptive statistics for the CAC 40 and the S&P 500 log returns
from March 1, 1990 to March 1, 2010.

CAC 40 S&P 500
KS p-value for Normal-EGARCH 0.016 1.288e-06
KS p-value for Normal-GJR 0.013 5.058e-07
KS p-value for Normal-APARCH 0.017 2.056e-06
KS p-value for NIG-EGARCH 0.738 0.477
KS p-value for NIG-GJR 0.721 0.532
KS p-value for NIG-APARCH 0.671 0.454
KS p-value for Model (2)-EGARCH 0.457 0.827
KS p-value for Model (2)-GJR 0.635 0.815
KS p-value for Model (2)-APARCH 0.584 0.464
KS p-value for Model (3)-EGARCH 0.716 0.610
KS p-value for Model (3)-GJR 0.699 0.633
KS p-value for Model (3)-APARCH 0.648 0.571
AD p-value for Normal-EGARCH 0.030 0.040
AD p-value for Normal-GJR 0.010 0.010
AD p-value for Normal-APARCH 0.010 0.020
AD p-value for NIG-EGARCH 0.760 0.630
AD p-value for NIG-GJR 0.470 0.520
AD p-value for NIG-APARCH 0.460 0.410
AD p-value for Model (2)-EGARCH 0.430 0.700
AD p-value for Model (2)-GJR 0.840 0.660
AD p-value for Model (2)-APARCH 0.840 0.320
AD p-value for Model (3)-EGARCH 0.680 0.530
AD p-value for Model (3)-GJR 0.660 0.490
AD p-value for Model (3)-APARCH 0.450 0.370

Table 2: Kolmogorov-Smirnov, Anderson-Darling adequation tests
This table presents the test statistics testing the adequation of the residuals of the
models EGARCH, GJR and APARCH respectively with Normal, NIG and Poisson dis-
tributions as defined in (1)-(7) to a data set of daily log returns of the French CAC 40
and of the S&P 500 from March 1, 1990 to March 1, 2010.
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CAC 40
Maturity/Moneyness <0.8 [.8-.9] [.9-1] [1-1.1] >1.1

7 days ≤ Maturity ≤ 30 days 1629 3342 3100 687 11
3 months ≤ Maturity ≤ 6 months 1140 2135 2333 1784 579

Maturity > 6 months 5256 9176 9328 8289 3503

S&P 500
Maturity/Moneyness <0.8 [.8-.9] [.9-1] [1-1.1] >1.1

7 days ≤ Maturity ≤ 30 days 1010 1937 2066 1839 253
3 months ≤ Maturity ≤ 6 months 876 1776 1968 1976 333

Maturity > 6 months 1398 4280 6814 5505 1369

Table 3: Descriptive statistics for the option data sets used in the paper. The
option data sets start on December 6, 2006 and end on October 26, 2007.

Index EGARCH parameters α0 β1 α1 γ1

CAC 40 Mean -1.15e-01 0.987 0.100 -0.059
Stand.Dev 6.93e-03 0.0008 0.009 0.003

S&P 500 Mean -0.148 0.984 0.111 -0.089
Stand.Dev 0.009 8.86e-4 0.002 0.004

Table 4: Estimated parameters for the EGARCH model, using a Quasi-
Maximum Likelihood Estimation.
This table presents the estimated parameters with their standard deviation for the
EGARCH model by selecting a subsample containing 4000 working days and ending
on the date t between December 6, 2006 and October 26, 2007.

Index GJR parameters ω β γ δ

CAC 40 Mean 2.07e-06 0.934 0.016 0.072
Stand.Dev 3.04e-07 0.004 0.001 0.005

S&P 500 Mean 9.463e-07 0.934 0.003 0.104
Stand.Dev 5.307e-08 0.002 0.003 0.005

Table 5: Estimated parameters for the GARCH-GJR model, using a Quasi-
Maximum Likelihood Estimation.
This table presents the estimated parameters with their standard deviation for the
GARCH-GJR model by selecting a subsample containing 4000 working days and ending
on the date t between December 6, 2006 and October 26, 2007.
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Index APARCH parameters ω a1 γ1 b1 δ

