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Abstract

Inspired by the recent literature on aggregation theoryaweat relating the long range
correlation of the stocks return volatility to the hetenogity of the investors’ expectations
about the level of the future volatility. Based on a semiapagtric model of investors’ an-
ticipations, we make the connection between the distobali properties of the heterogene-
ity parameters and the auto-covariance/auto-correldtinations of the realized volatility.
We report different behaviors, or change of convention, sehobservation depends on
the market phase under consideration. In particular, wertemd justify the fact that the
volatility exhibits significantly longer memory during tiddases of speculative bubble than
during the phase of recovery following the collapse of a sfzive bubble.

JEL classification: G10, G14, D84, C43, C53

Keywords Realized volatility, aggregation model, long memory, bded rationality

Introduction

The slow hyperbolic decay of the auto-correlation functitbaracterizing the behavior of many
economic and financial time series has been the topic ofeadi@bates for more than two
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decades. Several interpretations and models have beeiguan an attempt to explain the
origin of this phenomenon, also known as the long-memorynpheenon. Among the most
relevant explanations that have been proposed up to nowgamécus on three major mech-
anisms acting separately or in conjunction: (i) the aggiegapproach suggested by Granger
and Joyeux (1980) who have shown that the time series meguitom the aggregation of
micro-variables exhibiting short-memory often yieldsgememory, (ii) the presence of infre-
guent structural breaks, which allows mimicking long teron+stationarity of the economic
and financial activity (Diebold and Inoue 2001, Gouriérand Jasiak 2001, Granger and
Hyung 2004, Gadea, Sabaté, and Serrano 2004, among otueds{iii) the presence of non-
linearities in economic and financial systems (see DavidsorSibbersten (2005) for a survey).

Our aim, in this article, is to provide a model that relates ltmg memory of the realized
volatility of assets returns, which is a pervasive featur&rmancial time series (Taylor 1986,
Ding, Granger, and Engle 1993, Dacoragna, Muller, Naglsen, and Pictet 1993, for the
pioneering works), to the heterogeneous behavior of thaso@ agents. Based on the fact
that the market participants perform heterogeneous pations about the future level of the
realized volatility and that they act as bounded ratiop@gents, we propose an explanation of
the long memory phenomenon that relies on the aggregatitimeyarket of the heterogeneous
beliefs of the investors, revealed through the marketpgigrocess.

The heterogeneity of market investors is now an well-recghfact — in particular amongst
the supporters of behavioral finance (see LeBaron (2000mrhies (2006), Challet, Marsili
and Zhang (2005) or Barberis and Thaller (2003) for a survetyjat can take several forms.
Heterogeneity can first be considered as resulting from ithex ity of the nature, the size and
strategies of the economic agents: individual investore wkiest their money to finance the
education of their children, traders who manage money far twn account or for the account
of their clients, institutional investors who manage pendiunds, and so on... do not have
the same financial resources (depending on their size) atine purposes (short term or long
term profits and allocation frequency for example), or theeakills. All these differences
make them focusing on different pieces of information aretefore anticipating differently
the future value of the firms. The role of different classeagénts in determining the market
structure is also investigated in Lux and Marchesi (1999)@rardina and Bouchaud (2003).

In this respect, Di Matteo, Aste, and Dacorogna (2005) hagently provided evidence for
the existence of a relation between the degree of heterdgameongst the market participants
and the stage of development of financial markets. Indedakinmg the stage of maturity of
a financial market to the speed of the hyperbolic decay of tite-eorrelation function of the
volatility of the assets traded on the market under conatdasr, Di Matteoet al. suggest that
the more mature and efficient the market is, the larger isuingaer of different classes of agents
and strategies and the smaller is the effect of long-mentrgddition, other phenomena such
as mass psychology and contagion must be taken into accondéed, clear evidence has
shown that rumors (Banerjee 1993), mimetism (Orlean 198#&)jing (Banerjee 1992, Froot,
Scharfstein, and Stein 1992, Kirman 1993, Cont and BoucRa00), fashions (Shiller 1989)
and so on, affect the agents’ behavior.

In order to account for these various sources of heterotyebei still keep a parsimonious
representation, we provide a model that relates the ink&@gbehavior to few heterogeneity
parameters that allow accounting for their individual temcly to perform optimal anticipations



on the basis of the flow of incoming news they receive or, orctrary, on the basis of a self-
referential approach which leads them to mainly focus oir fhesst anticipations and on their
past observations of the market volatility. This approaempts us to focus on the fact that, in
addition to the heterogeneity of sizes and strategieshanatain source of heterogeneity comes
from the way the agents actually anticipate the many faetbish impact future earnings of the
firm and their volatility. These factors are captured, inmadel, by help of a flow of incoming
public and private information which can be considered aegiding several macroeconomic
variables affecting stocks volatility such as the busirgsdes (see Schwert (1989) who has
found a higher volatility of many key economic variablesidgrithe Great Recession), oil price
whose volatility is important in explaining technology skareturn volatility (Sadorsky 2003),
or inflation and interest rates which have large impacts erstbck market volatility (Kearney
and Daly 1998).

Then, we make the connection between the distributionglgates of the heterogeneity
parameters and the auto-covariance/auto-correlatioctions of the realized-volatility. It al-
lows us to discuss the kind of economic behaviors that yiglddong memory of the realized-
volatility time series. Finally, the calibration of our mglcbver the last decade, on a database
of 24 US stocks of large and middle capitalizations, allowsaconstructing the distribution of
the heterogeneity parameters and then to have access todtal d®ehavior of the investors.
Notably different behaviors are observed, depending omihket phase under consideration
with (i) a strong tendency to self-referential anticipagdoefore the crash of the Internet bub-
ble, and (ii) a redistribution in favor of the investors merhing their forecasts on the basis the
incoming piece of information after the crash. Our findingsia part similar to Giardina and
Bouchaud (2003) who studied the behavior of agents duribyles and crashes in the context
of an agent based market model.

The paper is organized as follows. The next section brieftalle some basic stylized
facts about the so-called realized-volatility, a meastite®volatility introduced by Andersen,
Bollerslev, Diebold, and Labys (2003) and Barndorff-Negisand Shephard (2002a), among
others. Then in section 2, we present our model of boundézhedity investors with hetero-
geneous beliefs in order to investigate the impact of boghatdpents’ bounded rationality and
their heterogeneous beliefs in a market that is assumedrtorpean aggregation of the indi-
vidual anticipations. In section 3, we discuss the calibraissues of the model and derive the
asymptotic law of the estimator of the parameters of the mdde fourth section present our
empirical results while the fifth section concludes.

1 Stylized facts about the realized volatility of asset pries

Many stylized facts about the volatility of financial assetes have been reported in several
studies over the recent years (Ding, Granger, and Engle, 1993991, among many others).
In particular, people now agree on the fact that (i) retunspldy, at any time scale, a high
degree of variability which is revealed by the presencerefgular bursts of volatility and (ii)
the volatility displays a positive auto-correlation ovarge time lags, which quantifies the fact
that high (resp. low) volatility events tends to clusterime, as already reported by Mandel-
brot (1963) and Fama (1965) who first mentioned evidenceldingé changes in the price of



assets are often followed by other large changes, and shaalbes are often followed by small
changes. This behavior has also been noticed by severalsitities, such as Baillie, Boller-
slev, and Mikkelsen (1996), Chou (1988) or Schwert (1988)rfstance. Bouchaud, Giardina
and Mezard (2001) provide a explanation on the origin of tdtthaclustering.

In this section, after we have recalled the definition of tb&an of realized volatility, we
document some of the common features of the process of tee@s=e realized volatility and
relate them to the relevant literature.

1.1 Definition of the realized volatility

Based upon the quadratic variation theory within a stanffastionless arbitrage-free pricing
environment, Andersen, Bollerslev, Diebold, and Laby®9@Mhave suggested a general frame-
work for the use of high frequency data in the measuremeatnibdeling and the prediction of
the daily volatility of asset returns. In fact, as also résmhby Barndorff-Nielsen and Shephard
(2002a, 2002b), when the underlying asset price processamamartingale, the realized vari-
ance (the squared realized volatility) provides a consisgstimator of the quadratic variation,
in the limit of large samples. Indeed, denoting By thei’" observation of the asset price dur-
ing the trading day and byr; ; = In(7; ;) — In(P;_, ;) the continuously compounded return on
the asset under consideration over the pefiedl to i, the realized variance, at daydefined

by
ot => 1, 1)
=2

with n, the number of observations during this day, is a consist&tithator of the integrated
variance of the price process. In addition, as shown by Baffitllielsen and Shephard (2002a),
the asymptotic properties of this estimator are such that

o2 — fti o(s) ds

nt
2 4
3 § Tt
i=1

whereo (t) is the instantaneous (or spot) volatility of the log priceqess.

In6? —1In fttl o?(s)ds .

— N(0,1), (2)

i>/\/(0, 1), and

If the estimator[(lL) does not require the time series of agtatns to be homoscedastic
during dayt, it is however assumed that the returns are uncorrelatedreldre, in order to
account for the market microstructure effects, which maydpce spurious correlations (Roll
1984, for instance), it is often necessary either to filter thw series of intraday returns to
remove these correlatidher to focus on sufficiently large time scales — 5 minutes ms$tef 1
minute or tick by tick quotations, for instance — in orderec®th out the microstructure effects
and correlations. The immediate drawback of this later @ggn is to decrease the number
of available observations, which may bias the estimates.

