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Abstract

The core of a cooperative game on a set of players N is one of the most pop-
ular concept of solution. When cooperation is restricted (feasible coalitions form
a subcollection F of 2N ), the core may become unbounded, which makes it usage
questionable in practice. Our proposal is to make the core bounded by turning
some of the inequalities defining the core into equalities (additional efficiency con-
straints). We address the following mathematical problem: can we find a minimal
set of inequalities in the core such that, if turned into equalities, the core becomes
bounded? The new core obtained is called the restricted core. We completely
solve the question when F is a distributive lattice, introducing also the notion
of restricted Weber set. We show that the case of regular set systems amounts
more or less to the case of distributive lattices. We also study the case of weakly
union-closed systems and give some results for the general case.

Keywords: cooperative game, core, restricted cooperation, bounded core, Weber set

1 Introduction

In cooperative models, one of the main issues is to define in a rational way the sharing of
the total worth of a game among the players, what is usually called the solution of the
game. The core is perhaps the most popular concept of solution, because it is built on a
very simple rationality criterion: no coalition should receive less than that it can earn by
itself, thus avoiding any instability in the game (this is often called coalitional rationality).
The core is a bounded convex polyhedron whenever nonempty, and its properties have
been studied in depth (see, e.g., [27, 22, 25]).

The classical setting of cooperative games stipulates that any player can (fully) partic-
ipate or not participate to the game, and that any coalition can form. This too simplistic
framework has been made more flexible in many respects, or more tailored to some spe-
cial kind of application by many authors: let us cite on the one hand multichoice games
[21, 26], games with multiple alternatives [3, 7] and bicooperative games [4, 23] (partic-
ipation is gradual, can be positive or negative, or the player has several options), and
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on the other hand, games with restricted cooperation, where only a limited set of coali-
tions are allowed to form. A vast literature is devoted to this last category, studying
various possibilities for the algebraic structure of the set of feasible coalitions: games on
antimatroids [2], convex geometries [5], lattices [10, 12, 16], graphs [28, 30], etc.

Our study will concern games with restricted cooperation, and especially the core
of such games. Here also, there is a vast literature we will not cite here (see a recent
survey by the author on this topic [15]). Indeed, the study of the core in such a general
situation becomes much more challenging: since the core is defined by a system of linear
inequalities, it is always a polyhedron, however it need not be bounded any more, and it
may even have no vertice or it may contain a line. As a matter of fact, since the core is
supposed to represent a set of payoffs for players, boundedness is perhaps the property
one wants to keep in priority (arbitrarily large payoffs cannot exist in reality). There-
fore, a natural question arises: How to make to core bounded in any case, keeping the
spirit of its definition? By “spirit of definition”, we mean the essential idea of coalitional
rationality. A very simple answer to this question was proposed by Grabisch and Xie
[17, 18]: turn some of the inequalities into equalities, which can be seen as adding sup-
plementary efficiency constraints, while preserving coalitional rationality. The authors
proposed a systematic way of doing this for games on distributive lattices, according to
some interpretation related to the hierarchy of players.

We want to take here a more general and mathematical point of view. Specifically, we
address the following question: Suppose v is a game with restricted cooperation, whatever
the structure of its set of feasible coalitions. Can we find a minimal set of inequalities
in the core of v such that, if turned into equalities, the core will be bounded? A second
question is: what about the Weber set? Can we define it so that the classical property
of inclusion of the core into the Weber set is preserved?

We give a complete answer to these questions for games on distributive lattices, —thus
generalizing and simplifying results of Grabisch and Xie, and partial answers for other
structures and the general case.

The paper is organized as follows. Section 2 introduces the basic material for the
paper: set systems, posets and lattices, etc. We also explain our main idea to make the
core bounded. Section 3 studies the case of distributive lattices. It gives an optimal
algorithm to find which inequalities must be turned into equalities. Also, it introduces
the notion of restricted Weber set, and shows that the classical result of inclusion of the
core into the Weber set still holds. Section 4 studies the general case. A first result shows
that if rays have a certain form, one can treat an equivalent problem where the set system
is a distributive lattice, and therefore benefit from results of Section 3. It is shown that
regular set systems fall into this category. However, for weakly union-closed systems, an
additional condition on the set system is required. We give also an algorithm to find all
extremal rays of the core of a game on a regular set system.

We assume some familiarity of the reader with polyhedra. To avoid a heavy notation,
we often omit braces and commas for singletons and sets, writing e.g, N \ i instead of
N \ {i}, 123 instead of {1, 2, 3}, etc.
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2 Preliminaries

2.1 Games on set systems

We consider N := {1, . . . , n} the set of players, agents, etc. A set system F on N is a
collection of subsets of N containing N and ∅. One can think of F as the collection of
feasible coalitions, and when F ⊂ 2N it is common to speak of restricted cooperation. A
game on F is a function v : F → R such that v(∅) = 0.