CAC 40 Mean 6.91e-05 0.053 0.571 0.941 1.220
Stand.Dev 2.07e-05 0.003 0.024 0.004 0.078

S&P 500 Mean 8.745e-05 0.057 0.829 0.939 1.100
Stand.Dev 1.890e-05 0.002 0.053 0.001 0.044

Table 6: Estimated parameters for the APARCH model, using a Quasi-Maximum
Likelihood Estimation.
This table presents the estimated parameters with their standard deviation for the
APARCH model by selecting a subsample containing 4000 working days and ending
on the date t between December 6, 2006 and October 26, 2007.

Index Models α β δ µ

CAC 40 NIG-EGARCH Mean 2.484 -0.397 2.371 0.382
Stand.Dev 0.229 0.065 0.215 0.064

NIG-GJR Mean 2.487 -0.412 2.369 0.396
Stand.Dev 0.212 0.059 0.198 0.056

NIG-APARCH Mean 2.492 -0.396 2.366 0.381
Stand.Dev 0.222 0.062 0.209 0.060

S&P 500 NIG-EGARCH Mean 1.785 -0.175 1.749 0.174
Stand.Dev 0.170 0.069 0.149 0.064

NIG-GJR Mean 1.785 -0.208 1.738 0.202
Stand.Dev 0.171 0.071 0.147 0.066

NIG-APARCH Mean 1.788 -0.179 1.752 0.180
Stand.Dev 0.171 0.069 0.149 0.065

Table 7: Estimated parameters for the NIG distribution, using the previous
volatility dynamics, by MLE.
This table presents the estimated parameters for the NIG distribution using the 2 stages
estimation procedure and 4000 log-returns. NIG-GARCH means the model (1) with NIG
innovation associated with its GARCH model.

Index Models λ µ σ2

CAC 40 Model (2)-EGARCH Mean 0.141 0.004 0.033
Stand.Dev 0.000 0.020 0.016

Model (2)-GJR Mean 0.143 0.087 0.027
Stand.Dev 0.009 0.026 0.045

Model (2)-APARCH Mean 0.139 0.059 0.038
Stand.Dev 0.000 0.022 0.015

S&P 500 Model (2)-EGARCH Mean 0.15 0.015 0.009
Stand.Dev 0.049 0.005 0.004

Model (2)-GJR Mean 0.148 -0.008 0.010
Stand.Dev 0.018 0.004 0.007

Model (2)-APARCH Mean 0.152 0.027 0.008
Stand.Dev 0.024 0.004 0.004

Table 8: Estimated parameters for the Poisson and normal distributions, using
the previous volatility dynamics, by MLE.
This table presents the average estimated parameters for the Poisson and normal dis-
tributions using the 2 stages estimation procedure and 4000 log-returns. Model (2)-
GARCH means the model (2) associated with its GARCH model.
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Index Models λ µ σ

CAC 40 Model (3)-EGARCH Mean 0.057 -0.314 0.911
Stand.Dev 0.024 0.216 0.171

Model (3)-GJR Mean 0.067 -0.258 0.821
Stand.Dev 0.031 0.188 0.158

Model (3)-APARCH Mean 0.066 -0.251 0.825
Stand.Dev 0.031 0.189 0.160

S&P 500 Model (3)-EGARCH Mean 0.064 0.028 0.009
Stand.Dev 0.028 0.034 0.006

Model (3)-GJR Mean 0.057 -1.681e-05 9.613e-03
Stand.Dev 0.038 0.001 0.002

Model (3)-APARCH Mean 0.072 0.043 0.009
Stand.Dev 0.041 0.027 0.005

Table 9: Estimated parameters for the Poisson and normal distributions, using
the previous volatility dynamics, by MLE.
This table presents the estimated parameters for the Poisson and normal distributions
using the 2 stages estimation procedure and 4000 log-returns. Model (3)-GARCH means
the model (3) associated with its GARCH model.

