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Abstract

Finding a solution concept is one of the central problems in cooperative game
theory, and the notion of core is the most popular solution concept since it is based
on some rationality condition. In many real situations, not all possible coalitions
can form, so that classical TU-games cannot be used. An interesting case is when
possible coalitions are defined through a partial ordering of the players (or hier-
archy). Then feasible coalitions correspond to teams of players, that is, one or
several players with all their subordinates. In these situations, the core in its usual
formulation may be unbounded, making its use difficult in practice. We propose a
new notion of core, called the restricted core, which imposes efficiency of the allo-
cation at each level of the hierarchy, is always bounded, and answers the problem
of sharing benefits in a hierarchy. We show that the core we defined has properties
very close to the classical case, with respect to marginal vectors, the Weber set,
and balancedness.
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1 Introduction

In cooperative game theory, a central topic is to define a rational way for distributing
the total outcome among players (solution concept of this game). For transferable utility
(TU) games, there exist two well-known solutions: the Shapley value [27], and the core
[19]. The first one is defined by a set of rationality axioms: linearity, null player axiom,
symmetry, and efficiency, and it is applicable to any game. The second one avoids the
formation of subcoalitions of the grand coalition, in the sense that any subcoalition will
receive at least the amount it can achieve by itself1. It may happen that no such solution
exists. Classical results show under which conditions the core is nonempty, and give the
structure of the core when the game is convex [28, 25].

In the classical setting of TU-games, any coalition S ⊆ N can form, and each player
can participate or not participate to the game. Mathematically speaking, this amounts
to define the characteristic function of a game as a real-valued function v on the Boolean
lattice 2N , and vanishing at the empty set. More general definitions allowing a better
modelling of reality have been proposed. We may distinguish between games having a
restricted set of feasible coalitions (which may induce in some cases a hierarchy among
players), and games permitting a more complex mechanism of participation. In the first
category, we find games with precedence constraints [13], games on matroids, convex
geometries and other combinatorial structures [3, 5], games on regular set systems [31],
games on augmenting systems [4], games on permission structures [10], games on commu-
nication graphs [26, 29, 30] (see a comparative survey of all these structures in [20]) ; in
the second category, we find multichoice games of Hsiao and Raghavan [24], fuzzy games
[7], and games on product of distributive lattices [21]. In many cases, the characteristic
function of such general games can be considered as a real-valued function defined over
a (often distributive) lattice.

In this paper, we propose a definition for the core of TU-games whose characteristic
function is v : L → R, where L is a distributive lattice. There are two main reasons for
focusing on this kind of game. The first one appears clearly from the previous discussion,
since many of the above examples are related to lattices, or even their internal structure
are exactly distributive lattices. The second reason is that a distributive lattice, by
Birkhoff’s theorem, is generated by defining a partial order on the set of players. This
is in fact exactly the framework considered by Faigle and Kern [13], since precedence
constraints among players are nothing else than that. A partial order on players can be
interpreted in several ways, according to the application context, but there is one which
is self-evident: it defines a hierarchy on players, in the sense that j ≤ i means that j is a
subordinate of i. Moreover, the lattice generated by this order is composed by all possible
downsets on N , where a downset is a subset of N where all subordinates of players in the
downset are present. Therefore, the lattice can be interpreted as the set of all possible
teams compatible with the hierarchy. This clearly applies for example to companies, or
any other structured entity producing some benefit. In this context, defining the core
of games on such structures amounts to define a way of sharing the total benefit v(N)
achieved among the members, in a way that fully respects the achievement of each team.

As we will show, the study of the core appears to be more complex than in the clas-

1In this paper, we consider games as profit games, hence the core is seen as a rational way to share
benefits. We may consider cost games as well, reversing inequalities accordingly.
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sical case, although similar results still hold. A first fact is that the core, defined as in
the classical way, is still a polyhedron but possibly unbounded. This is not surprising,
considering the general results obtained by Derks and Reijnierse [11], about the bound-
edness of the core for games defined on a set of feasible coalitions. However, this negative
result prevents us to use the core in its original definition as a way of sharing benefits,
for monetary amounts should remain bounded. The only way to get out of this situation
is to impose further constraints on the core, that is, to add new inequalities or equali-
ties in its definition, so as to get it bounded. An obvious way to do it is to impose the
nonnegativity of the payoffs for players. Then we obtain what is generally called the
positive core, introduced by Faigle [12]. Since we have no special reason to impose non-
negativity2, we have to find another way to impose constraints, which should reflect some
rationality. One of the main achievements of this paper is precisely to solve this issue, by
adding equality constraints playing the rôle of efficiency, at each level of the hierarchy.
The new definition of the core we obtain is called the restricted core, and it is always
bounded. Moreover, it has a clear interpretation in our context of sharing benefits. The
second achievement is that we prove that the restricted core has properties very similar
to the core of classical games: in particular, the inclusion of the restricted core into the
(restricted) Weber set always holds, and equality holds when the game is convex.

There are in the literature other works dealing with hierarchies, in particular by
Demange [9], and van den Brink et al. [30]. The latter is more related to communication
graphs and deals with the selectope, while the former consider a rather different definition
of a team, where all subordinates need not be present. In particular, any singleton is a
team, which we do not think meaningful in our context. We discuss these related works
at the end of the paper.

The paper is organized as follows. We begin by introducing the basic definitions for
games on distributive lattices and partially ordered sets (posets) in Section 2. Then
Sections 3, 4 present the basic definitions for games on distributive lattices and the core.
In the next sections 5, 6, 7, we study their properties. We indicate in Section 8 how to
apply our results to the case of product lattices, encompassing the case of multichoice
games. In Section 9, we give a brief account on related works in the literature.