A payoff vector x is any vector in R
N , which defines the amount of money given to

each player. It is common to use the notation x(S) where S ∈ 2N , as a shorthand for∑
i∈S xi, with the convention x(∅) := 0. The core of a game v on F is the set of payoff

vectors being coalitionally rational, in the sense that any feasible coalition S gets at least
what it can achieve by itself, namely v(S):

C(v) := {x ∈ R
N | x(S) ≥ v(S), ∀S ∈ F , x(N) = v(N)}.

The equality x(N) = v(N) is known as the efficiency condition. It means that no more
than v(N) can be distributed among the players whatsoever, and distributing strictly less
would be inefficient (the definition makes sense only if the grand coalition N is the best
way to make profit).

By definition, the core is a closed convex polyhedron, however it may be unbounded
(see in [15] a survey of the properties of the core of games on set systems). We denote
by C(0) the recession cone of C(v), that is, the cone defined by

C(0) := {x ∈ R
N | x(S) ≥ 0, ∀S ∈ F , x(N) = 0}.

It is well known from the theory of polyhedra that C(v) is bounded if and only if C(0) =
{0}, and that the extremal rays of C(0) are the extremal rays of C(v) for any game v.
Since in this paper we are mainly interested into the boundedness issue and therefore in
rays, we mainly deal with the recession cone C(0).

2.2 Posets and lattices

A set system F can be seen as a partially ordered set (poset) when endowed with the
inclusion order. Properties of C(v) substantially differ according to the algebraic structure
of (F ,⊆). We give here some fundamental notions on posets which will be useful in the
sequel (see, e.g., Davey and Priestley [8] for details).

A partially ordered set (P,≤), or poset for short, is a set P endowed with a partial
order ≤ (reflexive, antisymmetric and transitive). As usual, the asymmetric part of ≤ is
denoted by <. For x, y ∈ (P,≤) (if no ambiguity occurs, we may write simply P ), we
write x ≺ y and say that x is covered by y if x < y and there is no z ∈ P such that
x < z < y. An element x ∈ P is minimal if there is no y ∈ P such that y < x.

A chain from x to y in P is any sequence x, x1, . . . , xp, y of elements of P such that
x < x1 < · · · < xp < y. The chain is maximal if no other chain from x to y contains it,
i.e., if x ≺ x1 ≺ · · · ≺ xp ≺ y. The length of a chain is its number of elements minus 1.

The height of x ∈ P , denoted by h(x), is the length of a longest chain from a minimal
element to x. Elements of same height l form level l + 1. Hence, level 1 (denoted by L1)
is the set of all minimal elements, level 2 (denoted by L2) is the set of minimal elements
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of P \L1, etc. The height of P , denoted by h(P ), is the maximum of h(x) taken over all
elements of P .

Consider a poset (P,≤) and some Q ⊆ P . Then Q is a downset of P if x ∈ Q and y ≤ x

imply y ∈ Q. Any element x ∈ P generates a downset, defined by ↓x := {y ∈ P | y ≤ x}.
We denote by O(P ) the set of all downsets of P .

A lattice (L,≤) is a poset having the following property: for any x, y ∈ L, their
supremum and infimum, denoted by x ∨ y and x ∧ y, exist in L. When a lattice is finite,
it has a greatest element ⊤ =

∨
x∈L x (top element), and a smallest element ⊥ =

∧
x∈L x

(bottom element). If ∨,∧ obey distributivity, then L is said to be distributive. In a
distributive lattice L, all maximal chains from ⊥ to ⊤ have same length h(L).

Given a lattice L, an element x ∈ L, x 6= ⊥, is join-irreducible if it cannot be expressed
as the supremum of other elements, or equivalently, if it covers a unique element. We
denote by J (L) the set of join-irreducible elements of L. It can be shown that if L is
distributive, its height h(L) equals the number of join-irreducible elements |J (L)|.

Finite distributive lattices have a remarkable property: they are completely deter-
mined by their join-irreducible elements. Specifically, consider (L,≤) a distributive lat-
tice, and (J (L),≤) its join-irreducible elements considered as a subposet of L. Then
Birkhoff’s theorem [6] says that (L,≤) and (O(J (L)),⊆) are isomorphic. Conversely,
any poset (P,≤) generates a distributive lattice (O(P ),⊆) (hence, we deduce a charac-
terization of distributive lattices: the set of distributive lattices of height n is in bijection
with the set of posets of n elements). Figure 1 illustrates this fundamental result.

1 3

4

2

1

2

3

4

∅

1 3

123

3413

134

1234

Figure 1: Left: a distributive lattice L. Join-irreducible elements are those in dark
grey. Center: the poset J (L) of join-irreducible elements. Right: the set O(J (L)) of all
downsets of J (L) ordered by inclusion, which is isomorphic to L

2.3 Main families of set systems

Among the numerous families of sets systems, we put emphasis on three of them: dis-
tributive lattices of height n, regular set systems, and weakly union-closed systems.

(F ,⊆) is a distributive lattice is equivalent to say that F is a set system closed under
union and intersection, and by Birkhoff’s result, it is generated by a poset of n elements
if and only if F has height n. This poset can be interpreted as the set of players N

endowed with some partial order ≤, which can be thought of as a hierarchy on players
or a precedence order (and then we recover exactly games with precedence constraints
of Faigle and Kern [12]): see again Figure 1, center (the hierarchy) and right (the set
system).
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Remark 1. We discard from the analysis distributive lattices L of height smaller than n:
essentially, it amounts to redefine the set of players as N ′ with |N ′| = h(L), where some
of the players of N have been regrouped into “macro-players”.