7 days ≤ Maturity ≤ 30 days
Moneyness <0.8 [.8-.9] [.9-1] [1-1.1] >1.1
Nig-EGARCH Ess 0.051 0.079 0.137 2.105 1.971
Nig-GJR Ess 0.051 0.079 0.136 2.204 2.738
Nig-APARCH Ess 0.050 0.077 0.107 2.576 3.056
Nig-EGARCH MEMM 0.046 0.071 0.129 0.365 1.914
Nig-GJR MEMM 0.046 0.071 0.130 0.367 3.600
Nig-APARCH MEMM 0.044 0.067 0.099 2.235 2.835
Model (2)-EGARCH Ess 0.053 0.073 0.186 0.371 2.215
Model (2)-GJR Ess 0.054 0.073 0.187 0.373 2.842
Model (2)-APARCH Ess 0.051 0.071 0.095 1.568 5.021
Model (2)-EGARCH MEMM 0.049 0.068 0.154 0.486 3.482
Model (2)-GJR MEMM 0.049 0.068 0.154 0.482 4.037
Model (2)-APARCH MEMM 0.043 0.064 0.091 0.352 1.898
Model (3)-EGARCH Ess 0.097 0.127 0.165 0.881 3.014
Model (3)-GJR Ess 0.096 0.126 0.166 0.882 3.020
Model (3)-APARCH Ess 0.040 0.046 0.190 0.981 4.261
Model (3)-EGARCH MEMM 0.047 0.052 0.186 0.949 4.029
Model (3)-GJR MEMM 0.080 0.084 0.101 0.947 4.013
Model (3)-APARCH MEMM 0.044 0.121 0.303 2.896 6.242
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3 months ≤ Maturity ≤ 6 months
Moneyness <0.8 [.8-.9] [.9-1] [1-1.1] >1.1
Nig-EGARCH Ess 0.040 0.084 0.279 0.521 0.614
Nig-GJR Ess 0.040 0.084 0.283 0.526 0.619
Nig-APARCH Ess 0.061 0.102 0.402 0.868 4.125
Nig-EGARCH MEMM 0.057 0.115 0.752 3.084 3.389
Nig-GJR MEMM 0.056 0.114 0.755 3.052 3.342
Nig-APARCH MEMM 0.081 0.181 0.791 0.881 4.051
Model (2)-EGARCH Ess 0.032 0.071 0.362 0.765 2.562
Model (2)-GJR Ess 0.033 0.073 0.365 0.776 2.684
Model (2)-APARCH Ess 0.061 0.122 0.756 0.865 4.103
Model (2)-EGARCH MEMM 0.052 0.082 0.385 0.796 2.652
Model (2)-GJR MEMM 0.054 0.084 0.384 0.798 2.513
Model (2)-APARCH MEMM 0.070 0.192 0.825 1.004 4.301
Model (3)-EGARCH Ess 0.070 0.129 0.269 0.960 1.265
Model (3)-GJR Ess 0.071 0.130 0.276 0.971 1.389
Model (3)-APARCH Ess 0.047 0.073 0.213 0.964 1.025
Model (3)-EGARCH MEMM 0.081 0.084 0.099 0.941 1.952
Model (3)-GJR MEMM 0.157 0.158 0.124 0.939 1.941
Model (3)-APARCH MEMM 0.055 0.127 0.237 2.594 1.022
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Maturity > 6 months
Moneyness <0.8 [.8-.9] [.9-1] [1-1.1] >1.1
Nig-EGARCH Ess 0.056 0.081 0.120 0.268 0.318
Nig-GJR Ess 0.057 0.082 0.121 0.269 0.321
Nig-APARCH Ess 0.058 0.074 0.142 0.302 0.351
Nig-EGARCH MEMM 0.051 0.068 0.249 0.436 0.454
Nig-GJR MEMM 0.051 0.067 0.245 0.445 0.466
Nig-APARCH MEMM 0.065 0.095 0.291 0.475 0.501
Model (2)-EGARCH Ess 0.050 0.066 0.111 0.302 0.321
Model (2)-GJR Ess 0.052 0.067 0.118 0.321 0.329
Model (2)-APARCH Ess 0.062 0.083 0.136 0.391 4.011
Model (2)-EGARCH MEMM 0.521 0.071 0.224 0.201 0.405
Model (2)-GJR MEMM 0.526 0.072 0.227 0.211 0.402
Model (2)-APARCH MEMM 0.068 0.076 0.381 0.445 4.213
Model (3)-EGARCH Ess 0.053 0.375 0.230 0.902 0.996
Model (3)-GJR Ess 0.054 0.376 0.229 0.907 0.998
Model (3)-APARCH Ess 0.090 0.076 0.161 0.818 0.824
Model (3)-EGARCH MEMM 0.661 0.679 0.548 0.599 0.991
Model (3)-GJR MEMM 1.531 1.564 1.363 0.864 0.983
Model (3)-APARCH MEMM 0.552 0.963 0.941 0.921 1.396