2 Posets, distributive lattices and levels

This section briefly recalls the necessary material on finite posets and lattices (see, e.g.,
Davey and Priestley [8] for details). A partially ordered set (P,≤), or poset for short, is a
set P endowed with a partial order ≤ (reflexive, antisymmetric and transitive). As usual,
the asymmetric part of ≤ is denoted by <. For x, y ∈ (P,≤) (if no ambiguity occurs, we
may write simply P ), we write x ≺ y and say that x is covered by y if x < y and there
is no z ∈ P such that x < z < y. An element x ∈ P is minimal if there is no y ∈ P such
that y < x.

A chain from x to y in P is any sequence x, x1, . . . , xp, y of elements of P such that
x < x1 < · · · < xp < y. The chain is maximal if no other chain from x to y contains it,
i.e., if x ≺ x1 ≺ · · · ≺ xp ≺ y. The length of a chain is its number of elements minus 1.

2It could happen that a player may induce some loss when participating to certain teams. Such a
player should be penalized when sharing the benefit, therefore payoffs could be negative.
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The height of x ∈ P , denoted by h(x), is the length of a longest chain from a minimal
element to x. The height of P , denoted by h(P ), is then the maximum of h(x) taken over
the elements of P . Interestingly, the height function induces a partition of P into levels :
level number i, denoted by Qi, is the set of elements of height i− 1. Note that Q1 is the
set of minimal elements of P , Q2 is the set of minimal elements of P \Q1, etc. Also, any
two distinct elements x, y in a level set are incomparable, i.e., neither x < y nor x > y

holds.

A particularly well-known class of posets are lattices. A lattice (L,≤) is a poset having
the following property: for any x, y ∈ L, their supremum and infimum, denoted by x ∨ y
and x ∧ y, exist in L. When a lattice is finite, it has a greatest element ⊤ =

∨

x∈L x

(top element), and a smallest element ⊥ =
∧

x∈L x (bottom element). If ∨,∧ obey
distributivity, then L is said to be distributive. A nice property of distributive lattices is
that all maximal chains from ⊥ to ⊤ have same length h(L).

We relate now lattices and posets. Consider a poset (P,≤) and some Q ⊆ P . Then
Q is a downset of P if x ∈ Q and y ≤ x imply y ∈ Q. Any element x ∈ P generates
a downset, defined by ↓ x := {y ∈ P | y ≤ x}. Let us denote by O(P ) the set of
all downsets of P and remark that ∅ ∈ O(P ). It is not difficult to show that the poset
(O(P ),⊆) is a collection of subsets of P , containing P and ∅, and is closed under union and
intersection. More precisely, it is a distributive lattice of height n, and the fundamental
result of Birkhoff [6] says that in the finite case, any distributive lattice can be obtained
as the set of downsets of some poset.

Finally, consider again the levels in P induced by the height function, and let us
assume that there are q levels. Observe thatQ1 (the set of minimal elements) is a downset,
therefore it is an element of the lattice O(P ). Similarly, by construction Q1 ∪Q2 is also a
downset, and so are

⋃i

j=1Qj , for i = 1, . . . , q. In other words, the levels sets in P induce
particular elements in the lattice, which we will denote by ⊤1, . . . ,⊤q:

⊤i :=

i⋃

j=1

Qj .

Note that ⊤q = P , the top element of O(P ), and that ⊤1, . . . ,⊤q form a chain in O(P ).
We put ⊤N := {⊤1, . . . ,⊤q}.

The following example illustrates these various definitions.

Example 1. We consider the poset P and its corresponding distributive lattice O(P ) on
Fig. 1. Then

Q1 = {1, 4, 5} , Q2 = {2} , Q3 = {3} .

⊤1 = 145,⊤2 = 1245,⊤3 = 12345.

3 Games on distributive lattices

As said in the introduction, there are two main applications of games defined on distribu-
tive lattices, namely to model restriction on the set of feasible coalitions, or to allow for
each player several possible (partially ordered) actions for participation to the game. Our
development will follow the first stream, and so is close to the framework of Faigle and
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Figure 1: Example of poset P (left) and the corresponding lattice O(P ) (right)

Kern [13]. We will comment briefly the second one, which is developed in [21], in Section
8, where we will indicate how our results can be straightforwardly applied to this case.

In the rest of the paper, N = {1, . . . , n} denotes the set of players, which we suppose
to be endowed with a partial order ≤. The relation i ≤ j, with i, j ∈ N , indicates
that player i is below player j, or a subordinate of j (this is called precedence constraint
by Faigle and Kern [13]). Hence, the relation ≤ describes a hierarchy among players.
Practically, this means that, if j participates to the game, all subordinates of j must also
participate to it. Therefore, a coalition S ⊆ N is feasible if j ∈ S and i ≤ j implies that
j ∈ S. This has three important consequences, which can be drawn from Section 2:

(i) The set of feasible coalitions is precisely the set of all downsets of (N,≤), denoted
by O(N).

(ii) The set of feasible coalitions is a distributive lattice of height n.

(iii) The set of feasible coalitions is closed under union and intersection, and contains ∅
and N .

Definition 1. Let L := O(N) be the collection of all feasible coalitions (all downsets of
(N,≤)). A game on the distributive lattice L is a real-valued function v : L → R such
that v(∅) = 0.

We make some noteworthy remarks for positioning our paper.

Remark 1. (i) The classical definition of a TU-game is recovered when (N,≤) is an
antichain (i.e., all elements are minimal), that is, when there is no hierarchy and
all players are “on the same level”. Then clearly no restriction on coalitions exist,
and any S ∈ 2N is feasible.