A set system is regular if all its maximal chains from ∅ to N are of length n (see
[19, 20, 24] for works dealing with regular set systems). Evidently, any set system closed
under union and intersection of height n is regular, but the converse is not true.

A set system F is weakly union-closed if for any S1, S2 ∈ F such that S1 ∩ S2 6= ∅,
we have S1 ∪ S2 ∈ F (see [11] and also [1] where weakly union-closed systems are called
union stable structures).

These three families are distinct, and no family is included into another one (see [15]).

2.4 How to make the core bounded

Given a set system F , our main goal is to modify the definition of the core to make it
bounded for any game v, by replacing some of the inequalities by equalities (evidently,
the core will become bounded after a sufficient number of such operations). Observe
that doing so preserves the coalitional rationality principle, and this can be interpreted
as adding new efficiency constraints.

We call normal sets the sets S ∈ F corresponding to inequalities x(S) ≥ v(S) turned
into equalities x(S) = v(S), provided the collection of those sets makes the core bounded
(recall that this is independent of v since it suffices to study the recession cone C(0)).
Such a collection (called a normal collection), is denoted by N := {N1, . . . , Nq}, and
we make the convention that N is not an element of N . We call the core with these
additional equalities the core restricted by the normal collection N , or if no ambiguity
occurs, the restricted core, and denote it by CN (v).

As mentionned in the introduction, Grabisch and Xie have proposed a particular way
to define a normal collection when F is a distributive lattice. Suppose F is a distributive
lattice of height n, with generating poset (N,≤). As mentionned in Section 2.2, the
height function on (N,≤) induces a partition of N into levels L1, . . . , Lq. Then the
normal collection of Grabisch and Xie is simply (L1, L1 ∪ L2, . . . , L1 ∪ · · · ∪ Lq−1). Note
that the obtained normal collection is nested, i.e., it forms a chain in F .

3 Case of distributive lattices of height n

3.1 Normal sets

We know from the previous section that these set systems are closed under union and
intersection, that they possess n join-irreducible elements, and that they are generated
by a poset (N,≤) (i.e., F = O(N,≤)). We recall that i ≺ j means that i < j and there
is no k ∈ N such that i < k < j.

For those sets systems, we know the following result from Tomizawa [29]. We denote
by Ji, i ∈ N , the join-irreducible element of F induced by i, that is simply, Ji =↓ i.

Theorem 1. The extremal rays of C(0) are of the form (1j ,−1i), with i ∈ N such that
|Ji| > 1, j ∈ Ji and j ≺ i.
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Here we use the notation 1i for the vector of R
N having component i equals to 1 and

0 otherwise, and similarly for (1j,−1i), etc.
Recall that C(v) will become bounded if there is no more extremal rays in C(0).

Therefore, we must study how inequalities turned into equalities can “kill” extremal rays
of C(0).

The following can be proved.

Lemma 1. Consider Ji, |Ji| > 1, j ≺ i. The extremal ray (1j,−1i) is killed by equality
x(F ) = 0 if and only if j ∈ F and i 6∈ F .

Proof. (⇐) Suppose that j ∈ F and i 6∈ F . Then, if x ∈ C(0) satisfies x(F ) = 0, we have

x(F ) = xj +
∑

k∈F\j

xk = 0. (1)

Consider now x′ := x + α(1j,−1i), α > 0. Then x′ does not satisfy equality x′(F ) = 0
since

x′(F ) = xj + α +
∑

k∈F\j

xk = α.

Therefore, (1j,−1i) is no more a ray.
(⇒) Let x ∈ C(0) and satisfy the additional equality x(F ) = 0 for some F ∈ F .

Suppose that for some α > 0, x′ := x + α(1j,−1i) does not belong to C(v)∩ {x(F ) = 0}.
It means that ∑

k∈F

x′
k =

∑

k∈K

xk + αδF (j)− αδF (i) 6= 0,

where δF (k) = 1 if k ∈ F and 0 otherwise. This implies δF (i) 6= δF (j), therefore either i

or j belongs to F , but not both. Because j ≺ i and that a set F ∈ F corresponds to a
downset in (N,≤), it must be j ∈ F and i 6∈ F .

Lemma 2. The minimum number of additional equalities needed to make C(v) bounded
is h(N).

Proof. Let us assume that all rays are killed. By definition of the height, there ex-
ists a maximal chain in (N,≤) of length h(N) going from a minimal element to a
maximal element, say i0, i1, . . . , ih(N). Then by Theorem 1, (1i0,−1i1), (1i1,−1i2), . . . ,
(1ih(N)−1

,−1ih(N)
) are extremal rays. Because (1i0,−1i1) is killed, by Lemma 1 there must

be an equality x(K1) = 0 such that i0 ∈ K1 and i1 6∈ K1. Moreover, since K1 must
be a downset, i2, . . . , ih(N) cannot belong to K1. Similarly, there must exist an equality
x(K2) = 0 killing ray (1i1,−1i2) such that i1 ∈ K2 and i2, . . . , ih(N) 6∈ K2. Therefore,
K1 6= K2. Continuing this process we construct a sequence of distinct h(N) subsets
K1, K2, . . . , Kh(N), the last one killing ray (1ih(N)−1

,−1ih(N)
). Therefore, at least h(N)

equalities are needed.