[Insert figure[l about here]

1See the comparative study in Bollen and Inder (2002) forimss.
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As an illustration, we present, on the figlide 1, the realizeldtiity for two time series
drawn from our intraday database of 24 US stocks prices (se&on 4 for details on the
database). On the left panel, we can observe the realizadiliglof the daily returns of a
middle capitalization stock (The Washington Post) durimg time period from 01/01/1994 to
12/31/2003 while, on the right panel, is depicted the redlizolatility of a large capitalization
stock (Coca-Cola) over the same time period. Since our figason of the time dependence
between the intradaeturnsof these asset prices has not revealed the presence of ficsighi
correlation beyond the one minute time scale, the marketasticcture effect are negligible,
which allows us to directly estimate the realized volatifitom the one-minute raw returns.
We can notice that the two autocorrelation functions depgicin figuré 1L are typical of the two
kinds of autocorrelation functions we can observe with thetdcks of our sample.

[Insert figurel2 about here]

On the figuré 2, we have drawn the auto-correlation functfdheprevious realized volatil-
ity (still The Washington post on the left and Coca-Cola anrifght) from lag 0 to lag 250 days,
which corresponds to a one year period or so. The slow decarscteristic of the long mem-
ory. However, the two graphs seem different. For The Wasbm@&ost the auto-correlation
falls down to 0.4 quickly and then decreases very slowly,reag for Coca-Cola, it decreases
more regularly and the auto-correlation becomes not sagmfly different from zero beyond
lag 180, or so. This general feature could mean that thelatioe function of the volatility
of large capitalization stocks would exhibit shorter meynibran middle capitalization stocks.
This remark, that will be confirmed later, is in line with thieservation reported by Di Matteo,
Aste, and Dacorogna (2005) and according to which the mdi@ezift a stock (or a market),
the faster the decay of the correlation function of its vibtgt

1.2 Normality of the log-volatility

We now turn to the distributional properties of the realizethtility. As suggested by many pre-
vious studies (Andersen, Bollerslev, Diebold, and Eber@daDAndersen, Bollerslev, Diebold,
and Labys 2001b, Barndorff-Nielsen and Shephard 2002bngmihers), the log-normal distri-
butiorf provides an adequate description of the distribution ofiatility, at least in the bulk
of the distribution. These observations clearly suppatttodeling of the realized volatility in
terms of log-normal models, which goes back to Clark (1988§ (also Taylor (1986)).

Starting from these observations, let us illustrate thevieeice of the log-normal model for
the realized volatility of the returns on the prices of theeds in our database. To this aim, let us
denote by{w; }+>; the logarithm of the series of the realized volatility. Figid shows the kernel
estimate (Pagan and Ullah 1999) of the density of the log#ildy of a mid-cap (Microchip
Technology) on the left panel and of a large cap (Coca Coldhemight one, over the whole

°Notice that Barndorff-Nielsen and Shephard (2002b) alsawsthat the inverse Gaussian law provides an
accurate fit of the distribution of the log-volatility. Indg the log-normal and the inverse Gaussian distributions
are indistinguishably close to each other over the entimgeaf interest.



time period. The density of log-volatility of the price retis of Microchip Technology seems
very close to a normal density at the naked eye. On the oydralthe case for all the mid-
caps. On the contrary, the densities of the large caps frebarp peaks and fat tails so that
they significantly depart from the normal density. Theseaismpressions will be formalized
later on, in sectiohl4.

[Insert figure3 about here]

2 Heterogeneity model

As recalled in introduction, several explanations havenljgeposed, in the now large body of
literature about the long memory of financial time seriefpdmt out the various origins of this
phenomenon. The first one, addressed by Granger and Joy@8®)(Toncerns the nature of
financial time series. Indeed, they consider that finaneiaés results from the aggregation of
micro-variables and that this aggregation is responsiniéhfe long memory. The second one
is the presence of infrequent structural breaks (alsodalieictural changes) in financial time
series (Diebold and Inoue 2001, Gouriéroux and Jasiak, ZBfdnger and Hyung 2004, Gadea,
Sabaté, and Serrano 2004, Davidson and Sibbersten 2005gaothers).

Our model is based upon Granger and Joyeux (1980)’s promasit explains the long
memory of the log-volatility of asset prices by the aggremabof micro-variables intended to
represent the heterogeneous expectations of each marketpaat. For, we suppose that the
market aggregates the agents’ anticipations of the logtNity and that this aggregation drives
the realized log-volatility. We will formalize this assutign later on.

2.1 General framework

The role of the log-volatility as the central object undarphg our model comes from the
remark that, as recalled in the previous section, it is nealsie, in a first approximation, to con-
sider that the realized volatility follows a log-normalwlisution. As an additional hypothesis,
we will assume that

(H1) the log-volatility proces$w;, },c7 follows a Gaussian stochastic process,

which obviously ensures that the volatility itself has a-lmgrmal stationary distribution.

Now, the standard economic theory tells us that any ratiageaiht facing a decision problem
aims at optimizing the output of her actions, based upon mitieeeset of information she has
at her disposal. In the present context, it means that amgnedtinvestor strives for the best
prediction of the future realized volatiliy,, ., 7 > 1, based on the sét, ..., 0, } of her past



observations. In the sense of the minimum mean squared gredoest predictor is given by

Otpr = E[Ut+T|Ula---agt]7 3)
= E[ewt+7‘w17...,wt]7 (4)
— 620'0.:(7')2 . e®t+T, (5)

wherew, ., denotes the best predictor of the log-volatility, basedh@stame set of observations
ando,(7)? is the ¢-step ahead) prediction errae. the mean squared error[Ec:;HT — WHT)Q} :
Since the log-volatility is assumed to follow a Gaussiarcpses, the best predictoy, , is given
by a linear combination of the past observations and thegrdstipations. In particular (see
Brockwell and Davis (1990, pp. 162-168))

t—1

Wiy = W+ Z Ori - (Wi — wii) (6)

=0

where the sequence of coefficiedts; ; },>o and the long term mean depend on the specific
model each investor relies on and on the particular caldomahethod she uses to estimate the
structural parameters of her model. Thus, one expectshbat;s are specific to each market
actor so that each investor performs different expectataiout the level of the future realized
volatility. In addition, each agent can incorporate somagexous economic variables or some
piece of (private) information she thinks to improve herdic&on.

Besides, considering that the market carries out an aggpeg# the agents’ anticipations,
we postulate that

(H2) the realized log-volatility is the average of all the indlual anticipa-
tions.

Thus, denoting by, , the agent’s forecast, the realized log-volatility is given by

1~
wi(n) = n sz’,ta (7)
i=1

if the market in made of. participants. Under the assumption of an infinitely largenbar of
investors, the realized log-volatility writes

W = nlgglo we(n). (8)

Our approach can appear utterly simplistic insofar as takmecess yielding the realized
volatility certainly involves non-linear transforms ofethndividual anticipations before they
are actually aggregated through the price formation pgoghich is well-known to rely on
various positive or negative feedback mechanisms (SHD&0, Sornette 2003). However, in
this first attempt to capture the impact of the heterogeraditige investors’ anticipations on the
dynamics of the realized volatility, and in the absence gliarents allowing us to model these
non-linear interactions, it is necessary to restrict dueseto this assumption of linearity.



Moreover, in order to be able to make tractable calculatimesneed some other simplifying
assumptions. Focusing on agéntve denote byX; ; its expectation about the future level of
theexcesdog-volatility over its long term mean

Xit=wip —w 9)
on dayt, and by
_ 1 e -
Xn,t = wt(n) —w = E Zl Xi,t (10)

the excess of the realized log-volatility over its long tarrean. We assume that the anticipa-
tion )A(i,t depends on the anticipatiom-,tfl, the agent made the day before and on the excess
realized log-volatilityX,, ;_;, but also on a public piece of informatiepas well as on a private
piece of informatiom; ; according to the recursion equation

Xi,t:%pi th 1+wz n,t— 1+Cz<€t+772t tZO, 2.21727---7”- (11)

From equation[(6), one should expect thiat= —; if we consider rational agents who strive
for the best prediction (in the minimum mean-squared sesfshg volatility. However, in order

to generalize our model to the case where the market patitspcan bédoundedrationality
agents, we allow fog); # —p;. Nonetheless, we will assume that these coefficients remain
constant from time to time.

Let us stress that the first order dynamicg (11) can seemrgaesiand it probably is. How-
ever, our approach amounts to postulate that the agentnagbat the (log)-volatility follows
some kind of ARCH process, which is quite reasonable. Intemfdieven if real agents use more
sophisticated prediction schemes to perform their extieagabout the future level of the real-
ized (log)-volatility, and thus use higher order dynamws,can still make the assumption that
these higher order dynamics can be reduced to an aggregétiost order dynamics. There-
fore, )A(M does not exactly characterize the expectation of indididgants but more precisely
of a class of agents.