(ii) The structure of feasible coalitions we address in this paper is not new: as we
mentionned, the idea of generating feasible coalitions by a partial order on N has
been proposed by Faigle and Kern [13]. Also, sets of feasible coalitions closed under
union and intersection, but without the restriction of being of height n, have been
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studied by Derks and Gilles [10], using permission structures. In Section 9, we give a
brief description of permission structures, and compare them to our framework. One
can find also studies on collections of coalitions closed under union and intersection
in the work of Faigle [12] and Faigle and Kern [14]. We mention also that this
structure has been studied in the field of combinatorial optimization (see, e.g., the
monograph of Fujishige [16]).

In fact, many works dealing with restricted coalitions exist, with various structures
for the set of feasible coalitions (see a detailed survey in [20]). Our aim is not to
bring new results for the case of collections of coalitions closed under union and
intersection, already well-known. It is to bring the notion of level, closely related to
the notion of hierarchy, inducing some natural restrictions in the definition of the
core.

(iii) Once we have discovered that our set of feasible coalitions is closed under union and
intersection, we may forget about distributive lattices and work only with union and
intersection closedness. However, this would hide the way this collection is obtained
(as downsets of a partial order), and the notion of level, fundamental in this paper,
would disappear.

We introduce the following property.

Definition 2. Let v be a game on O(N). The game v is convex if v(S ∪T )+ v(S ∩T ) ≥
v(S) + v(T ), for all S, T ∈ O(N).

4 The core and the restricted core

We take the classical point of view for defining the core, that is, it is a set of pre-
imputations satisfying some rationality condition, which prevent players to form sub-
coalitions. A pre-imputation is a vector φ ∈ R

n such that
∑n

i=1 φi = v(N), where φi is
the amount of money given to player i. We use the usual shorthand φ(S) :=

∑

i∈S φi for
any subset S ⊆ N .

4.1 The core

In the classical case, the rationality condition is φ(S) ≥ v(S) for all coalitions S. Adapting
it to our framework leads to the following definition.

Definition 3. The core of a game v on O(N) is defined by the following set.

C(v) := {φ ∈ R
n | φ(N) = v(N) and φ(S) ≥ v(S), ∀S ∈ O(N)}.

Clearly, the core is a closed convex polyhedron. Unlike the classical case where all
coalitions are feasible, the core may be unbounded, i.e., it contains rays. We recall from
the theory of polyhedra (see, e.g., Ziegler [32], Faigle et al. [15]) that, unless it contains a
line in which case there is no vertices, a polyhedron is determined by its vertices (convex
part) and rays (conic part). The structure of the polyhedron is determined by its recession
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cone, i.e., the set of inequalities where the right member is replaced by 0. In our case,
this gives

C(L) =: {φ ∈ R
n | φ(N) = 0 and φ(S) ≥ 0, ∀S ∈ O(N)}.

The polyhedron has no line if and only if the recession cone is a pointed cone (and its
rays are the rays of the polyhedron), and the polyhedron is bounded (polytope) if and
only if the recession cone reduces to {0}.

Derks and Gilles [10] have shown that for our case (set of coalitions closed under union
and intersection, of height n), the recession cone is always a pointed cone. Also, Derks
and Reijnierse [11] provided necessary and sufficient conditions for the boundedness of
the core of a game defined on a set of feasible coalitions, without special structure (set
systems). See also the survey paper [20] for a general study of the core of games on set
systems. The following example illustrates that the core can be unbounded.

Example 2. We consider the following poset (N,≤) (left) and its corresponding dis-
tributive lattice O(N) (right).
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Let v be a game on O(N). By definition of the core, any element φ of the core must
satisfy:

φ1 + φ2 + φ3 + φ4 = v(⊤) = v(1234)

φ1 ≥ v(1)

φ2 ≥ v(2)

φ1 + φ2 ≥ v(12)

φ2 + φ4 ≥ v(24)

φ1 + φ2 + φ3 ≥ v(123)

φ1 + φ2 + φ4 ≥ v(124).

Whenever φ1, φ2 are large enough, we can always find out some φ3, φ4 to satisfy all
conditions, i.e., φ1, φ2 can be arbitrarily large. More precisely, the core contains 3 rays,
which are (0, 1,−1, 0), (0, 1, 0,−1) and (1, 0,−1, 0).

We denote the set of vertices of some convex set by Ext(·), and the convex hull of
some set by co(·). We define the convex part of the core by CF (v) := co(Ext(C(v))).

The fact that the core is unbounded makes its usage difficult, since once cannot deal
with arbitrary large payoffs in practice. A simple remedy to this would be to impose
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that φ should be bounded from below by some quantity. For example, we may impose
nonnegativity, and thus obtain what is called the positive core by Faigle [12]. However,
as indicated in Footnote 2, we do not think appropriate to forbid negative payoffs. If
the game is nonmonotone, there is some player inducing some loss by his participation.
Therefore, this player should not be rewarded, rather he should be charged by some
amount. In the sequel, we will provide a much less arbitrary and much better answer
to this problem, both for mathematical properties (since we will see that we are able
to keep many of the classical results on the core), and for the practical side, illustrated
hereafter with an example of benefit sharing in a hierarchical structure, one of our main
motivation.