The next algorithm shows an optimal way to define equalities to kill all extremal
rays. It is optimal in the sense that it uses only h(N) equalities and each equality is the
“smallest” possible (in the number of terms, or equivalently, in the size of F ).
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Algo 1

Step 0 Initialization. Set M = N .

Step 1 Remove all disconnected elements from M (i.e., those elements which
are both minimal and maximal). If M = ∅, then STOP. Otherwise, go
to Step 2.

Step 2 Build M0 the set of all minimal elements of M , and set equality
x(↓M0) = 0, where ↓M0 is the downset generated by M0 in (N,≤).

Step 3 Set M ←M \M0, and go to Step 1.

Theorem 2. Algo 1 kills all extremal rays and is optimal.

Proof. Steps 1 and 2 build subsets of the level sets of (N,≤), except the last h(N)th level,
because in Step 2, all maximal elements of N are suppressed. Therefore, the algorithm
necessarily finishes in exactly h(N) iterations, and builds h(N) equalities. By Lemma 2,
this number is optimal.

Consider the first occurrence of Step 2, where M0 is the set of minimal elements of
N (minus those disconnected). Clearly, the equality x(M0) = 0 kills all rays of the form
(1j,−1i), where j is a minimal element and i is a successor of j (i.e., j ≺ i). Therefore,
all such i’s belong to the level 2. Taking a proper subset of M0 will necessarily leave some
rays of this form, and subsequent iterations will not kill them. This proves that in each
step M0 has a minimal size.

For each iteration, it is not necessary to keep elements i which have no successors
(i.e., they are maximal), because there cannot exist rays of the form (1i,−1k). Therefore
those elements are suppressed in Step 1. All other elements are necessary since they have
a successor and therefore generate a ray. This proves that in any iteration, M0 has the
minimal size, and so ↓M0 too.

We call the normal collection N found by Algo 1 the collection of irredundant
normal sets or irredundant (normal) collection. We introduce another one, which we call
the collection of Weber normal sets or the Weber (normal) collection (reasons for this
will be clear after). Supposing N = {N1, . . . , Nh(N)} is the irredundant collection, the
Weber collection is {N1, N1 ∪N2, N1 ∪N2 ∪N3, . . . , N1 ∪ · · · ∪Nh(N)}.

Lemma 3. The Weber collection is a normal collection which is a chain in O(N).

Proof. Lemma 1 shows that the collection is normal (only elements below those in the
irredundant sets are added). The second assertion is obvious by construction.

Recall that the normal collection introduced by Grabisch and Xie is (L1, L1∪L2, . . . , L1∪
· · · ∪ Lq−1), where L1, . . . , Lq are the level sets of (N,≤). By construction, N1 ⊆ L1,
N2 ⊆ L1∪L2, etc., with proper inclusion in general. This shows that in general the three
normal collections introduced so far differ.

When a normal collection forms a chain, we say that the collection is nested. Note
that the Weber collection is the “smallest” nested collection, in the sense that no other
nested collection can contain proper subsets of the Weber collection. Indeed, it is built
from the irredundant normal collection by adding the minimum number of elements to
make the collection a chain.
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Interestingly, the normal collection of Grabisch and Xie is also nested, and it is the
“largest” nested collection1, in the sense that no other nested collection can contain
supersets of this normal collection. Indeed, since a normal set is built from the union of
all level sets up to a given height, adding a new element i means adding an element from
a higher level. Then (1k,−1i) for some k ≺ i is an extremal ray, which will not be killed if
i is incorporated into the normal set. Consequently, any nested collection (with optimal
number of normal sets) is comprised between the Weber collection and the Grabisch-Xie
collection.

The following example illustrates that the three normal collections differ.

Example 1. Consider the following poset (N,≤) of 9 elements.

9

1

4 5

7

2

3

6

8

Level 1 is {1, 2, 3}, level 2 is {4, 5, 6, 9} and level 3 is {7, 8}. Extremal rays are

(11,−19), (11,−14), (11,−15), (13,−16), (14,−17), (15,−17), (12,−17), (16,−17), (16,−18).

The two irredundant normal sets built by Algo 1 are 123 and 13456, the two Weber
normal sets are 123 and 123456, and the Grabisch-Xie normal sets are 123 and 1234569.

3.2 The Weber set

Let us denote by C the set of all maximal chains from ∅ to N in F . Consider any maximal
chain C ∈ C and its associated permutation σ on N , i.e.,

C = {∅, S1, S2, . . . , Sn = N},

with Si := {σ(1), . . . , σ(i)}, i = 1, . . . , n. Considering a game v on F , the marginal vector
xC ∈ R

N associated to C is the payoff vector defined by

xC
σ(i) := v(Si)− v(Si−1), i ∈ N.

