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Abstract

The purpose of this article is to characterize optimal interest rate
rules in the framework of a dynamic stochastic general equilibrium
model, and notably to scrutinize the “Taylor principle”, according to
which the nominal interest rate should respond more than one for
one to inflation. This model yields explicit solutions for the optimal
rule. We find that the elasticity of response depends on numerous
factors, such as the degree of price rigidity, the autocorrelation of the
underlying shocks, or which measure of inflation is used. In general the
optimal elasticity of the interest rate with respect to inflation needs
not be greater than one.
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1 Introduction

The purpose of this article is to characterize optimal interest rate rules in the
framework of a dynamic stochastic general equilibrium model, and notably
to examine the much debated subject of how nominal interest rates should
react to inflation.
Indeed following Taylor’s (1993) influential article, many authors have

studied interest rate rules where central bank policy is a function of endoge-
nous variables such as inflation and output. A particularly scrutinized issue
has been the response to inflation1, and notably the “Taylor principle”, ac-
cording to which the nominal interest rate should respond more than one
for one to inflation2. In a nutshell, if the interest rate rule is of the form
(omitting constants) it = γπt, then the Taylor principle says that γ should
be greater than 1.
The basic framework we shall use for this investigation is that of a dy-

namic monetary economy subject to stochastic shocks, like productivity
shocks. We shall develop a simple model for which we will be able to compute
explicit solutions for the optimal interest rate rules3. The optimal interest
rate policy is obtained through maximization of households’ utility, subject
to the laws of motion of the economy. In such a framework, and under ratio-
nal expectations, the natural expression of optimal interest rules would be a
function linking the interest rate to all observable shocks.
But, as indicated above, our main interest will be in rules expressed as a

function of inflation, and in examining the size of their elasticity of response.
We can identify two channels through which inflation enters the response
function, which we will call “intrinsic” and “surrogate”.
(a) The “intrinsic” channel actually concerns not current inflation but

expected inflation, for the following natural reason: expected inflation ap-
pears in the households’s demand functions, and therefore in the dynamic

1The original Taylor contribution introduced both inflation and output as arguments of
the interest rate rule, but in subsequent writings the role of output has been overshadowed
by that of inflation.

2There are actually two different aspects of the Taylor principle in the literature. The
first, which is the subject of this paper, is concerned with the optimal response of the
interest rate to inflation. The second one says that it is necessary to respect the Tay-
lor principle to obtain price determinacy. The validity of that claim in non-Ricardian
frameworks has been analyzed in Bénassy (2002b).

3There are already in the literature numerous contributions deriving optimal rules
from explicit maximization, for example Rotemberg and Woodford (1997, 1999), Svensson
(1997, 1999), Clarida, Gali and Gertler (1999), King andWolman (1999), Erceg, Henderson
and Levin (2000), Henderson and Kim (2001), Woodford (2003). Due to the complexity of
calculations many contributions use numerical simulations or quadratic approximations.
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equations of the economy. Consequently it will also generally appear in the
optimal interest rate rules.
(b) The second way inflation appears in the interest rate rules is as a

“surrogate” for the underlying shocks when these are omitted from the policy
function. In that respect, the argument of the function can be either expected
inflation or current inflation (it could even be some past inflation).
So, in order to investigate the optimal response of interest rates to in-

flation, we shall derive a number of optimal interest rate rules taking into
account the two above channels.
In order to disentangle them, we shall first derive an optimal interest

rate rule when both expected inflation and shocks appear independently as
arguments.
We shall then derive, in the tradition of dynamic stochastic general equi-

librium (DSGE) models, interest rate rules that respond to shocks only. This
will show that the optimal response to shocks depends on the nature of the
underlying nominal rigidities4.
Finally we shall investigate, for various types of rigidities, a number of

interest rate rules where current or expected inflation act as surrogates for
the underlying shocks. We shall see that the optimal degree of response
to inflation depends on numerous factors, like which measure of inflation
(current or expected) is used, the nature and degree of price rigidities, and the
autocorrelation of shocks. But we will find that the corresponding elasticity
can be smaller or greater than one, depending on the values of the relevant
parameters, and thus not systematically greater than one.