4.2 How to share benefits in a hierarchical structure

The example we develop in this section will lead naturally to a new definition of the core.
We consider for illustration purpose a company with 7 employees N = {1, 2, 3, 4, 5, 6, 7},

and we represent the hierarchy among employees by the partial order ≤ on N . To be
enough general, we may even consider that one employee may have more than one direct
superior (it could be the case if the employee participates to several projects or belongs
to several teams). Hence the partial order is not necessarily a tree. The poset below
depicts the hierarchy in N .

b 5 b 6b 4

b 7

b 1 b 2 b 3�
��

@
@@

�
��

N = {1, 2, 3, 4, 5, 6, 7 | 1 < 4 < 7, 2 < 5 < 7, 3 < 6 < 7 and 1 < 5}

We see that employee 1 has two direct superiors, namely 4 and 5.
As explained in Section 3, feasible coalitions are downsets of (N,≤). In this context,

feasible coalitions correspond to feasible teams of the company, in the sense that the
presence of an employee in a feasible team implies the presence of all employees below.
It must be remarked that in general a feasible team in the above sense may be formed of
several teams in the usual sense, which we may call elementary teams (that is, a boss and
all employees below): in terms of poset terminology, this amounts to say that a downset
is the union of principal ideals (see Section 2). For example, the feasible team 12356 is
formed of the two elementary teams 125 and 36, with bosses 5 and 6. Note also that 3
itself is a team reduced to a singleton. We give below the distributive lattice of all teams
ordered by inclusion.
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Computing the levels Qk and top elements ⊤k, we get

Q1 = {1, 2, 3}, Q2 = {4, 5, 6}, Q3 = {7},

⊤1 = 123,⊤2 = 123456,⊤3 = 1234567 = N.

Level Qk corresponds to employees having the same rank3 k in the company, and ⊤k is
the smallest feasible team containing all employees up to rank k. We call it the principal
team of rank k.

At the end of each year, the total benefit (or a fixed proportion of it) has to be
distributed among all employees as a bonus. We denote it by v(N). For a given feasible
team S, we denote by v(S) the benefit achieved by S (and only by S) which is brought
to the company, and we denote by φ(S) the bonus or reward given to S. To achieve
the sharing, we propose to perform a local sharing at each hierarchical level Qk. More
precisely:

• For hierarchical level Qk, the amount to be shared among the employees of this level
is v(⊤k) − v(⊤k−1), that is, roughly speaking, the difference between the benefit
achieved by all employees up to level k, and the benefit achieved by all employees
of level strictly lower than k. In a sense, this is the genuine contribution of level k.

• Inside a given level Qk, the sharing is done freely, up to the condition that for each
feasible team S ∈ Sk, φ(S) ≥ v(S). Otherwise, if for some S, φ(S) < v(S), then
the team S may split from N and build a new independent company, because the
benefit achieved by S alone is more than that S will receive.

Asuming there are l hierarchical levels, this gives the linear system in φ

φ(Ql) = v(N) − v(⊤l−1)

φ(Ql−1) = v(⊤l−1) − v(⊤l−2)

... =
...

φ(Q1) = v(⊤1)

3Mathematically speaking the same height, see Section 2.

9



and since ⊤k = ∪ki=1Qi, and the Qk’s are pairwise disjoint, we deduce that φ(⊤k) =
∑k

i=1 φ(Qi) = v(⊤k) for k = 1, . . . , l. Conversely, imposing φ(⊤k) = v(⊤k) for k = 1, . . . , l
leads to the above system.

Applying this procedure to our example, we get

v(N) − v(123456) is given to the group Q3 = {7},

v(123456)− v(123) is given to the group Q2 = {4, 5, 6},

v(123) is given to the group Q1 = {1, 2, 3}.

4.3 The restricted core

From the previous development, we are led to the following definition.

Definition 4. The restricted core of a game v on O(N) is defined by

RC(v) := {φ ∈ C(v) | φ(⊤i) = v(⊤i), ∀⊤i ∈ ⊤N}.

Hence, the normalization condition is imposed at each level of the hierarchy. Note
that the restricted core collapses to the classical one if the set of feasible coalitions is 2N .
Indeed, in this case, (N,≤) is an antichain, so that there is only one level Q1 = N , and
⊤1 = N .

For the study of the restricted core, we may suppose without loss of generality that
the game v is monotone, i.e., S ⊆ T implies v(S) ≤ v(T ), and hence nonnegative. If
this is not true, it suffices to define a vector x ∈ R

n so that for every S, T ∈ L such that
S ⊆ T (in fact, one may restrict to pairs S, T where S is the immediate predecessor in
L), it holds:

v(T ) + x(T ) ≥ v(S) + x(S)

or equivalently
x(T \ S) ≥ v(S) − v(T ).

Observe that this set of inequalities has always a solution in x. Then we have

RC(v) = RC(v + x) − x := {φ− x | φ ∈ RC(v + x)}.

Indeed, φ(S) ≥ v(S) + x(S) is equivalent to φ(S) − x(S)
︸ ︷︷ ︸

(φ−x)(S)

≥ v(S), and similarly for

equalities.
A first observation is that when the game is monotone, it is a subset of the positive

core C+(v) := {φ ∈ R
n
+ | φ(S) ≥ v(S), ∀S ∈ L, φ(N) = v(N)}.

Theorem 1. Assume v on L = O(N) is monotone. Then RC(v) ⊆ C+(v).