The Weber set is the convex hull of all marginal vectors:

W(v) := conv(xC | C ∈ C).

In the classical case F = 2N , it is well known that for any game v it holds C(v) ⊆ W(v),
with equality if and only if v is convex. In our general case, this inclusion cannot hold
any more since the core is unbounded in general. We propose a restricted version of the
Weber set so that the classical results still hold.

Consider a nested normal collection (like the Weber collection or the Grabisch-Xie
one) N = {N1, . . . , Nh(N)}. A restricted maximal chain (w.r.t. N ) is a maximal chain

1Note that this collection is still optimal in number of normal sets. “Largest” applies here for the size
of the normal sets.
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from ∅ to N in O(N) containing N . A restricted marginal vector is a (classical) marginal
vector whose underlying maximal chain is restricted. The (restricted) Weber set WN (v)
is the convex hull of all restricted marginal vectors w.r.t. N . The (unrestricted) Weber
set corresponds to the situation N = ∅.

Lemma 4. For any restricted maximal chain C, its associated restricted marginal vector
xC coincides with v on C, i.e., xC(S) = v(S) for all S ∈ C.

(obvious from the definition)
We recall the following result (see Fujishige and Tomizawa [14, 13]).

Theorem 3. Let v be a game on O(N). Then C(v) =W(v) if and only if v is convex.

The following theorems generalize results of [18] and provide more elegant proofs.

Theorem 4. Consider N a nested normal collection. Then for every game v on O(N),
CN (v) ⊆ WN (v).

Proof. We put N := {N1, . . . , Nq}. We prove the result by the separation theorem,
proceeding as in [9]. Suppose there exists x ∈ CN (v)\WN (v). Then it exists y ∈ R

n such
that 〈w, y〉 > 〈x, y〉 for all w ∈ WN (v).

Let π be a permutation on N such that yπ(1) ≥ yπ(2) ≥ · · · ≥ yπ(n). Let us build a
permutation π′ from π so that π′ corresponds to a restricted maximal chain as follows:

Order the elements of N1 according to the π order; then order the elements
of N2 according to the π order and put them after ; etc. Lastly, put the
remaining elements (in N \ (N1 ∪ · · · ∪Nq)) according to the π order.

Note that π′ = π if π corresponds to a restricted maximal chain. With Example 1 and
the Weber collection, taking π = 1, 4, 5, 2, 9, 3, 6, 7, 8 leads to π′ = 1, 2, 3, 4, 5, 6, 9, 7, 8.

Denoting by mπ′

the marginal vector associated to π′ we have

〈mπ′

, y〉 =
n∑

i=1

yπ′(i)

(
v({π′(1), . . . , π′(i)})− v({π′(1), . . . , π′(i− 1)})

)

= yπ′(n)v(N) +
n−1∑

i=1

(yπ′(i) − yπ′(i+1))v({π′(1), . . . , π′(i)}).

We claim that if yπ′(i) − yπ′(i+1) < 0 then {π′(1), . . . , π′(i)} is a normal set. Indeed, by
construction of π′, the situation yπ′(i) − yπ′(i+1) < 0 can arise only if π′(i) ∈ Nj for some
j and π′(i + 1) ∈ Nj+1. But then by construction again Nj = {π′(1), . . . , π′(i)}, which
proves the claim.

Therefore since x ∈ CN (v) we have

〈mπ′

, y〉 ≤ yπ′(n)x(N) +

n−1∑

i=1

(yπ′(i) − yπ′(i+1))x({π′(1), . . . , π′(i)})

=
n∑

i=1

yπ′(i)x({π′(1), . . . , π′(i)})−
n∑

i=2

yπ′(i)x({π′(1), . . . , π′(i− 1)})

=

n∑

i=1

yπ′(i)xπ′(i) = 〈y, x〉,

a contradiction with the assumption.
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Theorem 5. Consider N a nested normal collection. If v is convex on O(N), then
CN (v) =WN (v).

Proof. By Theorem 4, it suffices to show that any restricted marginal vector is a vertex of
CN (v). We know already from Theorem 3 that it is a vertex of C(v). It remains to show
that any marginal vector satisfies the normality conditions x(Ni) = v(Ni), i = 1, . . . , q,
but this is established in Lemma 4.

4 The general case

We suppose now that F is an arbitrary set system. We introduce F̃ the closure of F under
union and intersection, i.e., the smallest set system closed under union and intersection
containing F . It is obtained by iteratively augmenting F with unions and intersections
of pairs of subsets of the current set system (starting with F), till there is no more

change in the set system. As in Section 3, we assume that F̃ has height n (i.e., it has n

join-irreducible elements).

Theorem 6. Consider an arbitrary set system F , and assume that its closure F̃ has
height n. Denote by C(0) and C̃(0) the recession cones generated by F and F̃ . Then C(0)

and C̃(0) have the same extremal rays (i.e., C(0) = C̃(0)) if and only if all extremal rays
of C(0) are of the form (1j,−1i), for some i, j ∈ N .