~ ~ ~ /
In this basic setting, the-dimensional vectoX; = (Xu, . ,Xm) follows a first order

(vectorial) auto-regressive process. The Gaussian néises{n: .}, {n2.}, ..., are indepen-
dent, centered, and of variance \aj = o? and Va(y,,) = o, Vi, respectively. Moreover the
structural coefficientéyp;, v;) andc;, which characterize the investors’ behavior, can be censid
ered as the result of independent draws from the same laaddhié heterogeneity distribution.
These draws are independent of the values of the noises andtiables ¢, v') andc are in-
dependent of each other. The paramet#rat allows introducing heteroscedasticity must be
strictly positive, while the distribution ofy, 1) has to fulfill some hypotheses, which will be
made explicit hereafter, in order to ensure the stationafithe stochastic proces{é(t}tez and

of the aggregated excess realized volat{if, ; } ;7.

The appeal of the dynamiE ([11) rests on the simple interfioetéhat can be made of the
structural coefficienty, ) and of its distributional properties. It is obvious that thgpact
of the previous ant|C|pat|01XZ +—1 on the current ant|C|pat|oE(Z . depends on the value of the
heterogeneity coefficient;:



1. wheny; is close to (but less than) one, the impact of the previougipation on the
current anticipation is very important and, unless a verydgiece a information arrives
—i.e. unless one observes a largeand/or a large), , — the current value of the expected
excess Iog-volatilityf(m will be very close to the previous one. On the overall, thenage
believes in the continuation of the previous market condgi

2. wheny; is close to (but larger than) minus one, the impact of theiptevanticipation
still remains more important than the arrival of a new pietmfmrmation, but the agent
exhibits a systematic tendency to believe in the reverstiiefolatility since her antici-
pation appears to be the opposite of the one she made the fiag;be

3. eventually, wheny;| is close to 0, the anticipations are only scarcely relatethose
made the day before and mainly rely on the flow of incoming news

To sum up, in the two first situations, we can notice that theketas highly self-referential: the
impact of a new incoming piece of information remains wedlktha more so the closer to one
the magnitude of;. On the contrary, whefy| is close to zero, the degree of reactivity of the
market participants to a new incoming piece of informat®high. Thus, the magnitude of
can be seen as a way to quantify the degree of efficiency of #iketh The same considerations
obviously holds fory;, but instead of referring to the past anticipation it refirshe publicly
observed past realized volatility.

2.2 Properties of the (log-) volatility process

Equation[(1l) can be written in a more compact form as follows
Xt = AXt—l + Et C + N, (12)

whered = D + 10 - 1/ is ann x n matrix with D = diag(p1, ..., ), ¥ = (Y1, , ¢)
and1, = (1,...,1), while C = (cy,...,c,) andn, = (14, ..., n0.). Besides, the range of
—_——

n times

the distribution of(¢, 1) is assumed to be such that the spectral radiutisfless the one. This
condition is necessary and sufficient to ensure the staitgrwd the vectorial proces§X; }+>o.

Under the assumptiofpA|| < 1, that will be assumed in all the sequel of this artidiee
stationary and causal solution to equation (12) is given by

Xt = Z Akcgt—k + Z A"“m—k, (13)
k=0 k=0

so that, as proved in appendiX A:

Proposition 1. In the limit of a large number of economic agents;» oo, the excess realized
log-volatility { X; },c7 follows an infinite order auto-regressive moving averagecpss

(1 — i E [¢¢*] L’““) X, =E[]- (iE [¢*] L’“) €t (14)

whereL denotes the lag operator.



Not surprisingly, the flows of private informatidm; ;. } does not come into play since, under
our assumptions, it does not convey any piece of informaiioaverage across agents.

As a byproduct of the proposition above, we see that theisoltd equation(14) can conve-
niently be expressed in terms of an infinite order movingraye provided thaf_;” | E [¢p"] 24 #
1 for all z inside the unit circle:

Xt =E [C] : Z Bk&—k, (15)
k=0

where thes,’s are formally given by the coefficients of the power series

[e’e) B - 1 1/} —1
e G e A

e[ (oe2a])
whereg(p) = E[¢|].

The procesy; = (32, E[¢"] L¥) e, is stationary if and only ify";2  E [gp’“f < 00,
which requires that the law gf be concentrated of+-1,1). It is however not sufficient, as
shown by Gongalves and Gouriéroux (1988). Furthermgrexhibits long memory provided
that " |E [¢*] | = oo. Restricting our attention to the case whefes said to exhibit long
memory if its spectral density

Z E [Spk} efik)\
k=0

we conclude that the density of- if it exists — should behave &% — ¢)~% asy goes to one.
Actually, Y; exhibits long-memory ifly € (0,1/2) and anti-persistencedi, € (—1/2,0). The
upper bound owy is necessary in order for the process to be second ordesrsdayi

The filter A(L) := 1 — 7 E[v*] LF™, in the left-hand side of{(14), is well defined
if > oo E [z/xpkf < oo which, by Cauchy-Schwartz inequality, is satisfied if/Z] < oo and

reo E [@2’“} < oo. This requirement is, however, not necessary. As a furtiipothesis, we
will assume thafy~;°  E [ngo’“]Q:c’““ # 1 for all z € [—1,1] which ensures thati(z) does
not vanish for any: inside the unit circle. The behavior of(z), asz goes to one, depends
on the conditional expectation of given ¢, namelyg(y) := E[¢|p]. Either A(z) remains
finite asz — 1, and X, exhibits long memory if and only i¥; itself exhibits long memory or
A(z) diverges hyperbolically, as — 1, and the memory (short or long) of the log-volatility
process results from a mix between the properties of thallision of o and of the conditional
expectatiory(y). More precisely, we can state that (see the proof in AppeBjlix

2

11
~ATHY dy € (—5, 5) , (18)

FN) =352

Proposition 2. Under the assumptions above, if the densitya$ f(¢) ~ (1 — ) %, a €
(0,1/2), and if the conditional expectation gfgiveny is g(¢) ~ (1 — ), 8 > a — 1/2, as
¢ — 17, the spectral density of the log-volatility process belsaagfy (\) ~ A~2mir{ef} as
A — 0.

10



2.3 Analysis of the heterogeneity parameter of the model
2.3.1 Absence of heterogeneity

Let us assume that the investors only focus on the pasteealidatility and completely neglect
their past anticipations.e., ¢ = 0. Consequently, the dynamics of the individual anticipagio
IS

Xi,t == ¢Z . Xn,t—l + C;&¢ + Nt t Z 0, 1= 1, 2, oy N (19)

By summation over all the agentsand in the limitn — oo, one gets
X, =E[]- Xps1+E[de t>0, (20)
which is a simple AR(1) process exhibiting only short memsince
p(h) =E[v]". (21)

Thus, we notice that the heterogeneity coefficiem responsible for the long memory whife
mainly impacts the short memory. It clearly shows that tmgylmemory phenomenon is rooted
in the self-referential behavior of the investors, and npezisely in the heterogeneity of their
self-referential behaviors.

2.3.2 Absence of reference to the past realized volatility

At the opposite of the previous case, let us consider that agent only bases her present
anticipation on her past anticipation and on the flow of inc@mews, but that she neglects the
past realized volatility so that the dynamics of the indiatanticipations reads

X@',t = ;- Xi,tfl + Cig¢ + Miy t >0, 1=1,2,...,n, (22)
and the expression of th&'s then simplifies to

which allows us to write the excess realized log-volati¢ityd its auto-correlation function as

. > Elp*E[p* ]
X, =E[]Y E[¢]ecr, and  p(h) == , (24)
> (El])?

provided that the stationarity conditiop _(E[+*])* < oo holds.
k=0

It turns out that the properties of this dynamics has beeasiiwated by Gongalves and
Gouriéroux (1988). Based on their result, one can remarlpaissing, that this correlation
function, namely the auto-correlation function of the agmted time series, is very different
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from the averagecorrelation functiorp. Indeed, before the aggregation, the auto-correlation
function of each individual agent’s expectation is

ph) =M i=12.., h=01,... (25)

so that
p(h) =El"]  h=01,... (26)

Besides, the dynamics exhibits long memory if (and onlyhi® density ofp diverges at one
in order to get a hyperbolic decay of the correlation funti{@4). In other words, the density
should behave likél —z)~4, d < 1/2, in the neighborhood of one, that is to say like the density
of the Beta law for instance, in order to obtaifh) ~ X - |h|?*¢~1, as|h| goes to infinity. In such
a situation, one can conclude that a significant part of tleatsgoase their anticipations on their
own previous anticipation and therefore exhibit heteregers self-referential behaviors.

2.3.3 Independence between the parametegsand ¢

law

Let us assume that = Beta —«, 1 + «) with a € (—1,0) for definiteness. Such a choice is
for illustration purpose since it aIIows tractable caltiglas. We deduce that El — :cgo)_l} =
(1 — ). If, in addition, we assume thatandy are independent, equatidn [16) reads

= 1
2 = i e @0

k=0

The denominator does not vanish for gmy < 1 if and only if E[¢)] € (—27(**Y,0). Since

a < 0, the right-hand side of (27) diverges@s-x)* if and only if Ej¢] = 0. As a consequence,
for the case under investigation, the volatility exhib@sdg memory when the parameterand

¢ are independent if and only if{E] = 0 which is the case investigated in the previous section.

2.3.4 Dependence between the parametegsand

Let us now assume that the parameterand are dependent. We still assume tbfaf%”
Beta —a, 1 + «) with o € (—1,0) and we assume, in addition, thajyr] = (1 — ¢)”.