Proof. Suppose that RC 6= ∅, otherwise the result holds trivially. By definition of the
positive core, it suffices to show that for any φ ∈ RC(v), φi ≥ 0 for all i ∈ N .
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If i ∈ Q1, since {i} ∈ O(N), we have φi ≥ v({i}) ≥ 0 by monotonicity of v. Suppose
then that i ∈ Ql, l > 1. Since RC(v) is nonempty, the system

φ(S) ≥ v(S), S ∈ O(N) \ ⊤N

φ(⊤k) = v(⊤k), ⊤k ∈ ⊤N

has a solution, hence by the Farkas lemma, for any vector y = (yS)S∈L such that yS ≥ 0
for all S ∈ L \ ⊤N , and

∑

S∋j

yS = 0, j ∈ N, (1)

it holds
∑

S∈L ySv(S) ≤ 0. Let us choose such a vector y0.
Consider now the following system for the above chosen i ∈ N :

φ(S) ≥ v(S), S ∈ O(N) \ ⊤N

φ(⊤k) = v(⊤k), ⊤k ∈ ⊤N

−φi ≥ ǫ

for some arbitrary small ǫ > 0. Clearly, if this system is infeasible for any ǫ, we must have
φi ≥ 0. Hence let us build a vector y′ =

[
(y′S)S∈L w

]
such that y′S ≥ 0 for S ∈ L \ ⊤N ,

w ≥ 0, satisfying the system
∑

S∋j

y′S = 0, j 6= i (2)

∑

S∋i

y′S − w = 0 (3)

and
∑

S∈L ySv(S) + wǫ > 0, which would imply infeasibility by the Farkas lemma. Re-
marking that Q1 ∪ · · · ∪Qj−1 ∪ {i} = ⊤j−1 ∪{i} belongs to O(N), we build y′ from y0 as
follows:

y′⊤j−1∪i
= y0

⊤j−1∪i
+ w, y′⊤j−1

= y0
⊤j−1

− w, y′S = y0
S for all other S,

and verify it is adequate for our purpose. Since w ≥ 0, the condition y′S ≥ 0 for S ∈ L\⊤N

holds. Equation (3) becomes

y0
⊤j−1∪i

+ w +
∑

S∋i,S 6=⊤j−1∪i

y0
S − w = 0

which is true by (1). Clearly, equations in (2) with j 6< i are identical to those of
(1). Let us consider then (2) with j < i. Since any such equation contains both terms
S = ⊤j−1 ∪ i and S = ⊤j−1, it is clearly satisfied since identical to (1). Finally, we
compute

∑

S∈L y
′
Sv(S) + wǫ:

∑

S∈L

y′Sv(S) + wǫ =
∑

S∈L

y0
Sv(S) + w(v(⊤j−1 ∪ i) − v(⊤j−1)) + wǫ.

The first term on the right hand side is a fixed nonpositive quantity, while the two
other ones are nonnegative and proportional to w (the second one is nonnegative by
monotonicity of v). Then the expression can be made strictly positive by a sufficiently
large w.

As a conclusion φi < 0 cannot occur, for any i ∈ N .
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From this result, the fact that the positive core is bounded and the above remark on
monotone games, it follows immediately:

Corollary 1. For any v on L = O(N), RC(v) is a polytope (bounded polyhedron).

5 Balancedness

It is well known that the necessary and sufficient condition for the nonemptiness of the
core of a game on 2N is balancedness of the game. Now, this result can be directly
adapted to our case, and in fact, to any structure of feasible coalitions.

Definition 5. (i) A collection B of elements of O(N) \ {∅} is balanced if there exist
positive coefficients µ(S), S ∈ B, such that

∑

S:S∋i µ(S) = 1, for all i ∈ N .

(ii) A game v on O(N) is balanced if for every balanced collection B of elements of
L \ {∅} with coefficients µ(S), S ∈ B, it holds

∑

S∈B

µ(S)v(S) ≤ v(N).

Proposition 1. A game on O(N) has a nonempty core if and only if it is balanced.

We omit the proof of this result, since it is identical to the classical case. We mention
that Faigle [12] has found other equivalent conditions for nonemptiness of the core in the
general case of set systems. We turn now to the case of the restricted core.

Let Q = {Q1, . . . , Qq} be the collection of levels of N and ⊤N = {⊤1, . . . ,⊤q} be the
collection of top elements of every level of O(N). Similarly, we introduce the notion of
level-balancedness as follows.

Definition 6. (i) A collection B of elements of O(N) \ {∅} is level-balanced if it exist
positive coefficients µ(S), S ∈ B, such that

∑

S:S∋i µ(S) = q − k + 1, for all i ∈
Qk, k = 1, . . . , q.

(ii) A game v on O(N) is level-balanced if for every balanced collection B of elements
of O(N) \ {∅} with coefficients µ(S), S ∈ B, it holds

∑

S∈B

µ(S)v(S) ≤

q
∑

k=1

v(⊤k).

Let us come back to Example 2. The conditions for level-balancedness read
∑

S∋1

µ(S) =
∑

S∋2

µ(S) = 2,
∑

S∋3

µ(S) =
∑

S∋4

µ(S) = 1.

The sum for elements of lower height have a higher value since the more an element
is in the bottom of the hierarchy, the more it is frequent in coalitions. Examples of
level-balanced collections are

B = {123, 124} with weights 1, 1

B = {1234, 12, 1, 2} with weights 1,
1

2
,

1

2
,

1

2
.
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Proposition 2. A game on O(N) has a nonempty restricted core if and only if it is
level-balanced.

Proof. Proving nonemptiness of the restricted core of a game is equivalent to constructing
a vector φ ∈ R

n satisfying the following conditions:

φ(⊤i) = v(⊤i), ∀⊤i ∈ ⊤N and φ(S) ≥ v(S), ∀S ∈ O(N) \ {∅}.

Consider the following linear program with the variables φj ∈ R, j ∈ N :

min z =
∑

⊤i∈⊤N

φ(⊤i) =

q
∑

i=1

i∑

k=1

φ(Qk)

under ∑

j:j∈S

φj ≥ v(S), ∀S ∈ O(N) \ {∅}.