Proof. The “only if” part is obvious from Theorem 1. Let us prove the “if” part. Suppose
r is an extremal ray of C(0). By hypothesis, it has the form (1j,−1i) for some i, j ∈
N . Also, by definition, it satisfies the system r(S) ≥ 0 for all S ∈ F , which gives
1S(j)−1S(i) ≥ 0 for all S ∈ F , which implies that there is no S ∈ F such that S ∋ i and

S 6∋ j. Therefore it suffices to show that no such S exists in F̃ . We show this by induction
since F̃ is obtained iteratively from F . We first prove that the union or intersection of
two sets S1, S2 of F cannot at the same time contain i and not j. For intersection, if
S1 ∩ S2 ∋ i, then S1, S2 too, so they cannot contain j, which implies S1 ∩ S2 6∋ j. Now,
suppose that S1 ∪ S2 does not contain j, which implies that neither S1 nor S2 contain
j. If i ∈ S1 ∪ S2, then i belongs at least to one of the sets S1, S2, which contradicts
the hypothesis. Assume now that the hypothesis holds up to some step in the iteration
process. Clearly, the same reasoning applies again, which proves that r is a ray of C̃(0).

Hence we have proved C(0) ⊆ C̃(0).

Conversely, suppose r is an extremal ray of C̃(0), hence of the form (1j,−1i) by

Theorem 1. Then it satisfies the system r(S) ≥ 0 for all S ∈ F̃ , and r(N) = 0. Hence
in particular it satisfies the system r(S) ≥ 0 for all S ∈ F and r(N) = 0, and therefore

r is a ray of C(0). Therefore C̃(0) ⊆ C(0). Hence, we have proved C(0) = C̃(0) and so

extremal rays of C(v) and C̃(v) are identical.

Unfortunately, not all set systems F , even if F̃ has height n, induce extremal rays of
the form (1j ,−1i), as shown in the next example.

Example 2. Consider N = {1, 2, 3, 4}, the following set system F and its closure F̃ . The
extremal rays of F are (1,−1, 1,−1), (−1, 1,−1, 1) and (0, 0, 1,−1), while the extremal
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∅

12 23 34

1234

∅

2 3

12 23 34

123 234

1234

Figure 2: Set system F (left) and its closure under union and intersection F̃ (right)

rays of F̃ are (−1, 1, 0, 0) and (0, 0, 1,−1). Note that the first two rays of F in fact define
a line, and that F is neither regular nor weakly union-closed.

Suppose now that F has rays of the form (1j,−1i). How to kill them? Lemma 1 tells
us how to kill rays of F , by considering the equality x(F ) = 0 with j ∈ F and i 6∈ F .
Therefore, the only thing we have to prove is that in any case, such a set F exists in F .

Lemma 5. Let F be a set system such that all extremal rays of C(0) are of the form
(1j,−1i). Then for each extremal ray (1j,−1i), there exists a set F ∈ F such that j ∈ F

and i 6∈ F .

Proof. We consider the ray (1j,−1i). We know that in F̃ it exists F0 such that j ∈ F0

and i 6∈ F0. Suppose that no such F exists in F and show that in this case F0 cannot
exist in F̃ . We suppose therefore that in F all sets satisfy either F 6∋ j or F ∋ i and we
consider two sets F1, F2. Observe that we have four possible situations: 1) F1 6∋ j and
F2 6∋ j, 2) F1 ∋ i, j and F2 ∋ i, j 3) F1 6∋ j and F2 ∋ i, j, and 4) F1 ∋ i, j and F2 6∋ j.
In all four situations, we cannot have both F1 ∪ F2 ∋ j and F1 ∪ F2 6∋ i, and the same
is true for F1 ∩ F2. Therefore, after one iteration, the set system has the same property
than F , and so by successive iterations, F0 cannot be built.

The above lemma tells us that it is possible to kill rays for such set systems by turning
at most r inequalities to equalities, if r is the number of rays. Is it possible to give a
better answer by using results from Section 3.1 on F̃? Unfortunately, it does not seem
possible to give a general answer here, even for regular set systems. This is because the
irredundant normal sets found by Algo 1 or the Weber normal collection of F̃ need not
belong to F , as the following simple example shows.

Example 3. Consider N = {1, 2, 3, 4}, the following set system F (which is regular) and

its closure F̃ . The unique ray of C(0) is (0,0,1,-1). Application of Algo 1 on F̃ gives as
normal set 3 (the Weber normal set is therefore the same). However, 3 does not belong
to F . Either 13 or 23 can be taken instead. Note that the Grabisch-Xie normal set is
123, which does not belong either to F .

Hence, the only thing which can be done is to build F̃ , apply Algo 1 or compute
the Weber normal collection. If some normal sets do not belong to F , take the smallest
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Figure 3: Set system F (left), its closure under union and intersection F̃ (center), and
the generating poset (N,≤) (right)

ones of F containing them and obeying Lemma 1. It is not guaranted however that we
do not need more normal sets than for F̃ (but we do not have an example for this).

In the rest of the paper, we study two particular types of sets systems, namely regular
set systems and weakly union-closed set systems, which both generalize systems closed
under union and intersection, and where the above results can be applied.