2 The model

2.1 The agents

We shall consider a monetary overlapping generations model (Samuelson,
1958) with production. The economy includes representative firms and house-
holds, and the government.
Households of generation t live for two periods, work Nt and consume

C1t in period t, consume C2t+1 in period t+ 1. They maximize the expected
value of the following two period utility:

Ut = α
C1−σ
1t

1− σ
+

C1−σ
2t+1

1− σ
−Nt σ ≥ 0 (1)

4We shall notably study Walrasian prices and wages, preset prices and preset wages.
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Households are submitted in each period of their life to a “cash in ad-
vance” constraint:

M1t ≥ PtC1t M2t+1 ≥ Pt+1C2t+1 (2)

The total quantity of money is Mt =M1t +M2t. Since the young house-
hold starts his life without any asset, he has to borrow PtC1t from the bank
at the interest rate it in order to satisfy the cash in advance constraint.
Consequently the bank makes profits Λt, equal to:

Λt = itPtC1t (3)

To simplify calculations we assume that these profits Λt are redistributed
lump-sum to the young households5.
The representative firm in period t produces output Yt with labor Nt via

the production function:

Yt = ZtNt (4)

where Zt is a technological shock common to all firms. We assume that the
firms belong to the young households, to which they distribute their profits,
if any.

2.2 Government policy and the optimality criterion

The government has essentially one policy instrument, the nominal interest
rate it.
In order to evaluate the optimality properties of potential interest rate

policies, we shall use the criterion proposed by Samuelson for the overlapping
generations model (Samuelson, 1967, 1968, Abel 1987) and assume that in
period t the government maximizes the function Vt:

Vt = Et

∞X
s=t−1

βs−tUs (5)

The sum starts at s = t − 1 because the old household born in t − 1 is
still alive in t. Rearranging the terms in the infinite sum (5), we find that,
up to a constant, the criterion Vt can be rewritten under the more convenient
form:

5This assumption simplifies notably the asset dynamics (see equation 15 below). It is
conjectured that the main results would still hold under alternative redistribution schemes,
although explicit solutions might not be available throughout.
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Vt = Et

∞X
s=t

βs−t∆s (6)

with:

∆t = α
C1−σ
1t

1− σ
+
1

β

C1−σ
2t

1− σ
−Nt (7)

3 Market equilibrium

For the policy evaluations that will follow, we need to characterize the market
equilibrium.
Consider first the problem of the old households in period t. We denote

by Ωt−1 the financial wealth that the old households have accumulated at the
end of period t−1, and which they own at the beginning of period t. With a
hundred percent cash in advance constraint (formula 2), their consumption
C2t is simply given by:

PtC2t = Ωt−1 (8)

Now let us write the maximization program of the young household born
in t. When young, the representative household receives wages WtNt, firms’
profits Ψt = PtYt −WtNt and central bank profits Λt. If he consumes C1t in
the first period of his life, he will have accumulated at the end of period t a
financial wealth:

Ωt = (WtNt +Ψt + Λt)− (1 + it)PtC1t (9)

In view of (8), the part of the household’s expected utility that pertains
to his second period consumption can be written:

Et

µ
C1−σ
2t+1

1− σ

¶
=

Ω1−σt

1− σ
Et

µ
1

Pt+1

¶1−σ
(10)

where the term Et (1/Pt+1)
1−σ represents young households’ expectations.

Note that, although we will assume rational expectations in all that follows,
this term could possibly differ from its rational expectations value, for exam-
ple if households were involved in an ongoing learning process6.
So the expected utility maximization program of the young household

boils down to choosing C1t and Nt so as to solve:

6One may find explicit analysis of such a learning process in a similar context in Bullard
and Mitra (2002) and Evans and Honkapohja (2003).
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Maximize α
C1−σ
1t

1− σ
+

Ω1−σt

1− σ
Et

µ
1

Pt+1

¶1−σ
−Nt s.t.