Its optimal value is z =
∑

⊤i∈⊤N
v(⊤i) if and only if the restricted core is nonempty.

Remarking that in the objective function the variable φi has coefficient q − k + 1 for
i ∈ Qk, its dual problem is

maxw =
∑

S∈O(N)\{∅}

µ(S)v(S)

under ∑

S:S∋j

µ(S) = q − k + 1, ∀j ∈ Qk, k = 1, . . . , q

µ(S) ≥ 0, ∀S ∈ O(N) \ {∅}.

By the duality theorem, it has the same optimal value w =
∑

⊤i∈⊤N
v(⊤i) if we can find

out some µ satisfying all conditions. This is the desired result.

6 The Weber set

We have mentionned in Section 2 that O(N) has all its maximal chains from ⊥ to ⊤
of length n. The consequence is that they correspond to permutations on N in the
following way: let C = {S0 := ∅ ≺ S1 ≺ · · · ≺ Sn := N} be a maximal chain in
L := O(N). Define the permutation π on N as π(i) := Si \ Si−1, i = 1, . . . , n. Hence we
have Si = {π(1), π(2), . . . , π(i)}.

It is easy to see that π defines a linear extension of ≤ on N , and moreover, any linear
extension of ≤ corresponds to such a permutation π. Indeed, i < j implies that π(i) >
π(j) will never happen, for any permutation. Conversely, if i1, . . . , in is a linear extension,
then k < l implies that ik > il cannot happen. Hence {{i1}, {i1, i2}, . . . , {i1, . . . , in}} is a
chain of downsets, defining a permutation π on N .

Definition 7. The marginal worth vector ψC ∈ R
n associated to C and v is defined by

ψCj := v(Si) − v(Si−1), ∀i ∈ N,

with j = Si \ Si−1.
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The set of all marginal worth vectors ψC for all maximal chains is denoted by M(v).
We can easily get

ψC(Si) :=
i∑

k=1

ψCπ(k) =
i∑

k=1

(v(Sk) − v(Sk−1)) = v(Si), ∀Si ∈ C.

Definition 8. The Weber set W(v) of v is defined as the convex hull of all vectors in
M(v):

W(v) := co(M(v)).

Theorem 2. For any game v on O(N), the convex part of the core is included in the
Weber set, i.e, CF (v) ⊆ W(v).

This result has been shown independently by several authors (including us: see an
earlier version of this paper as a technical report [23]). It can be found in Faigle and
Kern [14, Section 5], and it is also mentionned in Derks and Gilles [10], where the result
is shown for acyclic permission structures. Now, from Algaba et al. [1], it is known that
acyclic permission structures exactly correspond to collections of feasible coalitions of the
form O(N).

The next result shows that, like in the classical case, equality holds only for convex
games.

Theorem 3. Let v be a game on O(N). Then v is convex if and only if Ext(C(v)) =
M(v), i.e., CF (v) = W(v).

Again, this result has been shown several times (see our proof in [23]), the first one
being Fujishige and Tomizawa [17] (also cited in [16]). Derks and Gilles have also shown
this theorem in [10], for acyclic permission structures.

We investigate now if similar results hold for the restricted case.

7 The restricted Weber set

Let C be a maximal chain from ⊥ to ⊤ in O(N). We say that C is a restricted maximal
chain if ⊤1, . . . ,⊤q belong to C. A marginal vector defined w.r.t a restricted maximal
chain is called a restricted marginal vector. We denote by RM(v) the set of all restricted
marginal vectors.

Definition 9. The restricted Weber set is defined as the convex hull of all restricted
marginal worth vectors:

RW(v) := co(RM(v)).

Theorem 4. For any game v on O(N), the restricted core is included in the restricted
Weber set, i.e., RC(v) ⊆ RW(v).

Proof. We prove it by induction on the level number. If a poset N has only one level,
then the result coincides with the one of Theorem 2.

Suppose that the statement is true for all posets having at most k levels. We assume
now that the poset has k + 1 levels. Let v′ := v|⊤k

be the restriction of v to ⊤k, that
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is, it is defined on the collection of coalitions O(N)|⊤k
:= {T ∈ O(N) | T ⊆ ⊤k}, and

v′(T ) = v(T ) for all T ∈ O(N)|⊤k
. Note that v′ is a game on a distributive lattice

with k levels. Let φ ∈ Ext(RC(v)). Clearly, φ|⊤k
∈ RC(v|⊤k

) = RC(v′). Then φ|⊤k
∈

Ext(RC(v′)). Indeed, if φ|⊤k
6∈ Ext(RC(v′)), then ∃φ1 6= φ2 ∈ RC(v′), ∃λ ∈ (0, 1) such

that φ|⊤k
= λφ1 + (1 − λ)φ2. Let φ′ ∈ R

n be defined by

φ′l
i :=

{

φli ∀i ∈ ⊤k,

φi ∀i ∈ ⊤ \ ⊤k

for l = 1, 2. Then φ = λφ′1 + (1 − λ)φ′2, which contradicts φ ∈ Ext(RC(v)).
Similarly, we define the game v′′ on N \ ⊤k, whose collection of feasible coalitions is

O(N)N\⊤k
:= {T ⊆ N \ ⊤k | T ∪ ⊤k ∈ O(N)}, by v′′(T ) := v(T ∪ ⊤k) − v(⊤k) for such