Table 10: Absolute Average Relative Pricing Errors (AARPE) for the CAC 40
French index.
These tables present the AARPE using the NIG-EGARCH, NIG-GJR, NIG-APARCH,
Model (2)-EGARCH, Model (2)-GJR, Model (2)-APARCH, Model (3)-EGARCH, Model
(3)-GJR and Model (3)-APARCH under an exponential affine stochastic discount factor
(also known as Esscher transform ESS) or under a minimal entropy martingal measure
(MEMM). For example, NIG-EGARCH ESS means we use the model (1) with NIG inno-
vation and EGARCH volatility model associated with an exponential affine stochastic
discount factor. We put the minimal errors in bold face.
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7 days ≤ Maturity ≤ 30 days
Moneyness <0.8 [.8-.9] [.9-1] [1-1.1] >1.1
Nig-EGARCH Ess 0.109 0.116 0.198 11.290 1.031
Nig-GJR Ess 0.109 0.117 0.195 11.357 1.298
Nig-APARCH Ess 0.109 0.116 0.197 11.335 1.327
Nig-EGARCH MEMM 0.111 0.120 0.216 11.481 1.131
Nig-GJR MEMM 0.112 0.122 0.214 11.954 1.511
Nig-APARCH MEMM 0.109 0.118 0.204 11.067 1.263
Model (2)-EGARCH Ess 0.105 0.112 0.130 0.988 1.116
Model (2)-GJR Ess 0.106 0.114 0.133 0.992 1.123
Model (2)-APARCH Ess 0.105 0.113 0.132 0.989 1.119
Model (2)-EGARCH MEMM 0.112 0.119 0.122 0.980 1.016
Model (2)-GJR MEMM 0.108 0.115 0.123 0.983 1.213
Model (2)-APARCH MEMM 0.107 0.114 0.126 0.986 1.222
Model (3)-EGARCH Ess 0.106 0.112 0.130 0.990 1.097
Model (3)-GJR Ess 0.107 0.117 0.138 0.995 1.236
Model (3)-APARCH Ess 0.107 0.114 0.131 0.991 1.119
Model (3)-EGARCH MEMM 0.111 0.119 0.122 0.982 1.325
Model (3)-GJR MEMM 0.109 0.116 0.123 0.985 1.237
Model (3)-APARCH MEMM 0.107 0.114 0.126 0.988 1.215