Ωt = (WtNt +Ψt + Λt)− (1 + it)PtC1t

The first order conditions with respect to C1t and Nt are:

αC−σ1t = (1 + it)PtΩ
−σ
t Et

µ
1

Pt+1

¶1−σ
(11)

1 =WtΩ
−σ
t Et

µ
1

Pt+1

¶1−σ
(12)

We have two other equilibrium equations. The first says that total con-
sumption must equal production:

C1t + C2t = Yt = ZtNt (13)

The second says that the price is equal to marginal cost:

Pt =
Wt

Zt
(14)

We should finally note that, since central bank profits Λt are redistributed
to the consumers, Ωt will remain constant in time. Indeed, combining (3),
(8), (9) and (13), we obtain:

Ωt = PtYt − (1 + it)PtC1t + Λt = PtC2t = Ωt−1 = Ω (15)

We can also combine (12) and (14) to find the dynamic equation giving
Walrasian prices, denoted as P ∗t :

1

P ∗t
= ZtΩ

−σEt

µ
1

P ∗t+1

¶1−σ
(16)

A solution to this dynamic equation is derived in appendix 1. We note
that Walrasian prices do not depend on the interest rate.
We will further make the traditional assumption that a higher expected

inflation leads to a higher current equilibrium price, which leads to the fol-
lowing restriction on σ:

0 ≤ σ ≤ 1 (17)
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4 Optimal interest policy: theWalrasian case

As a benchmark, we shall now compute the optimal interest rate policy in
the case where all markets clear.

Proposition 1: Under Walrasian prices and wages the optimal interest rate
rule is:

it = 0 (18)

Proof : The central bank must choose the interest rate so as to maximize, in
each period and for each value of the shocks:

∆t = α
C1−σ
1t

1− σ
+
1

β

C1−σ
2t

1− σ
−Nt (19)

or, using (13):

∆t = α
C1−σ
1t

1− σ
+
1

β

C1−σ
2t

1− σ
− C1t + C2t

Zt
(20)

We first note that C2t (equation 8) does not depend on the interest rate,
since P ∗t does not. Combining (11), (12) and (14) we find that C1t is given
by:

C1t =

µ
αZt

1 + it

¶1/σ
(21)

Inserting this value of C1t into (20) and maximizing ∆t with respect to it
yields immediately (18). Q.E.D.
We see that, in the Walrasian case, no matter what are the shocks or in-

flationary expectations, the interest rate should remain totally unresponsive.
This is actually the famous “Friedman rule” (Friedman, 1969).
So we have here a first example where the interest rate should not respond

at all to inflation, and therefore the Taylor principle does not hold.

5 Preset prices

We will now move to the study of economies with nominal rigidities. We shall
begin assuming preset prices7, and make the assumption, traditional in the

7Preset wages are studied in appendix 2.
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literature since Gray (1976), that the preset price is equal to the expected
value of the Walrasian price (in logarithms), i.e.:

pt = Et−1p∗t (22)

where8 pt = Log Pt, p∗t = LogP ∗t , and P ∗t , the Walrasian price in period t, is
the solution of the dynamic equilibrium equation (16).
We note that, since theWalrasian price P ∗t does not depend on the interest

rate, the preset price will not depend on it either.

5.1 Equilibrium conditions

Since the price is preset, equation (14) does not hold anymore, but the other
equilibrium conditions are still valid:

αC−σ1t = (1 + it)PtΩ
−σ
t Et

µ
1

Pt+1

¶1−σ
(23)

1 =WtΩ
−σ
t Et

µ
1

Pt+1

¶1−σ
(24)

C2t =
Ω

Pt
(25)

5.2 The optimal interest rule

We shall now derive an optimal interest rate rule having as arguments both
the shocks and the households’ inflationary expectations:

Proposition 2: Under preset prices the optimal interest rate rule is:

1

1 + it
= min

"
1, Zt

µ
Ω

Pt

¶−σ
Et

µ
Pt

Pt+1

¶1−σ#
(26)

Proof : We have to maximize for all values of the shocks the quantity:

∆t = α
C1−σ
1t

1− σ
+
1

β

C1−σ
2t

1− σ
− C1t + C2t

Zt
(27)

Now since Pt does not depend on it, from (25) C2t does not either, so that
we are left to maximize in it for all values of the shocks:

8So in all that follows lowercase letters denote the logarithm of the corresponding
uppercase letters.
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α
C1−σ
1t

1− σ
− C1t

Zt
(28)

where, from formula (23), C1t is given by:

C1t =

"
1 + it
α

PtΩ
−σEt

µ
1

Pt+1

¶1−σ#−1/σ
(29)

Let us take C1t as an intermediate maximization variable. Maximizing
(28) we find that the optimal value for C1t is:

C1t = (αZt)
1/σ (30)

Equating the two values (29) and (30), and taking into account the fact
that it must be positive, we find (26). Q.E.D.
We see that inflationary expectations enter with an elasticity 1−σ, which

is always smaller than 19. The intuition is simple: since the optimal value of
C1t (equation 30) does not depend on expectations, the optimal interest rate
will be chosen so as to exactly neutralize these expectations (formula 29).