4.1 The case of regular set systems

Recall that any maximal chain induces a total order (permutation) on N , and therefore
giving a regular set system F is equivalent to giving a set of (permitted) total orders on
N .

Theorem 7. Suppose F is a regular set system. Then all extremal rays of C(0) have the
form (1l,−1m) for some l, m ∈ N .

Proof. Let C be the set of all maximal chains from ∅ to N in F , and consider a particular
chain, say ∅, {i}, {i, j}, {i, j, k}, . . . , N , inducing the total order i, j, k, . . . , on N , and let
us construct an extremal ray r.

Suppose ri > 0, hence w.l.o.g. we can set ri = 1. By the condition r(N) = 0, there
must be at least one ℓ ∈ N \ i such that rℓ < 0. Select ℓ such that ℓ is ranked after i in
every maximal chain in C. Observe that (1i,−1ℓ) is a solution of the system r(S) ≥ 0 for
all S ∈ F and r(N) = 0 (i.e., it is a ray of C(0)) if and only if ℓ has the above property,
because any S ∋ ℓ contains also i. If no such ℓ exists, then set ri = 0, which gives
a new system of inequalities where ri has disappeared, and consider the next element
j and do the same (note that if exhausting all elements i, j, k, . . . without finding ℓ, is
equivalent to the fact that there is no ray, a situation which happens for example if all
orders exist, i.e., F = 2N). Suppose now that there exist several ℓ ranked after i in every
maximal chain, say ℓ1, . . . , ℓq. Then for every α1, . . . , αq ≥ 0 such that

∑q

p=1 αp = 1, the
vector (1i,−α11ℓ1 , . . . ,−αq1ℓq

) is a ray. But each (1i,−1ℓp
), p = 1, . . . , q is also a ray, and

(1i,−α11ℓ1, . . . ,−αq1ℓq
) can be expressed as a convex combination of these rays, proving

that it is not extremal. Therefore extremal rays are necessarily of the form (1i,−1ℓ). In
addition, if ℓ2 is ranked after ℓ1 in every order, then (1ℓ1 ,−1ℓ2) is a ray, therefore (1i,−1ℓ2)
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is not extremal since it can be obtained as (1i,−1ℓ1) + (1ℓ1 ,−1ℓ2) (and similarly for the
others).

By Theorem 6, we deduce immediately:

Corollary 1. If F is a regular set system, then C(0) = C̃(0).

We can also deduce Theorem 1 from the above, and therefore derive an alternative
proof of it:

Corollary 2. If F is regular and union and intersection closed, then the extremal rays
are (1j,−1i) with i ∈ N such that |Ji| > 1 and j ∈ Ji, j ≺ i.

Proof. Under the hypothesis, F is generated by a poset (N,≤), and the set of total orders
generated by the maximal chains are those orders compatible with the partial order ≤
on N . Then it is easy to see from the proof of Theorem 7 that we obtain the desired
extremal rays.

The proof of Theorem 7 being constructive, we can propose the following simple
algorithm to produce all extremal rays of a regular set system.

Algo 2

Step 0 Initialization. Select a maximal chain C in C, and denote for simplic-
ity by 1, 2, . . . , n the order induced by C. Put L = ∅.

For i = 1 to n− 1 do:

For j = i + 1 to n do:
If j is ranked after i in every chain in C, then

• Put (1i,−1j) in L

% this is a candidate for being an extremal ray

• For k < i, check if (1k,−1i) and (1k,−1j) both exist in L. If

yes, remove (1k,−1j) from L

% it can be obtained as the sum of (1k,−1i) and (1i,−1j)

Final step: output list L of extremal rays.

Example 4. Let us apply Algo 2 on the regular set system of Fig. 4 (left). The four
orders induced by the maximal chains are:

1− 4− 2− 3− 5

2− 4− 1− 3− 5

2− 4− 3− 5− 1

2− 4− 3− 1− 5

Let us take the first order for running the algorithm. Taking i = 1, we see that no j

can be found. Therefore, we take i = 4, then j = 3 and 5 are possible, so we put in L

the rays (0, 0,−1, 1, 0) and (0, 0, 0, 1,−1). Let us take now i = 2, then j = 3 and 5 are
possible, so we add in L the two rays (0, 1,−1, 0, 0) and (0, 1, 0, 0−1). Next, we take i = 3
and see that j = 5 is possible, therefore we put (0, 0, 1, 0,−1) in L. However, we have
to remove (0, 0, 0, 1, 0,−1) and (0, 1, 0, 0,−1) from L. The extremal rays are therefore
(0, 0,−1, 1, 0), (0, 1,−1, 0, 0) and (0, 0, 1, 0,−1). This result is confirmed by the PORTA
software.
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We end this section by addressing the definition of the Weber set. Since F is regular,
marginal vectors can be defined as usual and therefore it makes sense to speak of the We-
ber set. Suppose we have found a normal nested collection of sets N , then the restricted
Weber set WN (v) for v defined on F can be defined as before. The question is then to

compareWN (v) with CN (v) and also W̃N ′(v), the restricted Weber set on F̃ , with N ′ the

Weber normal collection of F̃ . Little can be said in general if one does not have N ′ = N .
Suppose then that this is the case. Because of regularity, any restricted maximal chain in
F is a restricted maximal chain in F̃ , so that we have WN (v) ⊆ W̃N (v). Recall also that

CN (v) ⊇ C̃N (v), hence the question whether CN (v) ⊆ WN (v) remains. An examination
of the proof of Theorem 4 reveals that the technique of the proof cannot extend to this
case. Indeed, the following example shows that this is not true in general.