Again, this choice is for reason of tractability of the cd#tions. We then get % 9() ] =

1—xp
mff(jia*mﬂlf(l —a; 1+ B;z), whereF is the hypergeometric function (see Abramowitz and
Stegun (1 3)65) for the definition). Thus, equation (16) reads

— = k_ (1 —a)"
goﬁkx - 1- L(i+a+p) zF(1 —oz'1+6'x)' )
(1 +a)l(1+08) T ’

Under the assumption that > 1, which assures that the denominator in equation (28)
remains bounded for alt| < 1, the serie$ -, Bxz* behaves like (1 — z)* in the neighbor-
hood of 1 and thus diverges hyperbolically since: 0. The expression of the spectral density
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is then deduced from equations15) aind (28):

fx(y) = Bl e 1 e : (29)

2 C+a+8) . L
L= T(l+a)r(118) € AF(L, —a; 14 B, e7)

and, sincefx(\) o C'|\|>*, the auto-correlation function reaggh) ~ K|h|72*"! as
—
|h| — oo, provided that the second order stationarity condition —1/2 holds.

For the sake of completeness, let us discuss the role playdteliwo parameters andj
in the model. Asp is assumed to follow a Betag, 1 + «) law, then Ep] = —a € (0,0.5).
It implies that the anticipation of an agent is not mainlydzh®n her past anticipation. Re-
call that|p| should be close to one in order to observe a strongly sedfeatial behavior. In
other words, the agents attach more importance to the atializvof the past volatility and to the
information flows, on average. The clogeto 0O, the less importance is given to the past antici-
pation. Consequently, as the anticipations of the ageetsmare based on common facts (past
realized volatility and informations), then the heterogignof the agents’ beliefs decreases. As
a conclusion the long memory should decrease. This phermmsishown on the left panel of
figurel4, where auto-correlation functions for a fixed= 1.5 and different values af ranging
in [—0.45, —0.05] are drawn.

[Insert figurel4 about here]

The right panel of figurél4 shows the densitiesedfor the same set of values af This
figure confirms that the closerto -0.5, the stronger is the divergence in the neighborhdod o
1. It means that the relative proportion of agents attachmgprtance to their past anticipation
increases and thus the long memory increases. Furthermveraptice that the speed of the
decrease of the auto-correlation function and the divergenthe density function are strongly
related. It means that impacts both on short and long memory, which is not a sursirsee
— with this simple parameterizationa-controls both the behavior of the density,otlose the
one and in the neighborhood of zero.

In order to illustrate the role of, we focus on the other heterogeneity parameétarhose
mean is )] = %. The limits of Ey/] when goes to 1 and to infinity are respectively
E[¢] B—1> 1+ aand By B—> 0. So, the largep, the closer) to 0 on average.

_)

—+00

Now, by aggregation of the system [11), the realization efwblatility on day: is equal
to a quantity depending on the past anticipations plus teengalization of the volatility times
the mean ofy; plus the information flows. Thus the aggregation of equafldl) could be
interpreted as an an AR(1) process whefg|Evould be the auto-regressive coefficient. Even if
the quantity depending on the past anticipations impacte®@short memory as we previously
pointed out, all things being equal furthermore, whén|Elecreases there are less short-term
correlations and then the short memory falls. It is the reagby when Ey] gets close to 0
(that is equivalent t@ tends to infinity), the short memory drops (see figure 5).
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[Insert figurel® about here]

2.4 Examples

Let us now discuss in details several typical examples oadyos encompassed by our model
and relate them with the agents’ behaviors.

2.4.1 Rational agents

As recalled in the previous section, rational agents basi #mticipations at time on the
innovationsX; , — X, ,, s < t — 1. Thus, setting); = —¢;, foralli = 1,...,n allows us to
model the behavior of the realized volatility when the irnees are fully rational agents since
it allows us to retrieve the expression of the optimal preexdi6), in the particular case where
the agents focus on the last mnovatlﬁnt 1 — X,.+—1 only. In this case, the dynamics on the
individual anticipation reads

A~

X@',t = ©; <Xi,t71 - Xn,tq) +Cier+ Mg t >0, 1=1,2,...,n, (30)

and by equatiori{16), we immediately obtdin 52" = 1, so that

k=0
Xt =E [C] Et. (31)
Notice, in passing, that we do not need each agent to be ahtignsettingy; = —;, but
only that By |p] = —¢ which means that the agents are not necessarily indiviguatiional

but only on average. Thus, if the agents are rational (iddiily or in average), the excess of
the realized log-volatility only reflects the aggregatefimation, publicly available at timg
namelye,, times the aggregated sensitivitydEof the volatility to the public information. This
result is not surprising insofar as rational investorsgrenfoptimal anticipations and, therefore,
the realized volatility can only convey the piece of infotroa not present in the past innovation
Xm 1 — X,:+1. Then, since the information flow is assumed to be a whiteendiee realized
volatility should also be a white noise in the case wherehallihvestors were rational.

2.4.2 Deviation from rationality

Let us now focus on a particular case of bounded rationagjgnes. We assur%@ =—a-p+

¢, wherea and¢’ are two constants while follows a “stretched” Bet@, ¢) law, namely a
Betdap, ¢) law extended over the entire rangel, 1]. As we expect that the fraction of investors
characterized by a heterogeneity parametesiose to one diverges at 1, the parameterust
be larger than ong, > 1. On the contrary, we expect that the fraction of agents ctamaed

3Remark that most of the results in the section still hold ifondy assume Ep|p] = —a - ¢ + @'.
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by a heterogeneity parameterclose tominusone remains finite, so thatmust be smaller than
one,0 < g < 1. The case of rational agents is obviously encompassed ydpresentation,
since it corresponds to the situation where- 1 andg’ = 0.

In this setting, the dynamics of the anticipation of the agdiecomes

A ~ —

Xit =i X1+ (@ —ap) Xpi1+c-e+ it t >0, i=1,2,...,n. (32)

and, from equatiori(16), the excess log-volatilify follows the infinite order moving-average
(@5) with coefficientss,’s given by the relation

= - 1—2)'G(p,q,x
2 Mt =g R e ) (33)
where ) , ‘
T i B Al
with F'(., .; ., .) is the hypergeometric function. Two conditions are reqlinerder forG(p, ¢, x)

to remain finite for allz| < 1: p > 1 and0 < ¢ < 1. Since0 < ¢ < 1, the numerator diverges.
Let us study the behavior of the denominator, and figure aittimditions for its convergence.

— - G(pv q, l‘) 1
k_ — , 35
D e = 8 o) Te s s g &)
which yields the following condition for long memory
¢ =a. (36)

The dynamics of the anticipation of the agetiten becomes

~ A —

Xip=¢i  Xigar+a(l—g) X1 +c-e+nig t >0, i=1,2,...,n. (37)

When g; is close to 1 therx(1 — ¢;) is close to 0 and inversely whes is close to O then
a(l — ;) is close toa. Finally, wheny is close to -1, them(1 — ;) is close to2a. There

is a kind of balance for an agent to the weight she gives to astr gnticipation and to the past
realized volatility. The more importance she gives to hest @anticipation, the less the past
realization matters. And inversely. Besides, when an adecitles to base her anticipation in
contradiction to her past anticipation (correspondingte- —1), for example she thinks she
was wrong, then she also gives and important weight to thierpakzation via the coefficient
2a. This is a reasonable behavior.

Replacingy’ by « in equation[(3B) leads to the simplified expression

— 5 ok (1—=2)'G(p,g,x)
kZ:O Pt = 1—a+a(l—2)1G(p,q,x) (38)

So, under the assumption that the denominator in equat®)rédain bounded for alk| < 1,
which requires that
1 —
TP h <, (39)
q
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the seriesy ;- Brz* behaves likeC'(1 — z)?~! in the neighborhood of 1 and thus diverges
hyperbolically ifg < 1. In such a case, the auto-correlation function behavesHikd!' ¢ as
|h| — oo, provided that the second order stationarity condition 1/2 holds.

Now, we will study the influence of the parameters on the shdple auto-correlation
function. First we focus on the short memory case wkrérg «, then on the long memory case
wherey’ = a.

Short memory In the case?’ # «, the condition for the denominator not to vanish becomes

_q \ = _q \ A
a>max(@’,%) ifﬁ>1and@’<a<%if}ﬁ<l. We setp = 5,

p—1 p—1
qg = 0.75 anda = 0.8. Figure[6 shows how the auto-correlation function behaviesnap’
tends to. We observe that the closéf is to o the slower the decrease of the auto-correlation
function.

[Insert figurel® about here]

As a special case, let us set= 1, as in the case of rational agent, it 0. It is, in some
sense, the simplest way to account for the departure froimnedity. The anticipation of the
agent; then reads

Xis =i (Xm_l _ Xm_l) G Ky taetn,  t>0,  i=1,2,...,n, (40)

which means that the agent performs her anticipation onabisof the past innovatioﬁii,t_l —

Xn¢—1 but, in addition, also pays attention to the past realizedtiity in itself, as pointed out
by the presence of the terg - X, ;.