T ’s. Observe that by definition of levels, O(N)|N\⊤k
= {T ⊆ N \ ⊤k = Qk+1}, therefore

v′′ is a game on the Boolean lattice 2Qk+1 with one level. We have

φ|N\⊤k
(T ) = φ(T ∪⊤k) − φ(⊤k) ≥ v(T ∪ ⊤k) − v(⊤k) = v′′(T ), ∀T ⊆ ⊤k,

hence φ|⊤\⊤k
∈ RC(v′′). By the induction hypothesis, we can write

φi =

{∑

ψr∈RM(v′) α
rψri , ∀i ∈ ⊤k

∑

ψs∈RM(v′′) β
sψsi , ∀i ∈ N \ ⊤k,

with αr ≥ 0, βs ≥ 0,
∑

r α
r = 1, and

∑

s β
s = 1. Any ψr ∈ RM(v′) corresponds to a

restricted maximal chain Cr in O(N) from ∅ to ⊤k, and any ψs ∈ RM(v′′) corresponds
to a maximal chain Cs := {∅ =: S0, S1, . . . , Sm = N \ ⊤k} in the Boolean lattice 2Qk+1

from ∅ to N \ ⊤k. Define the chain (Cs)′ := {⊤k, S1 ∪ ⊤k, . . . , N} obtained from Cs by
adding ⊤k to each coalition. Then (Cs)′ is restricted maximal chain in O(N) from ⊤k to
N . Therefore the concatenation of Cr and (Cs)′, denoted by C, is a restricted maximal
chain in O(N) from ∅ to N , which induces the restricted marginal vector ψ(r,s) defined
by:

ψ
(r,s)
i :=

{

ψri , if i ∈ ⊤k

ψsi , if i ∈ N \ ⊤k.

We have for any i ∈ ⊤k

φi =
∑

r

αrψri =
∑

r

αrψ
(r,s)
i =

∑

s

βs
(∑

r

αrψ
(r,s)
i

)
=

∑

s

∑

r

αrβsψ
(r,s)
i

and similarly for i ∈ N \ ⊤k

φi =
∑

s

βsψsi =
∑

s

βsψ
(r,s)
i =

∑

r

∑

s

αrβsψ
(r,s)
i .

Therefore φ =
∑

r

∑

s α
rβsψ(r,s), i.e., φ ∈ RW(v). This is the desired result.

We examine the case of convex games.

Theorem 5. If a game v on O(N) is convex, Ext(RC(v)) = RM(v), or equivalently
RC(v) = RW(v).
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Proof. Consider a restricted maximal chain Cr and its associated marginal worth vector
ψCr . We know by Theorem 3 that it is a vertex of the core C(v), and since ψCr coincide
with v on Cr, it has the property ψCr(x) = v(x), ∀x ∈ ⊤N , hence it belongs to the
restricted core and is a vertex of it. Therefore, we have established that RM(v) ⊆
Ext(RC(v)).

By Theorem 4, we know that the convex part of the restricted core is included into
the restricted Weber set. Therefore the vertices of the two sets coincide.

Remark that RC(v) = RW(v) does not imply that v is convex. Put differently,
RC(v) = RW(v) is not equivalent to CF (v) = W(v). This is shown by the following
counterexample.

Example 3. Let v be a game on O(N) with N = {1, 2, 3, 4, 5} : 1 < 2 < 3, 4 < 5.
Consider v satisfying v(S) =

∑

s∈S s for any S 6= {12} and v(12) = 1. We have RC(v) =
RW(v) = {(1, 2, 3, 4, 5)} but v(12345) + v(12) = 16 < v(1245) + v(123) = 18. Therefore
v is not convex.

To end this section, we come back to Example 2 and compute its restricted core. The
four restricted maximal chains are

C1 := {∅, 1, 12, 123, 1234}, C2 := {∅, 1, 12, 124, 1234}

C3 := {∅, 2, 12, 123, 1234}, C4 := {∅, 2, 12, 124, 1234}.

Under convexity of v, the restricted core of v is the convex hull of the four following
vectors:

φ1 := (v(1), v(12)− v(1), v(123)− v(12), v(N) − v(123))

φ2 := (v(1), v(12)− v(1), v(N) − v(124), v(124)− v(12))

φ3 := (v(12) − v(2), v(2), v(123)− v(12), v(N) − v(123))

φ4 := (v(12) − v(2), v(2), v(N) − v(124), v(124)− v(12)).

In general, it is a 3-dimensional polytope with 4 vertices, hence a 3-dimensional simplex.

8 Games with a partially ordered set of actions

We give a brief indication about games where each player has at disposal a partially
ordered set of (elementary) actions. This notion of game is described in [21]. Consider a
set of players N , and for each i ∈ N , define Pi the partially ordered set of possible actions
of player i. A simple but useful example is to take the case of multichoice games [24]. Then
the Pi’s are totally ordered sets Pi := {0 =: a0, a1, . . . , am}, where a0 < a1 < · · · < am
indicate levels of participation.

We consider the distributive lattices Li := O(Pi), i ∈ N . They represent all possible
combinations of elementary actions, where if action x is performed and y ≤ x in the
poset of actions, then y must be performed too. Considering all players together, a given
profile of actions is an element of the product lattice L := L1 × · · · × Ln.

Since L is again distributive, all previous definitions and results can be applied to
L. In particular, the restricted core of v is defined as the set of pre-imputations φ on L
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such that φ dominates v on L, and coincides with v on each element of L of the form
(⊤k

1,⊤
k
2, . . . ,⊤

k
n), where ⊤k

i is the top element associated to the k-th level of Pi. When
L corresponds to a multichoice game, we recover the results shown previously by the
authors in [22].

9 Related works

There is a substantial amount of research devoted to the core of games defined on a
set of feasible coalitions (see a survey on this topic by the first author [20]), and it will
be out of the scope of this paper to detail this. Our proposition solves the problem of
unboundedness of the core, by imposing some additional normalization conditions. Up
to our knowledge, there is no work taking the same philosophy.