Example 5. Consider N = {1, 2, 3, 4, 5}, the following regular set system F and its

closure F̃ . Algo 1 applied on F̃ gives 24 and 234 as normal sets, which is also the

∅

1

14

124

1234

12345

2345

234

24

2

∅

2

14

1

12

124

1234

12345

2345

234

24

4

1 2 4

3

5

Figure 4: Set system F (left), its closure under union and intersection F̃ (center), and
the generating poset (N,≤) (right)

Weber collection. These sets belong to F , therefore the restricted Weber set can be
defined with the Weber collection. There are only two restricted maximal chains on F ,
namely ∅, 2, 24, 234, 2345, N and ∅, 2, 24, 234, 1234, N , inducing the two vertices ofWN (v):

w1 = (v(N)− v(2345), v(2), v(234)− v(24), v(24)− v(2), v(2345)− v(234))

w2 = (v(1234)− v(234), v(2), v(234)− v(24), v(24)− v(2), v(N)− v(1234)).
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The restricted core is defined by the system:

x1 ≥ v(1)

x2 ≥ v(2)

x1 + x4 ≥ v(14)

x2 + x4 = v(24)

x1 + x2 + x4 ≥ v(124)

x2 + x3 + x4 = v(234)

x1 + x2 + x3 + x4 ≥ v(1234)

x2 + x3 + x4 + x5 ≥ v(2345)

x1 + x2 + x3 + x4 + x5 = v(N)

Let us take the game defined by v(N) = 3, v(1234) = v(2345) = 2, v(234) = 1, v(124) =
2, v(24) = v(14) = 1, v(2) = v(1) = 0. Then the two vertices of the Weber set are
(1, 0, 0, 1, 1) and (1, 0, 0, 1, 1), which makes the Weber set a singleton. However, the vector
(1, 1, 0, 0, 1) is an element of the restricted core, which forbids the core to be included
into the Weber set.

4.2 The case of weakly union-closed systems

The situation here is less simple than with regular set systems. The following theorem
gives a sufficient condition for the equality of C(0) and C̃(0).

Theorem 8. Assume that F is a weakly union-closed system, and denote by F̃ its closure
under union and intersection. Then the extremal rays of C(0) and C̃(0) are the same if

for any S ∈ F̃ \F , it is either a union of disjoint sets of F , or there exist S1, S2 ∈ F such
that S = S1 ∩ S2, and there exists a covering in F of N \ (S1 ∪ S2).

By definition of weakly union-closed systems, note that the covering will be in fact a
partition.

Proof. We consider the set of inequalities of C(0), i.e., x(S) ≥ 0 for all S ∈ F and

x(N) = 0. We will prove that any additional inequality x(F ) ≥ 0 with F ∈ F̃ \ F is
redundant. By the Farkas lemma, we know that this amounts to prove that x(F ) ≥ 0
can be obtained by a positive linear combination of the inequalities x(S) ≥ 0, S ∈ F and
x(N) = 0.

We consider S ∈ F̃ \ F . Assume first that S is a disjoint union of sets in F , say
S = S1∪· · ·∪Sk. Then obviously x(S) ≥ 0 is implied by equalities x(Si) ≥ 0, i = 1, . . . , q,
since it can be obtained as their sum. Suppose on the contrary that S is not a disjoint
union of sets in F . By hypothesis, there exists S1, S2 ∈ F such that S1 ∩ S2 = S and
there exists a partition {T1, . . . , Tk} of N \ (S1 ∪ S2). Let us write the following system
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of inequalities:

x(S1) ≥ 0 (a1)

x(S2) ≥ 0 (a2)

x(T1) ≥ 0 (b1)

...
...

...

x(Tk) ≥ 0 (bk)

−x(N) ≥ 0 (c),

the last one coming from x(N) = 0. Then the inequality x(S) ≥ 0 is obtained by
(a1) + (a2) + (b1) + · · · (bk) + (c), which proves that x(S) ≥ 0 is redundant.

The next example illustrates the case where this condition is not satisfied.

Example 6. Take N = {1, 2, 3, 4} and the following weakly union-closed set system F

and its closure F̃ . The required condition fails: take S = 2, then it can obtained only by

∅

12 23

123 134

1234

∅

1 2 3

12 13 23

123 134

1234

Figure 5: Set system F (left) and its closure under union and intersection F̃ (right)

the intersection of 12 and 23. But N \ 123 = 4 is not a subset of F . The extremal rays of

C(0) are (0, 0, 1,−1), (1, 0, 0,−1) and (1,−1, 1,−1), but C̃(0) has only the two first rays
as extremal rays.
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