Equation[(16) yields

= . 1
> Bt = ——— (41)
— l—z-9p

which shows that the dynamics of the (excess) realized tdgtility is nothing but a simple
short memory AR(1) process

Xt — @, . Xt—l = E[C]gt, (42)
whose auto-correlation function is given by
plh) = ¢ (43)

Thus, if¢’ = 0, we get exactly the behavior of fully rational agents, wisblows again that the
rationality at the individual level is not a necessary ctindifor the volatility, at the aggregated
level, to behave as if the agent were individually rational.

Long memory Let us now focus on the case where the model exhibits long memamely
when’ = a. We are interested in the role of the parameterg and « in the short and
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long memories. On figure 7, the role pfis depicted. The two other parametgranda are
fixed respectively to 0.75 and 0.3 apdanges between.05 and8. On the left panel the auto-
correlation functions are drawn over 200 lags, and on th& vge the corresponding density
functions. It shows that the larger the slower the decrease of the auto-correlation function a
short lags. Thugj only influences the short term behavior of the auto-corigidnction.

[Insert figurelT about here]

On figure 8, the role of is studied. The two other parametgranda are fixed respectively
to 5 and 0.3 while; ranges betweef.55 and0.85. The closerg is to 0.5, i.e. to the lower
bound for second order stationarity, the faster is the gmmece of the density function in the
neighborhood of 1 and the slower is the decay of the autceladion function. Consequently,
g impacts on the long memory.

[Insert figurel8 about here]

Figure[9 shows the role af. The two other parametersandq are fixed respectively to 5
and 0.75 andv ranges betwee1 and0.9. We observe that has an important impact on the
short memory. Indeed, the smalterthe slower the short-lag decrease.

[Insert figure9 about here]

2.4.3 Generalization

Let us now take into account a larger class of agents’ behavithhe case of’ = «. To this
aim, we modify the density function: we still keep the beta laut we add another law which
have a bell-like density. The bell will be able to move all oj#,1]. For example, if the bell is
set around zero, it means that the agents do not give impartartheir past anticipation.

flp) = wm(1+<P)p_1(1_90)q_1+(1—W)W(Prw)(l—go) exp (—%7((‘0 0(2m>) ) ’
44

whereK is the normalizing constant (that can be expressed in clfen) law andw in [0, 1]

is the weight given to the stretched Beta law.The conditmieng memory remain the same,
only the conditions of stationarity change. They can bdgagpressed in closed-form but their
expression is rather cumbersome; That is why we will not gieen here.

On figure[10, the role of the relative weight of the singulart plae densityw, is studied.
The parameterg andq are fixed respectivelyto 5 and 0.7b= 0.3, m = 0, 0 = 0.2 andw is
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ranged ovefl/4, 3/4]. The weight given to each density impacts on the short buth@long
memory. The larger the relative part of the bell-like densampared to the stretched Beta one,
the faster the decay of the short memory. In terms of ageetsawior, it means that the more
the agents base their anticipations on the incoming infaondéows and on the past realization
of the volatility, the smallest the short-term correlasare.

[Insert figure[10 about here]

Figure[11, shows the impact of the width of the peak of the betitrolled byos. The
parameterg andgq are fixed respectively to 5 and 0.76~= 0.3, m = 0, w = 1/2 ando ranges
between).1 and0.3. The intensity of the peak of the bell-like density has onlittee impact
on the short memory. The sharper the bell is, the more impbiddhe short memory.

[Insert figure[11 about here]

On figure 12, the role af: which determines the position of the bell is studied. Thepar
etersp andq are fixed respectively to 5 and 0.75= 0.3, 0 = 0.2, w = 1/3 andm is ranged
over[—0.8,0.8]. The translation of the bell plays a part on short memory. rGve very first
lags, we notice that the closer the bell is to -1, the fasterdéxcrease of the auto-correlation
function is. But after a few lags, this situation does notlrexhymore.

[Insert figure[12 about here]

3 Statistical Inference

Let us now turn to the question of the estimation of the patareef the model. As exempli-
fied in the previous section, the long memory phenomenon eaasbribed to the hyperbolic
divergence of the density of the heterogeneity parameteithe neighborhood of . It is thus
convenient to split the density of the heterogeneity véeiabin two terms: a regular one and
a singular one. For this reason, we will model the law of tladized log-volatility of financial
assets as the mixture of a regular law, with dengityand of a Bet&, 1 — d) law (d €]0; 1)
with density f5, that will allow capturing the hyperbolic divergence of tthensity ofp at one.
As a consequence, the densityotan be written as

f(@) =whiz) + (1 —w)falr), wel01], (45)
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wheref; is any regulari.e. continuous and bounded, density function defined-oh 1] and

T

fo(z) = (1 = d)(2—d) 1- x)dl[o;l](l’)- (46)

Given a densityf; (z) which admits an expansion in terms of a Fourier series, amgson
that will be made in all the sequel of this article,

fi(z) = % + Z a, cos(nmx) + Z b, sin(nrz), z € [-1,1], 47)

n=1

the expression of the auto-covariance and auto-corralatioctions of the realized log-volatility
can be numerically calculated by use of the expression afnthiment of ordek of the hetero-
geneity variablep

E [gpk} = wk; [gpk} + (1 —w)E; [cpk} , (48)

where E[-] and B[] denotes the expectations with respectf{cand f, respectively, which
yields

where the expressions df,, B, andC), are given in appendixID.

3.1 Asymptotic Normality of the estimator

For simplicity, and for ease of the exposition, we will assutiat the coefficient&a,,, b,,) of
the Fourier expansiof (#7) vanishes beyond the rask that the density; reads

1< S
filz) = 5t ; a, cos(nmzx) + ; b, sin(nrz), z€[—1,1]. (50)
In addition, we focus on the case wherg/lkp] = —a(¢ — 1), which ensures that the long

range memory of the volatility is controlled by the parametef the Beta law, as shown in the
previous section.

Let us denote by = (ay,..., a4 b1,...,b, a,w, 0., d) the2q + 4 dimensional vector of
the parameters involved in our problem andhidy; ) the value of the auto-covariance function
at lagh for the distribution of heterogeneity defined by equati@ ((46) and[(50) and for the
parameter valué.

Given theT-sample of the logarithm of the realized volatilitigs,, . . . ,wr}, treated as ob-
served data, it seems natural to estingalby minimization of the weighted difference between
the sample auto-covariance function

1 T—h

ir(h) = 7 Y (@i = or) (wign —@r),  h=0,1,... (51)

i=1
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and~(h; #), the auto-covariance function at the parameter véalu&/e could thus consider the
classical minimum distanaestimatod;. ;, (Newey and McFadden 1994) solution to

argmin (i, — 7 (0)) W [, = 72(6)] (52)

wherev,(0) = (v(1;0),...,%(L;0)), Az = (Gr(1),...,57(L)) and W, is any symmetric
positive definitel. x L matrix, while© is the parameter set

©={0=(ay,...,a4b1,...,0,c,w,0,d); f1 >0,0<d<land0<w<1}. (53)

However, when dealing with long-memory time seriessuch that ,”  |y(h)| = oo, the
asymptotic properties of the sample estimatgs are not really suitable. Indeed, as recalled
by Hosking (1996), the limiting distribution of-(~) whend > 0 is such that

T2 (3p(h) —v(h)) - R, (54)

whereR denotes the modified Rosenblatt distribution. In particuke mean of the Rosenblatt
distribution is not equal to zero and can even be much latger its standard deviation far
larger than or of the order of one fourth.

As a consequence, it is desirable to rely on the minimizatfocenother criteria with more
suitable asymptotic properties. In fact, irrespective value ofd € (—1,1), the limit
distribution of any subset of the variabl®s = /T [(57(h) — 47(0)) — (v(h) — v(0))], h > 1
is a multivariate normal with zero mean and asymptotic cavee matrix (see Hosking (1996,

th. 5))

[Ez}kl = 7li_r)rolOCOV(l)]g,l)l), (55)
= 33 B AR s =D Al kD (56)

In view of this asymptotic result, a convenient estimatothed parameteé is given by the
solution to

arg min [z, — () Wt e — nu(0)] (57)
where
no(0) = (v(1;6) — 5(0;0), ..., y(L; 6) — ~(0;6))’, (58)
and
Ar = (A1) = 47(0), ..., Ar(L) — 47 (0))". (59)

The consistency and the asymptotic normality of the estin@a;L follows from the general
asymptotic properties of the classical minimum distantienegors. Concerning the asymptotic
normality, we can state the following result

Proposition 3. Assuming thaf ;. LN 0o, forall L > 2¢q + 4, asT — oo,
VT (1. = 60) =5 N (0, An(6))) (60)
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with

Ar(0y) = [G1(00) WG 1(00)] " Gr(00)WLE3 (6)WLG1(00) [GL(60) Wi Gr(6)] ™, (61)

where
Gr(th) = gradynr(0)|s—g, , (62)
and
9 1 — 2
[S200)] ) =5 D r(s:60) = v (s = ksbo) =7 (s = :6p) +7 (s — k +L:00)*,  (63)
Lk=1,... L

Proof. By theorem 5 in Hosking (1996)\/T (7., — n1(60)) N (0,£7(6o)), thus, the
result follows straightforwardly from theorem 3.2 in Newaayd McFadden (1994). O

For fixed L, the minimum of the asymptotic variancé, (6,) is reached wheiV, =
(22 (6,)] ", so that