3 months ≤ Maturity ≤ 6 months
Moneyness <0.8 [.8-.9] [.9-1] [1-1.1] >1.1
Nig-EGARCH Ess 0.172 0.157 0.204 1.648 6.618
Nig-GJR Ess 0.175 0.163 0.203 1.560 6.657
Nig-APARCH Ess 0.174 0.160 0.201 1.541 6.486
Nig-EGARCH MEMM 0.185 0.181 0.253 1.881 7.629
Nig-GJR MEMM 0.179 0.171 0.236 1.735 6.459
Nig-APARCH MEMM 0.175 0.167 0.215 1.541 6.338
Model (2)-EGARCH Ess 0.154 0.121 0.174 0.940 1.229
Model (2)-GJR Ess 0.155 0.123 0.177 0.945 1.459
Model (2)-APARCH Ess 0.154 0.121 0.175 0.941 1.332
Model (2)-EGARCH MEMM 0.183 0.157 0.125 0.868 1.113
Model (2)-GJR MEMM 0.171 0.143 0.132 0.896 1.215
Model (2)-APARCH MEMM 0.163 0.132 0.147 0.918 1.203
Model (3)-EGARCH Ess 0.154 0.223 0.158 0.748 0.998
Model (3)-GJR Ess 0.154 0.125 0.177 0.942 1.119
Model (3)-APARCH Ess 0.156 0.124 0.161 0.897 1.109
Model (3)-EGARCH MEMM 0.183 0.157 0.125 0.871 1.205
Model (3)-GJR MEMM 0.171 0.142 0.133 0.901 1.310
Model (3)-APARCH MEMM 0.180 0.155 0.127 0.882 1.212
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Maturity > 6 months
Moneyness <0.8 [.8-.9] [.9-1] [1-1.1] >1.1
Nig-EGARCH Ess 0.409 0.362 0.359 0.685 2.521
Nig-GJR Ess 0.431 0.391 0.386 0.675 2.348
Nig-APARCH Ess 0.413 0.366 0.351 0.623 2.242
Nig-EGARCH MEMM 0.446 0.421 0.449 0.837 2.899
Nig-GJR MEMM 0.452 0.426 0.451 0.841 2.905
Nig-APARCH MEMM 0.411 0.374 0.372 0.648 2.192
Model (2)-EGARCH Ess 0.331 0.224 0.158 0.745 0.998
Model (2)-GJR Ess 0.332 0.226 0.161 0.748 1.113
Model (2)-APARCH Ess 0.332 0.224 0.159 0.746 1.008
Model (2)-EGARCH MEMM 0.438 0.361 0.230 0.514 0.930
Model (2)-GJR MEMM 0.398 0.307 0.177 0.588 0.970
Model (2)-APARCH MEMM 0.366 0.266 0.155 0.662 0.989
Model (3)-EGARCH Ess 0.334 0.225 0.159 0.849 1.229
Model (3)-GJR Ess 0.337 0.228 0.167 0.859 1.325
Model (3)-APARCH Ess 0.336 0.226 0.165 0.857 1.319
Model (3)-EGARCH MEMM 0.439 0.361 0.230 0.518 0.935
Model (3)-GJR MEMM 0.397 0.306 0.176 0.593 0.972
Model (3)-APARCH MEMM 0.419 0.311 0.180 0.590 0.975

Table 11: Absolute Average Relative Pricing Errors (AARPE) for the S&P 500
index.
These tables present the AARPE using the NIG-EGARCH, NIG-GJR, NIG-APARCH,
Model (2)-EGARCH, Model (2)-GJR, Model (2)-APARCH, Model (3)-EGARCH, Model
(3)-GJR and Model (3)-APARCH under an exponential affine stochastic discount factor
(also known as Esscher transform ESS) or under a minimal entropy martingal measure
(MEMM). For example, NIG-EGARCH ESS means we use the model (1) with NIG inno-
vation and EGARCH volatility model associated with an exponential affine stochastic
discount factor. We put the minimal errors in bold face.
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Figure 1: Empirical log-density (solid line) vs. estimated log density obtained with the
residuals of the models EGARCH, GJR and APARCH respectively with Normal, NIG
and Poisson distributions as defined in (1)-(7), using the daily CAC 40 and the S&P 500
returns data set from March 1, 1990 to March 1, 2010.
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Figure 2: QQ-plots comparing the residuals of the empirical quantiles of the daily CAC
40 and the S&P 500 log returns vs. the residuals of the estimated quantiles obtained
with the models EGARCH, GJR and APARCH respectively with Normal, NIG and Pois-
son distributions as defined in (1)-(7) for the daily CAC 40 and the S&P 500 log returns
from March 1, 1990 to March 1, 2010. 40
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Figure 3: Absolute Risk Aversion (ARA) using the affine pricing kernel (solid lines), the
MEMM pricing kernel (dashed) and the ARA of the Black and Scholes model (dotted) of
the CAC 40 and the S&P 500 indexes for 3 months time to maturity, from December 6,
2006 to February 28, 2007. Each panel corresponds to the three models associated to
the three type of GARCH models. 41
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