5.3 The interest rate rule and shocks

We shall now express, in the tradition of DSGE models, the interest rate
rule as a function of shocks only. Let us assume the following process for the
technology shocks zt = LogZt:

zt =
ut

1− ρL
(31)

where L is the lag operator and the stochastic variable ut is normal and i.i.d.

Proposition 3: Under technology shocks (31), the optimal interest rate rule
is:

it = − ut
1− (1− σ) ρ

(32)

Proof : Formula (26) yields in logarithms, and ignoring irrelevant constants:

9We should note that this result does not mean that the Taylor principle is not valid,
since we consider only expected inflation through the “intrinsic” channel. Sections 6 and 7
study rules which include the “surrogate” channel as well, and where the Taylor principle
sometimes holds.
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it = −zt − pt + (1− σ)Etpt+1 (33)

It is shown in appendix 1 that, with the technology process (31), the
Walrasian price p∗t is given by (up to a constant):

p∗t = −µzt (34)

with:

µ =
1

1− (1− σ) ρ
(35)

Consequently:

pt = Et−1p∗t = −µEt−1zt (36)

Then formula (33) becomes:

it = −zt + µEt−1zt − µ (1− σ)Etzt+1

= − ut
1− ρL

+
µρut−1
1− ρL

− µ (1− σ) ρut
1− ρL

(37)

which, after simplification, yields (32). Q.E.D.
We see that, in this simple case, the optimal interest rate is a function of

the innovation of the shock only. In section 7 we shall study a more complex
pricing scheme where the optimal interest rate depends on all past values of
the innovation.

6 Inflation as a surrogate for shocks

In proposition 2 (and the similar proposition 7 in appendix 3 on preset wages)
we considered an interest rate rule with both expected inflation and shocks
as arguments. Propositions 3 and 8 give rules with only shocks as arguments.
We shall now move to interest rate rules that are functions of inflation

(current or expected) only, and we shall see that optimal interest rates will
depend on inflation simply because inflation acts as a surrogate to shocks.
In order to make that “surrogate” aspect particularly clear, we shall take

the particular case σ = 1, i.e. the case where the “intrinsic” coefficient of
response to expected inflation is exactly zero (propositions 2 and 7).
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6.1 Equilibrium

For σ = 1 a number of formulas actually simplify. Notably formula (16)
giving the equilibrium price becomes:

P ∗t =
Ω

Zt
(38)

so that:

pt = Et−1p∗t = ω −Et−1zt (39)

with ω = LogΩ. The values of the preset price equilibrium quantities are:

C1t =
αΩ

(1 + it)Pt
(40)

C2t =
Ω

Pt
(41)

Nt =
αΩ

(1 + it)PtZt
+

Ω

PtZt
(42)

6.2 Utility evaluation

Setting σ = 1 in equation (7), we find that the “period t utility” ∆t is now:

∆t = αLogC1t +
1

β
LogC2t −Nt (43)

Inserting into (43) the values in (40), (41) and (42), we obtain the follow-
ing value for ∆t:

∆t = αLog

·
αΩ

(1 + it)Pt

¸
+
1

β
Log

µ
Ω

Pt

¶
− 1

PtZt

µ
αΩ

1 + it
+ Ω

¶
(44)

or, keeping only the terms containing the interest rate:

∆t = −Log (1 + it)− 1

PtZt

Ω

1 + it
(45)

We shall find the optimal interest rate rule by maximizing the expected
value of∆t (equation 45) with respect to the parameters of the rule, assuming
that the technological process is still given by (31).
As indicated above, we shall consider two different rules, where the inter-

est rate reacts to current or expected inflation.

11



6.3 Current inflation

We shall first assume that the interest rate is a function of current inflation:

1 + it = A exp (γπt) = A exp [γ (pt − pt−1)] (46)

Proposition 4: Under preset prices and the technology process (31), the
optimal interest rate rule is characterized by:

γ = 0 (47)

A = exp

µ
V

2

¶
(48)

V = 1 (49)

Proof : Appendix 3.
We see that in this case the Taylor principle does not hold since γ = 0.