VT (fr.—80) =5 N (0,GL(80) [S3(60)] " Gu(00) ) (64)
On the other hand, giveliv;, one can get an optimal valde of L as the solution to

L* = arg min [|AL(60)]]. (65)

Le{2¢+4,...,T—-1}

Proposition 4. Under the assumptions in propositioh 3, denoting’ly)) the vector

w cos ()

w COS.((]T('ZE)
w sin(mx)
Do) = w sin:(qmc) ’ (66)
0
fi(z) = fa(x)
0

| (0= D) (1 =)+ A

the estimatorf (z) of the densityf (z) is asymptotically Gaussian
VT (f(@) = f(@)) =5 N (0, D(6) A(60) D(6)) (67)

Proof. D(6) is nothing but the gradient of(x) with respect t&d. Thus, by use of the Delta
method (van der Vaart 2000), the result follows straightBmdly from propositiof 3. O
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4 Empirical results

In this section we present the conclusions drawn from thiéredion of our model whose im-
plementation is discussed in appendix E. To this aim, we hséntraday prices of ten middle
and fourteen large capitalization stocks traded on the N¥6the Nasdag from 01/01/1994
to 12/31/2003 (which represents 2518 trading days). Therg®n of the data, provided by
TickData, is given in tablel 1. According to Standard and Raoethodology, stocks are classi-
fied as middle capitalization stocks if their (average) mreadapitalization ranges between US$
750 million and US$ 3.3 billion and as large capitalizatioocks beyond. An exception has
been made for Gilead Science inc. which has been classifiadraddle capitalization stock
while its average market capitalization is US$ 3.9 billiastnich should have led us to classify
it as a large capitalization stock. This choice is for reasoirhomogeneity, in terms of market
capitalization, of our two sub-sample (midcaps, on the hinde caps on the other hand).

[Insert table[1l about here]

We first estimate the daily realized-volatility by use of t&imator[(ll), as already dis-
cussed in section 1. We stress that this variable will beidensd as an observed variable in
all the sequel. Before going further, it is worth to noticattive should get 390 one-minute
prices for all assets since the quotations begin at 9:30 ahead at 16:00 pm. However, we
have much less observations for the middle capitalizatiooks than expected: typically 133
per day, on average. In addition, the number of intradayajigts is not constant over time.
Indeed, the number of available data is much smaller frond 183997 than from 1998 to 2003
(respectively 45 and 192 for the middle capitalizations 288 and 374 for the large capital-
izations). Nevertheless, we has chosen to estimate theeadalolatility over the whole time
period ranging from 01/01/1994 to 12/31/2003. Notice thatfact that we restrict our attention
to middle and large capitalization stocks is motivated lg/ttho low number of quotations per
day of small capitalization stocks — i.e. stocks whose ntatkgpitalization in less than US$
750 million — to allow for an accurate estimation of theirlizad volatility. It is the reason why
they are not considered in this study.

4.1 Calibration of the model over the whole time interval

Let us underline that the estimation of the density of thetogteneity variable> provides us
access to the parametéthat characterizes the long-memory behavior of the timesef the
realized log-volatility. It is then interesting to compdhe values ofl obtained with our model
and those obtained by other methods like the rescaled raegfgothset by Hurst (1951) and
the regression method introduced by Geweke and PorterdHd@83). Notice that the former
method has been refined by Mandelbrot (1972, 1975), Manotedimd Tagqu (1979) and later
by Lo (1991). However, this generalization involves an #iddal parameter whose value has a
great influence on the results (Teverovsky, Taqqu, and Mjidr 1999). As a consequence, we
have only resorted to the classical rescaled range statisti
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First we show the graphical results obtained for a middletakpation: Fidelity National
Financial inc. (FNF, see figute113). On the right panel therestd auto-correlation function
fits very well the sample one. The density of the heteroggnaitiabley is depicted on the
left panel (plain curve) with the pointwise 95% confidendeimal (dashed curves). This shape
with three distinct masses (one close to -1, an other clodeand the last one around 0) is
representative of half of the assets (The other half is degiafterwards). In terms of agents’
behavior, it means that there is mainly three kinds of agdfitst, looking at the central part
of the density function, we can conclude that most of the tybase their anticipations on
the incoming flow of information and on the past realizatidegending on the value af).
Some others believe in the anticipation they performed #yehl#fore, which is related to the
diverging part of the curve, in the neighborhood of one, wbihly a few, shown by the part of
the density near -1, systematically take the opposite af ffrevious anticipations.

[Insert figure[13 about here]

Secondly we show what we graphically obtain for the othef balthe assets with the
example of a large capitalization: Microsoft (MSFT, see ffidli4). Instead of noticing three
distinct masses, we only see two. The agents confident inpghst anticipation still remains,
but it is now more vague with the second category. In fact threecis symmetric with a peak
centered around -0.5. We still find agents who do not trusiremmg in the anticipation they
performed the previous day (the part of the density funchiear -1), and others who only
care about incoming news (the part of the density functioar 9, and between these two
situations there are many agents who both take into acchamtdws and the opposite of their
past anticipation. This is quite logical if an agent redi®at her past anticipation was far from
the realization of the volatility, then she takes the op@osi her previous anticipation and also
becomes more careful in the incoming news.

[Insert figure[14 about here]

These two typical shapes of the distribution of heteroggram not appear to be related
to the size of the firms nor to any specific industry. Howeusg, $mall number of assets per
industry in our database (maximum five) prevents us from ohrgudefinitive conclusions.

The results of the estimations of the long memory paramgbgrour model and by the two
semi-parametric methods are shown in table 2. It is quitecalsvthat, on the one hand, each
estimators agrees to say that long memory is present in alatioseries while, on the other
hand, each estimator gives, for a same asset, differerevalid. Most of the values obtained
by our model range betwe@r2 and0.4 and a few are negative, instead of betwegnand0.45
with Geweke and Porter-Hudak’s estimator. At least the lomgnory parameter obtained by
the classical rescaled range analysis method is mainly geetpbetwee.40 and0.55.

It is common knowledge that beyortl= 0.5 the series is no longer stationary. As the
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estimations by the Hurst method are greater than, but cpgg@%, we may say that it is due
to the uncertainty and, maybe, the inaccuracy of the methadeover, the differences noticed
between these results may be explained by the difficulty éothe estimators. Indeed, it is
well-known that Geweke and Porter-Hudak’s estimator igegsensitive to the presence of
short memory. On the contrary, our estimates should be deresi as more robusis-a-visthe
presence of short-memory insofar as our model takes it ctount explicitly.

We observe that the values of the paramétestimated with our semi-parametric model
are significantly negatively correlated with the average sif the stocks/(= —0.48, p-value =
0.02). This observation is in accordance with Di Matteo, Astej Bracorogna (2005)’s results
which show that the more efficient a stock, the faster theydetthe correlation function of its
volatility. Clearly, the larger a stock the larger is the raenof analysts who value this stock
and the larger the categories of investors who trade thekstéence, the most efficient should
be the stock price. It is important to notice, that the longmogy parametet! estimated by
Geweke and Porter-Hudak’s estimator and by Hurst’'s meth@dasitivelycorrelated with the
average stock sizes. Form our point view, it illustratesghperiority of our approach in the
present context.

4.2 Study of the bubble burst effect

The study of the bubble burst effect is motivated by the faat tve will be able to get infor-
mations about the agents’ behavior during a prosperityodefibefore the bubble burst) and
during a recession period (after the bubble burst). In palgr we will be able to answer the
guestion:“Do the agents behave differently before and afteibble burst ?”

To perform the computations, we randomly selected 5 larggala&ations because the bub-
ble phenomenon is far more pronounced in their price evaiutian it is for middle capitaliza-
tions. We simply split the series when the maximum price &hed into two subseries. The
first one is defined as the pre-bubble burst period while theratne is the post-bubble burst
period. Hereafter, the illustrations are drawn for a “neshteology” company, Cisco Systems
(CSCO), and a non technology company, Coca Cola (KO). Thet poithat the bubble phe-
nomenon may be more pronounced in the price evolution of ateefmnology company, which
was more affected by the Internet bubble, than a non techgdion.

4.2.1 Study of a new technology asset: Cisco Systems

On the left panel of figure_15 we show the price evolution of CS&tween 01/01/1994 and
12/31/2003. On the right panel of figurel 15 we have drawn thgtaauto-correlation functions
of CSCO over the three periods. We deduce that before theldidoiost the long memory
parameter should be much larger than the one over the whaledpehile after the bubble

burst, it should be much smaller.

[Insert figure[15 about here]
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Let us complete these impressions with the densities ar@cutelation functions esti-
mated over the two subperiods (see figlrés 16 ahd 17). We ahtvedeft panel the estimated
density with its 95% confidence interval and on the right dreesample and estimated auto-
correlation functions.

Concerning the pre-bubble burst period (see figuie 16), ermitht side, we see that the
estimated auto-correlation function fits pretty well witletsample one. Moreover on the left
side of this figure, the 95% confident interval is very thin. Wéuce that the optimization
performed well. The shape of the density is quite similahasone we obtained with Microsoft
(see figuré_14) and implies a strong long memory. To sum up, etévgp masses: the one
close to 1 represents agents who believe in their past pation; the other one, from -1 to 0.2
includes several different behaviors. Nevertheless tlagg something in common: they do not
replicate their past anticipation. Some are rational ardtlns incoming information flows and
others not really. They are inspired by the opposite of thagt anticipation or a mix between
the news and the contrary of the previous anticipation.