On the other hand, the notion of hierarchy has received some attention by several
authors, in particular by Gilles et al. [18] who propose permission structures, Demange
[9], and van den Brink et al. [30].

A (conjunctive) permission structure is a mapping σ : N → 2N such that i 6∈ σ(i).
The players in σ(i) are the direct subordinates of i. “Conjunctive” means that a player
i has to get the permission to act of all his superiors. Consequently, an autonomous
coalition contains all superiors of every member of the coalition, i.e., the set of autonomous
coalitions generated by the permission structure σ is

Fσ = {S ∈ 2N | S ∩ σ(N \ S) = ∅}.

This collection is closed under union and intersection (and conversely, any collection
of feasible coalitions closed under union and intersection corresponds to a permission
structure). Clearly, our collection O(N) is closed under union and intersection, and so
should correspond to a permission structure. However, the notions of team in our sense
and of autonomous coalition are quite opposite, since a team must contain all subordinates
of its members, and an autonomous coalition must contain all superiors. These are two
different viewpoints of a hierarchy. A team S is an entity able to perform some work
giving rise to some profit v(S). It is considered that the work cannot be achieved if
one subordinates is missing. This view is suitable for projects, companies, etc. An
autonomous coalition T is able to achieve some work because they have the permission
of all their superiors, this permission being represented simply by the presence of the
superiors in the coalition. Therefore, v(T ) has not the meaning of some profit achieved
by the coalition.

In the work od Demange, a hierarchy is the same as our partial order defined on N , up
to the difference that a greatest element exists (called the principal), so that each player
is a subordinate of the principal. Also, the notion of team differs: any singleton is a team,
and if a team has at least two members, any two members have a superior in the team,
and if i is a superior of j, all intermediates between i and j must be present. Therefore,
any “interval”, i.e, a chain in the hierarchy, is a team. Again, this definition does not fit
our idea of defining team as entities being able to produce something. Clearly, a single
player, unless he has no subordinate, cannot produce something by himself. The same
remark is valid for intervals.

The work of van den Brink et al. concerns oriented communication graphs. Most of
the research on communication graphs do not consider orientation, since it is generally
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assumed that communication is in both directions. Defining an orientation implicitely
defines some order among players, hence some hierarchy. The philosophy adopted in
this work is that if player i is higher in the hierarchy than j (i.e., there is an oriented
path from i to j), the payoff (or cost) given to player i should be higher than the one
of player j. This is well suited to the well known water distribution problem of Ambec
and Sprumont [2], also considered by van den Brink et al. [29]. However, it is not suited
for our view, since assuming S ⊃ S ′, it may be the case that v(S) = v(S ′), which means
that the superior(s) in S \ S ′ do not really add some value to the team. Therefore, their
payoff should be zero or very low.
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transform in bi-capacities. J. of Advanced Computational Intelligence and Intelligent
Informatics, 9(5):484–495, 2005.

[17] S. Fujishige and N. Tomizawa. A note on submodular functions on distributive
lattices. J. of the Operations Research Society of Japan, 26:309–318, 1983.

[18] R. Gilles, G. Owen, and R. van den Brink. Games with permission structures: the
conjunctive approach. Int. J. of Game Theory, 20:277–293, 1992.

[19] D. Gillies. Some theorems on n-person games. PhD thesis, Princeton, New Jersey,
1953.

[20] M. Grabisch. The core of games on ordered structures and graphs. 4OR, 7:207–238,
2009. DOI: 10.1007/s10288-009-0109-9.

[21] M. Grabisch and F. Lange. Games on lattices, multichoice games and the Shapley
value: a new approach. Mathematical Methods of Operations Research, 65:153–167,
2007.

[22] M. Grabisch and L. J. Xie. A new approach to the core and Weber set of multi-
choice games. Mathematical Methods of Operations Research, 66:491–512, 2007. doi
10.1007/s00186-007-0159-8.

[23] M. Grabisch and L. J. Xie. The core of games on distributive lattices: how to
share benefits in a hierarchy. Technical Report, Centre d’Economie de la Sorbonne,
2008.77, 2008.

[24] C. R. Hsiao and T. E. S. Raghavan. Shapley value for multichoice cooperative games,
I. Games and Economic Behavior, 5:240–256, 1993.

[25] T. Ichiishi. Super-modularity: applications to convex games and to the greedy
algorithm for LP. J. Econom. Theory, 25:283–286, 1981.

[26] R. B. Myerson. Graphs and cooperation in games. Mathematics of Operations
Research, 2:225–229, 1977.

19



[27] L. S. Shapley. A value for n-person games. In H. W. Kuhn and A. W. Tucker, editors,
Contributions to the Theory of Games, Vol. II, number 28 in Annals of Mathematics
Studies, pages 307–317. Princeton University Press, 1953.

[28] L. S. Shapley. Core of convex games. Int. J. Game Theory, 1:11–26, 1971.

[29] R. van den Brink, G. van der Laan, and V. Vasil’ev. Component efficient solutions
in line-graph games with applications. Economic Theory, 33:349–364, 2007.

[30] R. van den Brink, G. van der Laan, and V. Vasil’ev. Distributing dividends in games
with ordered players. working paper, 2008.

[31] L. J. Xie and M. Grabisch. Core of regular capacities and regular games. In Proc.
Int. Conf. on Information Processing and Management of Uncertainty (IPMU’06),
Paris, France, July 2006.

[32] G. Ziegler. Lectures on polytopes. Springer Verlag, 1995.

20