We can now give a simple intuition as to why the coefficient of reaction to
inflation γ is equal to zero. Let us denote as i∗t the “optimal” interest rate
derived in proposition 3. With σ = 1 we have:

i∗t = −ut (50)

On the other hand we can compute, using formula (36) with µ = 1, the
expression of current inflation as a function of shocks:

πt = pt − pt−1 = −Et−1zt +Et−2zt−1 = −ρ (1− L)ut−1
1− ρL

(51)

We see that, because prices are preset, inflation is function of past in-
novations, whereas the optimal interest rate i∗t is function of the current
innovation ut only. So πt and ut are statistically independent, and there-
fore current inflation πt cannot play the role of a surrogate for ut. Moreover
a nonzero γ would only create unwanted “noise”, reducing utility. These
explain why the optimal γ is equal to zero.

6.4 Expected inflation

We shall now assume that the interest rate is a function of expected inflation:

1 + it = A exp (γEtπt+1) = A exp [γEt (pt+1 − pt)] (52)
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Proposition 5: Under preset prices and the technology process (31), the
optimal interest rate rule is characterized by:

γ =
1 + ρ

2ρ
(53)

A = exp

µ
V

2

¶
(54)

V =
1− ρ

2
(55)

Proof : Appendix 4.
We see that this time γ is always greater than 1, and the Taylor principle

is always verified. To give an intuition about the value of the coefficient γ,
we can compute the value of expected inflation as a function of shocks:

Etπt+1 = πt+1 = pt+1 − pt = −Etzt+1 +Et−1zt

= −ρ (1− L)ut
1− ρL

= −ρut + ρ (1− ρ)ut−1
1− ρL

(56)

while we still have i∗t = −ut. We see this time that i∗t and Etπt+1 are cor-
related, so that Etπt+1 can play, at least partly, the role of a surrogate for
ut.
To further interpret the coefficient γ in (53), let us separate two cases.

First, in the case where ρ = 1, expected inflation and the innovation ut are
statistically equivalent, and we have:

i∗t = −ut = Etπt+1 (57)

so that quite naturally γ = 1.
Now if ρ < 1, Etπt+1 contains two terms (equation 56). The first one,

−ρut, is collinear to ut. If there was only this term, the coefficient γ would
be equal to 1/ρ. But, because of the second term ρ (1− ρ)ut−1/ (1− ρL), an
increase in γ creates some inefficient “noise”, so that in the end the actual
coefficient γ is between 0 and 1/ρ (formula 53).
We can compute the value of the expected utility (formula 45) corre-

sponding to this interest rate rule:

E (∆t) = −V
2
− 1 (58)
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We can also compute the expected utility corresponding to the rule found
in proposition 3, and we find:

E (∆t) = −1 (59)

We see that, in view of (55), unless ρ = 1 the rule using expected inflation
will never do as well as the rule using the shocks directly.

7 The interest rate rule under staggered prices

We shall now study the optimal rule when prices are staggered10. The un-
derlying idea (Calvo, 1983) is that in each period every price contract has
a probability φ of being maintained, and a probability 1 − φ of being can-
celled, in which case it is renegotiated on the basis of the latest information.
The actual price is given, up to an unimportant constant, by the following
weighted average:

pt = (1− φ)
∞X
j=0

φjEt−jp∗t (60)

These contracts have an average duration of φ/ (1− φ). We see that it
is a quite flexible formulation, ranging from full flexibility (φ = 0) to full
rigidity (φ = 1).

7.1 The optimal rule

We continue with the case σ = 1, so that:

p∗t = −zt (61)

Combining (60) and (61), we find that pt is equal to:

pt = − (1− φ)
∞X
j=0

φjEt−jzt (62)

We shall now characterize the optimal interest rate rule in the case where
the interest rate is a function of current inflation.
10We use a variant of the famous Calvo (1983) contract. That variant was developed in

microfounded models in Bénassy (2002a, 2003a,b), to which the reader is referred. Similar
contracts have been proposed by Devereux and Yetman (2003) and Mankiw and Reis
(2002).
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Proposition 6: Assume that the interest rate rule is function of current
inflation:

1 + it = A exp (γπt) = A exp [γ (pt − pt−1)] (63)

then this rule is characterized by:

γ =
φ (1 + ρ)

2 (1− φ)
(64)

Proof : Appendix 5.
We see this time that we have a more balanced view than in propositions

4 and 5, since, depending on the values of φ and ρ, the coefficient γ may be
greater or smaller than 1, so that the Taylor principle holds sometimes, but
not as a general rule.