[Insert figure[16 about here]

As for the post-bubble burst period, we notice again, on &{L#, that the estimated auto-
correlation function fits very well with the sample one (oe tight panel) and that the 95%
confident interval of the density function is good too. Hoemthe situation is here a little bit
different: the value of the long memory parametés smaller (see tablé 3 hereafter). Basically,
it means that the proportion of agents who believe in theinaity of the previous market con-
ditions is smaller. Figure 18 helps us compare the agen@vimis during the two subperiods.
We observe that after the bubble burst the mass from -1 andh&Bges. It was first com-
pressed between -1 and 0, then the mass has been dividedinioasses. As a consequence,
on the one hand the proportion of agents who perform theicipation based on the opposite
of their previous anticipation is larger. Those agents ne&ypgnize that they were wrong or it
can reflect the confusion resulting from the increase in¢kellof uncertainty about the future
evolution of the economic environment after the bubble to@s the other hand, the proportion
of agents who mainly use information is larger too, in aceoa® with the increase in the level
of uncertainty and therefore with the increasing need ffarmation.

[Insert figure[ 17 about here]

[Insert figure[ 18 about here]
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4.2.2 Study of a non technology asset : Coca Cola

We reproduce for Coca Cola the same figures as for Cisco Sgstefare, the bubble burst
does not coincide with the burst of the Internet bubble butesponds to the market turmoil
resulting from the Russian crisis during the summer 1998 ndfece on the left side of figure

[19 that the bubble phenomenon is less pronounced than thebseeved in the case of Cisco
Systems. The immediate consequence is shown on the lefvkides figure where the sample
auto-correlation functions over the three periods are sdifferent as they are for CSCO. Then

we expect to get closer long memory parameters, especialytbe whole period and after the
bubble burst.

[Insert figure[19 about here]

Let us be more accurate with the densities and auto-caoel&inctions estimated over
the two subperiods (see figured 20 21). For both of theegunotice that the estimated
auto-correlation functions on the right panels fit very vielihe sample ones (in particular after
the burst), and the 95% confident intervals are good too.

[Insert figure[20 about here]

[Insert figure[21 about here]

As the shapes of these two densities look very similar letutshem together on the same
graphic in order to analyze them (see figuré 22). Looking atdivergence at one, the long
memory parameter may be more or less the same. Contrary avdthaion of CSCO density
where the bulk of the post bubble burst density in the negatwnge was compressed, here it
does not change that much. It only slightly expands alongotistive axis after the bubble
burst. The mass from 0.2 to 0.7 for the pre-bubble burst dexioich represent the agents who
both believe in the continuity of the market and also take adcount the information flows has
disappeared. It means that a smaller fraction of agentsiséltheir past anticipation.

[Insert figure[22 about here]
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4.2.3 General observations

Let us look at the values of. The values of the long memory parameter obtained by our
model (see tablel 3) confirm our visual impressions. Indeefiyrb the burst, the long memory
parameter is often greater than the one over the whole pfeni@didout of 5 cases (in the 5th they
are nearly similar). On the opposite, one observes that tféeburst,d falls for all the assets
except for Coca Cola.

We have to mention that the optimization algorithm does paverge for Microsoft during
the second period. A reason might be the small number ofalaidata. Indeed, for the post
bubble burst period we only have about 900 days for 4 out osBtasvhereas we have about
1600 data available for the pre bubble burst period. In tlse cd a smaller data number, the
global optimum is more difficult to reach.

Nonetheless, to sum up, the results we obtained lead us tudEnthat during a growth
cycle, the number of agents who are confident in the marketvdiode strategy remains almost
the same day after day, is greater than the one during a degltie where the agents adopt
more various behaviors. Indeed, some still base theirigpation on the previous one. Some do
not believe in their past anticipation anymore and take agiwount the information flow. Some
admit they were wrong the day before and make a contraryipation. Others make a mix
between a contrary anticipation and taking into accounnt#hes. This observation is in line
with Giardina and Bouchaud (2003) who showed that duringpireod of very low volatility
following crashes, all agents keep using the same strategie

5 Conclusion

Based upon the recent literature on the aggregation theergave provided a model of realized
log-volatility that aims at relating the behavior of the romic agents to the long memory of the
volatility of asset returns. In spite of its simplicity, hmodel allows taking into account many
agents’ behavior and performs good estimates in generale$timated coefficients often lead
to auto-covariance and auto-correlation functions wedditvith their sample counterparts. In
addition, the results derived from the study of the bubblsteifect — namely a higher tendency
to replicate the anticipations of the day before and to redlee incoming information flow
before the bubble burst than after — are quite reasonable.
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A  Proof of proposition [1I

Under the assumptiofA|| < 1, the stationary solution to equatidn{12) is given by

= Z AkCé‘t,k + Z AkT]tfk, (68)
k=0 k=0

and the excess realized log-volatility writes

_ = /1 =1
Xt = E <51;Akc> €1k + E El%Akm—k- (69)
k=0 k=0

Accounting for the factd = D + = \If 1/, A¥ is solution to
k k—1 1 ’
AP =A <D+—\If~1n), (70)
n

so that one has to solve the recurrence equation
1A = (1,A*") D + By_11,, (71)

wheref, = 11, A%y Itis then a matter of simple algebraic manipulations tosstizat
1
—1LA*C = 1/ DFC + — § :BZ 1 D*C, (72)
n

= El[d-E[¢"] +E[d] Z BiaE["]  (as), asn — oo, (73)

where
1 k 1
Br = —1;D’f\p+2@-,1 : (—1;Dkixp), (74)
n - n
= E[py" +Z@ E[et ] (as),  asnm— oo, (75)
while
1 ! Ak 1 / k k—1
glnA ,r]tk - _]- D ’r]tk + Zﬂl D ,r]tkv (76)

k E[mHZ BiaE [ End  (as), asn — oo, (77)
= 0, (78)

provided that Er,] = 0.
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S0, X; = lim,,_,, X, is equal to

X; =E|[q- i (E [¢*] + Z BiE [SOIH]> Ei—k- (79)

k=0

Let us simplify this expression by setting

k
B =E[¢*] + > BiaE[¢*], (80)
i=1
so that .
Xi=E[d- ) Bezis. (81)
k=0

Now, multiplying equation{80) by* and summing ovek from zero to infinity, we get

k

i Bk-{-lkarl — i E [Skarl] :L,kJrl + i (Z /B’LE [()Aﬂz]) karl. (82)
k=0 k=0 k=0

=0
As it is well-known that
00 k o) 00
3 (z 5E W) - (z 5) (z [ ) e
k=0 =0 k=0 k=0

we obtain

Zﬁkxk:ZE[cpk] xk{1+x25kxk}. (84)
k=0 k=0 k=0

Then, focusing ori Brz* and by use of equatiof(I75), the same argument yields
k=0

0 0 0 k
Zﬁkﬂﬂfkﬂ _ Z E [w@kJﬂ] aant + Z (Z B.E WSqu) xkﬂ) (85)
k=0 k=0 k=0 \i=0

iﬁw’“ = kf% E[pef] " + = (i Bsc) (i E [v¢] :c) . (86)

=0 i=0
In other words

. >_E[ve]at
> Bt = = , (87)
k=0 1—z Z E [¢"] 2*
k=0
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which, by replacement in equatidn {84), leads to

. 2 E[]!
>t = — : (88)
k=0 l—x Z E [v¢"] 2*

k=0

and, provided that the permutation of the expectation anthsation signs is allowed

- Elee
S Gt = T (89)
k=0 1—2zE { }
l—z-¢p
which concludes the proof. O
B Proof of proposition
The expression of the spectral densityXgffollows from propositiom Il and reads
00 2
E ka efz'k)\
E[]’- o2 % )
(N = =5 < - (90)
1— e*i)\ Z E [wwk} efl'k)\
k=0

Provided that the permutation of the expectation and summsigns is allowed, we can rewrite
this relation as

1 2
E .
Ec]*- o2 |:1—€i)" }
fen = B " (o1)
1—e”‘-E[79(p_ }
1—e o
Now, focusing on the term
1
M) =[], (92)

it follows from Karamata’'s theorem (Bingham, Goldie, andiels 1989) thatV(z) ~ (1 —
x)~*, asz — 1, provided that the density of satisfiesf(¢) ~ (1 — ¢)™, a > 0.