7.2 An interpretation

As before we shall now compute both the optimal response of interest rates
to shocks, and the value of inflation as a function of shocks:
The optimal response of interest rates is (cf. formula 26 with σ = 1):

i∗t = −zt − pt (65)

Now:

zt =
ut

1− ρL
pt = − (1− φ)ut

(1− ρL) (1− φρL)
(66)

So the optimal response is:

i∗t = −
ut

1− ρL
+

(1− φ)ut
(1− ρL) (1− φρL)

=
−φut
1− φρL

(67)

We see that this time the interest rate should respond to a weighted
average of past innovations in the technology. Let us now compute the value
of inflation:

πt = (1− L) pt = − (1− φ) (1− L)ut
(1− ρL) (1− φρL)

(68)

We see that, if ρ = 1, πt and i∗t are collinear: i
∗
t = φπt/ (1− φ), so that

πt is a perfect surrogate for i∗t , and therefore:

γ =
φ

1− φ
(69)

15



which is what formula (64) tells us for ρ = 1.
Now if ρ < 1, one can again decompose πt as the sum of a term propor-

tional to i∗t , and one term orthogonal to it (noise). This computation is easy,
but a bit clumsy, and is therefore omitted.

8 Conclusions

We constructed in this article a dynamic stochastic model for which it was
possible to compute simple explicit solutions for optimal interest rate rules.
We paid particular attention to the optimal reaction of nominal interest
rates to inflation, and notably whether the elasticity of this reaction function
should be greater than one (the Taylor principle).
We characterized this elasticity as a function of various underlying factors,

and found that it could be smaller than one as well as greater, so that the
Taylor principle does not hold in general.
We also saw on some examples that a rule using inflation as a surrogate for

shocks usually does not perform as well as the rule using the original shocks.
Therefore it would be more efficient to base interest rate policy directly on
the information about the shocks, if it were available, of course.
In order to obtain explicit solutions the model presented here has been

voluntarily streamlined. In particular some traditional transmission mech-
anisms are absent. Their inclusion would most likely necessitate the use of
numerical simulations, but it is conjectured that this would not change the
central message of this article.
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Appendix 1

Walrasian Price Dynamics

We shall compute the dynamics of the Walrasian price for the following
process for zt:

zt =
ut

1− ρL
(70)

where ut is normal and i.i.d. Let us recall the basic equation:

1

P ∗t
= ZtΩ

−σEt

µ
1

P ∗t+1

¶1−σ
(71)

Loglinearizing it and omitting constants we obtain:

p∗t =
−zt

1− (1− σ)L−1
=

−ut
(1− ρL) [1− (1− σ)L−1]

(72)

We make the usual decomposition:

1

(1− ρL) [1− (1− σ)L−1]
=

µ

1− ρL
+

µ

1− (1− σ)L−1
− µ (73)

µ =
1

1− (1− σ) ρ
(74)

Consequently we have, up to irrelevant constants:

p∗t = −µ
ut

1− ρL
= −µzt (75)

Appendix 2

Preset Wages

We shall investigate here a different nominal rigidity, preset wages, and
assume that the preset wage is equal to the expected value of the Walrasian
wage (in logarithms), i.e.:

wt = Et−1w∗t (76)
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where wt = LogWt, w∗t = LogW ∗
t , W

∗
t = ZtP

∗
t , and P ∗t is the solution of

equation (16). We note that, since the Walrasian wage W ∗
t does not depend

on the interest rate, the preset wage does not depend on it either.

Equilibrium conditions

Since the wage is preset, equation (12) does not hold anymore, but the
other conditions are still valid:

αC−σ1t = (1 + it)PtΩ
−σEt

µ
1

Pt+1

¶1−σ
(77)

C2t =
Ω

Pt
(78)

Wt

Pt
= Zt (79)

The optimal interest rule

Proposition 7: Under preset wages the optimal interest rate rule is:

1

1 + it
= min

"
1,WtΩ

−σEt

µ
1

Pt+1

¶1−σ#
(80)

Proof : From formulas (77) and (79):

C1t =

"
1 + it
αZt

WtΩ
−σEt

µ
1

Pt+1

¶1−σ#−1/σ
(81)

We have to maximize in it for all values of the shocks:

α
C1−σ
1t

1− σ
− C1t

Zt
(82)

where C1t is given by (81). Taking C1t as an intermediate maximization
variable, we find:

C1t =

µ
1

αZt

¶−1/σ
(83)

Equating the two values (81) and (83), and taking into account the fact
that it must be positive, we find (80). Q.E.D.
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Interest rate rule and shocks

Let us now express the interest rate rule as a function of shocks only.

Proposition 8: Under preset wages the optimal interest rate rule is:

it = − (1− σ) ρ

1− (1− σ) ρ
ut (84)

Proof : Formula (80) yields in logarithms:

it = −wt + (1− σ)Etpt+1 (85)

Now:

wt = Et−1w∗t = Et−1 (p∗t + zt) = −µEt−1zt +Et−1zt (86)

pt+1 = wt+1 − zt+1 = −µEtzt+1 +Etzt+1 − zt+1 (87)

Etpt+1 = −µEtzt+1 (88)

Combining (85), (86) and (88), we obtain:

it = µEt−1zt − Et−1zt − (1− σ)µEtzt+1

= µ
ρut−1
1− ρL

− ρut−1
1− ρL

− (1− σ)µ
ρut

1− ρL
(89)

and, simplifying, formula (84). Q.E.D.
We see that under preset wages the elasticity of reaction to the technology

shock (formula 84) is substantially different from that under preset prices
(formula 32).

Appendix 3

Proof of Proposition 4

Finding the optimal rule consists in finding the optimal values for the two
parameters γ and A. So, combining (45) and (46), one will maximize with
respect to these two parameters the following quantity:
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E (∆t) = −LogA−E [γ (pt − pt−1)]− 1
A
E exp [−zt − pt − γ (pt − pt−1)] (90)

Given relation (39) this becomes:

E (∆t) = −LogA−E [γ (Et−1zt −Et−2zt−1)]

− 1
A
exp [−zt +Et−1zt + γ (Et−1zt −Et−2zt−1)] (91)

Because zt is normal, this simplifies to:

E (∆t) = −LogA− 1

A
exp

µ
V

2

¶
(92)

where V is the variance of the last term into brackets in expression (91). Now
we have:

Et−1zt =
ρut−1
1− ρL

Et−2zt−1 =
ρut−2
1− ρL

(93)

The term in brackets in (91) is equal to:

ut
1− ρL

− ρut−1
1− ρL

− γρut−1
1− ρL

+
γρut−2
1− ρL

= ut − γρut−1 +
γρ (1− ρ)

1− ρL
ut−2 (94)

and its variance V is therefore equal to:

V = 1 + γ2ρ2 +
γ2ρ2 (1− ρ)2

1− ρ2
= 1 +

2γ2ρ2

1 + ρ
(95)

We see that minimum variance is reached for γ = 0. The corresponding
variance is V = 1.

Appendix 4

Proof of Proposition 5

Combining (45) and (52), we will maximize with respect to γ and A:
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E (∆t) = −LogA−E [γEt (pt+1 − pt)]− 1

A
E exp [−zt − pt − γEt (pt+1 − pt)]

(96)
Given relation (39) this becomes:

E (∆t) = −LogA−E [γ (Etzt+1 −Et−1zt)]

− 1
A
exp [−zt +Et−1zt + γ (Etzt+1 −Et−1zt)] (97)

Again this simplifies as formula (92):

E (∆t) = −LogA− 1

A
exp

µ
V

2

¶
(98)

where V is now the variance of the last term into brackets in (97). We have:

Et−1zt =
ρut−1
1− ρL

Etzt+1 =
ρut

1− ρL
(99)

The last term in brackets in (97) is equal to:

ut
1− ρL

− ρut−1
1− ρL

− γρut
1− ρL

+
γρut−1
1− ρL

=
1− γρ− ρ (1− γ)L

1− ρL
ut = (1− γρ)ut +

γρ (1− ρ)

1− ρL
ut−1 (100)

so its variance V is equal to:

V = (1− γρ)2 +
γ2ρ2 (1− ρ)2

1− ρ2
= (1− γρ)2 +

γ2ρ2 (1− ρ)

1 + ρ
(101)

Minimization with respect to γ yields:

γ =
1 + ρ

2ρ
(102)

Inserting (102) into (101) we obtain the resulting variance:

V =

µ
1− 1 + ρ

2ρ

¶2
+

µ
1 + ρ

2ρ

¶2
1− ρ

1 + ρ
=
1− ρ

2
(103)

Maximizing expected utility (98) with respect to the constant term A
yields:
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A = exp

µ
V

2

¶
(104)

so that the value of the expected utility is:

E (∆t) = −V
2
− 1 (105)

Appendix 5

Proof of Proposition 6

From (31) and (62) the price is equal to:

pt = − (1− φ)
∞X
j=0

φjEt−jzt = − (1− φ)
∞X
j=0

φjρjut−j
1− ρL

= − (1− φ)ut
(1− ρL) (1− φρL)

(106)

We want to minimize:

E exp [−zt − pt − γ (pt − pt−1)]

= E exp

·
− ut
1− ρL

+
(1− φ)ut

(1− ρL) (1− φρL)
+

γ (1− φ) (1− L)ut
(1− ρL) (1− φρL)

¸

= E exp

· −φut
1− φρL

+
γ (1− φ) (1− L)ut
(1− ρL) (1− φρL)

¸
(107)

Now:

(1− φ) (1− L)

(1− ρL) (1− φρL)
=
1

ρ

·
1− φρ

1− φρL
− 1− ρ

1− ρL

¸
(108)

so the expression in (107) is equal to:

E exp

· −φut
1− φρL

+

µ
1− φρ

1− φρL
− 1− ρ

1− ρL

¶
γut
ρ

¸
= E exp

·
γ (1− φρ)− φρ

ρ (1− φρL)
ut − γ (1− ρ)

ρ (1− ρL)
ut

¸
(109)
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We want to minimize the variance of the quantity in brackets. The term
of order j in the brackets in (109) is equal to:

γ (1− φρ)− φρ

ρ
φjρjut−j − γ (1− ρ)

ρ
ρjut−j (110)

The variance of the term of order j is, omitting the ρ in the denominator:

[γ (1− φρ)− φρ]2 φ2jρ2j + γ2 (1− ρ)2 ρ2j

−2γ (1− ρ) [γ (1− φρ)− φρ]φjρ2j (111)

Summing over all values of j from zero to infinity we find the total vari-
ance:

[γ (1− φρ)− φρ]2

1− φ2ρ2
+

γ2 (1− ρ)2

1− ρ2
− 2γ (1− ρ) [γ (1− φρ)− φρ]

1− φρ2
(112)

Differentiating with respect to γ yields the first order condition:

γ (1− φρ)− φρ

1 + φρ
+

γ (1− ρ)

1 + ρ
− (1− ρ) [2γ (1− φρ)− φρ]

1− φρ2
= 0 (113)

Let us factor the coefficient γ:

γ

·
1− φρ

1 + φρ
+
1− ρ

1 + ρ
− 2 (1− ρ) (1− φρ)

1− φρ2

¸
= φρ

·
1

1 + φρ
− 1− ρ

1− φρ2

¸
(114)

Now:
1

1 + φρ
− 1− ρ

1− φρ2
=

ρ (1− φ)

(1 + φρ) (1− φρ2)
(115)

1− φρ

1 + φρ
− (1− ρ) (1− φρ)

1− φρ2
=

ρ (1− φρ) (1− φ)

(1 + φρ) (1− φρ2)
(116)

1− ρ

1 + ρ
− (1− ρ) (1− φρ)

1− φρ2
=

ρ (1− ρ) (φ− 1)
(1 + ρ) (1− φρ2)

(117)

Combining the last four equations we obtain:

γ

·
1− φρ

1 + φρ
− 1− ρ

1 + ρ

¸
=

φρ

1 + φρ
(118)

which simplifies as:

γ =
φ (1 + ρ)

2 (1− φ)
(119)
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