Similarly, provided that the density gf satisfies the previous assumption and that the con-
ditional expectatiom(y) ~ (1 — ¢)?, 8 > a — 1/2, the term

D)= E [ 9(¢) } N { (El[;(f))_aw’ a>f (93)

l—z-¢ L < o0, a<f

asx — 1.
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So, whena is positive and larger tha#, the ratioN (z)/D(x) ~ (1 — x)~? so that the
spectral density'x () ~ A~2%. On the contrary, whef is greater than of equal te, the ratio
N(z)/D(z) ~ (1 — z)~* and the spectral densiffx (1) ~ A~2. O

C Calculation of the auto-correlation function by the use of
the Fast Fourier Transform

The Auto-covariance functiony (k) of a time series{ X;} can be obtained by the spectral
densityfx () of { X;} according to

T 21
v = [ ear= [ e ponin (04)
-7 0
Equation[(94) in terms of a sum of integrals
N-1 n2m(pyy)
yx(h)=>" / e Fy (N)d. (95)
k=0’ Nk
By the trapezes method one can express an integral overtedsimoain such as
N—-1 2_7r(k+1) A . 9 . 9
Z/N e fr (V)N = = (el%’ffx (—”k) 4D £ (—”(k; n 1))) . (96)
s N N N

As, given the shape of the spectral density, we may face @nabin 0 and~, lets us rewrite
equation[(9b) as

yx(h) = /0 MM (VA + / LM ()N

2Z(N-1)
N2 2m 2
.o - 27
+ N 2 N fx (Wk) + e wEh (W(k’ + 1))) , (97)

0 5 sy (2)

N
k=0
N-1
— ! —k 98

where the spectral density is deduced from equatiods (Xb]Z8) :
0.2 |1 _ 671')\|2a

- % F(l+atp) 5 . i
L= T(l+a)r(118) € AF(L, —a; 14 B, e7)

fx () (99)
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with F(.,.;.,.) is the hypergeometric function, and is the variance of;, and

9 2a+1
K(a,p) = = <2—W) ’ S (100)
1—

T \N [(a+5)
I(1+a)L(B)

The last term of equatiof (B8) can be easily calculated byusieeof the inverse Fast Fourier
Transform.

D Auto-correlation function

E, [©"] is given by

1 o0 o0
n=1 n=1
where
L if kiseve
A=kt 1 ” (102)
0 if k£is odd
(=1)" 2k Kk — 1)Bn w_o if kiseven
B (nm)? (nm)? ’ 103
=N k(k - 1) . (103)
) By j—s if k£ is odd
T
with B, o = 0andB,,; =0,
k((k _QI)Cn,k_g if k is even
Cok = nr (104)
n, 2 k(k—1) o
_1 n—-1_< ™\v -/ e f
(=1 — ()2 Chro if kisodd
with o = 0 andCiy = (—1)"' =
nim
E[a*] is simply given by
I'(k+2)
Ey[oF] = I'(3—d). 1

E Implementation of the econometric procedure and conver-
gence of estimators

For finite size samples, the distan@®.; — 7. (0))' W, (7. — n(0)) can exhibit several
local minima and, in practice, it actually does. Therefar&jrns out to be necessary to use a
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minimization algorithm that is able to deal with such a pesb| preventing from being trapped
in a local minimum, and then to find the global minimum. Gematgorithms provide relevant
solutions for such situations and they have been retainedlve our problem.

The idea underlying genetic algorithms is based on the mmyno€ the natural selection
process and genetic principles. The genetic algorithnisstéth a population of trial vectors —
calledgenes- containing the parametérto optimize and unfolds as follows:

e The first step consists in theplicationof the initial trial vectors according to their fitness,
that is the genes whose distance is the smallest have thestigiobability to reproduce.
Thus, on the average, the new population has a smaller desthan the initial one, but
its diversification is also weaker since the fittest genesanlsly appear twice or more in
the new population.

e The second step is th@ossovemwhich leads to combine the different parameters from
several vectors drawn from the new population in order totimer characteristics.

e The third and last step is theutation where some genes undergo random changes,
some parameters of the vectors born of the crossover aremdpdnodified. This step is
essential to maintain the diversity of the population whicturn ensures the exploration
of the whole optimization space.

The vectors obtained after this third step are then usedtéd population and the process
is reiterated in order to get a new generation of genes anchsoTbe convergence of this
algorithm to the global minimum of the problem is ensured by tundamental theorem of
genetic algorithms (Golberg 1989). An example of partidulafficient genetic algorithms is
the Differential Evolutionary Genetic Algorithm by PricacStorn (1997) or the Dorsey and
Mayer (1995) algorithm.

As the the genetic algorithm is particularly time consumwvg have turned to the Nelder
and Mead (1965) simplex mettthahat is a multidimensional unconstrained nonlinear mini-
mization algorithm. This method presents however a seriligedvantage in our case : from
the starting point chosen to initialize the procedure, didithe nearest local minimizer of the
function. In the case we are interested in, we know there am@yrtocal minima, thus an inad-
equate choice of the initial value leads to a local minimustead of the global minimum we
are looking for.

In order to bypass this problem, we have developed an werptocedure hereafter called
the “step by step” method, based on the Nelder Mead methatlh#s appeared very fast and
efficient when the coefficients,,, b,) in (50) decay at least as fastBs:”. It consists in restrict-
ing the optimization tg; = 1, in a first step. In such a case, the optimization can be pedadr

by the Nelder Mead method. It provides a first estin(ﬁgl), bi(1y, G1y, W, 01, (1?(1)). Ina
second step, we set= 2, and start the Nelder-Mead algorithm with the va(t&q(l), 0, 131(1), 0,

~

d(l), lf](l), 5’(1), (i(l) which ylelds a new estimaté&m), dg(g), 81(2), 82(2), @(2), 1@(2), 5‘(2), d(2)> )
and so on until the actual value @fs reached.

4see also Lagarias, Reeds, Wright, and Wright (1998) forentatiscussion of the convergence of the method.
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The figurd 2B illustrates the convergence of this procedutied case of a numerical exper-
iment that unfolds as follows :

1. we generate a reference density with a ch@sen

2. we apply the two procedures using the Nelder-Mead method,

3. we compare the accuracy of the two estimated densitiéetaeterence density,
4.

step (1) and (2) are iterated one thousand times.

The two graphs show the efficiency of the step by step methadh®left panel, the reference
density has been drawn fgr = 5 and we estimated the densities fpr= 5 too. The best
estimated density is irrevocably the one obtained by thatitee procedure. On the right panel,
we account for the fact that the density should have an iefiniimber of parameters (see
equation[(4l7)) or, at least, that the right orden (50) is generally unknown. that is why we
have generated a reference density wita 10 and performed the estimation for= 5 only

to investigate the effect of the truncation on the accurdcthe two approaches. The result
obtained for a randomly chosen simulation is displayed enritght panel of figuré 23. One
more time, the iterative method gives better results thahalapproach.

[Insert figure[23 about here]

While we have not been able to prove the convergence of tiep tst step” procedure, our
numerical simulations show that it provides estimatesahatlways close to the true parameter
values (within the uncertainty predicted by proposition 3) addition, these estimates are
almost always more accurate than the estimates obtainedebgfuithe genetic algorithm, due
to the very slow convergence of this algorithm.
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Symbol Company Market Sector Cap.
BKS Barnes & Noble Inc. NYSE dist. (c) 1.62
VLO Valero Energy corp (new) NYSE energy 1.70
DHI DR Horton inc. NYSE dist. (c) 1.83
LEN Lennar corp CL a common NYSE dist. (c) 1.85
TCB TCF Financial Corp. NYSE financial 1.92
NYB New York Bancorp inc. NYSE financial 2.17
FNF Fidelity Natl Financial inc. NYSE financial 2.27
MCHP  Microchip Technology inc. Nasdaq tech. 2.99
WPO Washington post co clb NYSE com. 3.71
GILD  Gilead Science inc. Nasdaq dist. (nc) 3.90
GM General Motors co. NYSE dist. (c) 31.81
PG Procter & Gamble co. NYSE dist. (nc) 84.30
IBM Intel Business Machines corp. NYSE  tech. 108.01
CSCO Cisco Systems inc. Nasdaq com. 112.26
MRK Merck & co inc. NYSE dist. (nc) 112.73
KO Coca-Cola co. NYSE dist. (nc) 118.97
AlIG American intl group inc. NYSE financial 125.58
INTC Intel corp. Nasdaq tech. 140.77
WMT  Wall-Mart Stores inc. NYSE dist. (c) 144.61
C Citigroup NYSE financial 148.79
PFE Pfizer inc. NYSE dist. (nc) 198.20
XOM Exxon mobile corporation NYSE energy 199.19
MSFT  Microsoft corp. Nasdag tech. 239.81
GE General Electrics co. NYSE industrial 290.44

Table 1: Average capitalization (in billion dollars) of eyeassets over the whole period

(01/01/1994 to 12/31/2003) and their characteristics.
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Asset d dgph Ahurst

BKS 0.19 (0.04) 0.36 (0.02) 0.44
VLO 0.23 (0.04) 0.32 (0.02) 0.44
DHI 0.34 (0.04) 0.34 (0.02) 0.50
LEN 0.31 (0.05) 0.34 (0.02) 0.53
TCB 0.31 (0.04) 0.35 (0.02) 0.43
NYB 0.09 (0.05) 0.33 (0.02) 0.37
FNF 0.25 (0.04) 0.34 (0.02) 0.28
MCHP 0.19 (0.04) 0.45 (0.02) 0.42
WPO 0.45 (0.04) 0.28 (0.02) 0.46
GILD 0.37 (0.06) 0.44 (0.02) 0.42
GM -0.08 (0.05) 0.30 (0.02) 0.30
PG 0.22 (0.05) 0.41 (0.02) 0.53
IBM 0.21 (0.05) 0.36 (0.02) 0.44
CSCO 0.33 (0.06) 0.47 (0.02) 0.51
MRK  0.22 (0.05) 0.37 (0.02) 0.49
KO 0.16 (0.05) 0.41 (0.02) 0.55
AlG 0.10 (0.03) 0.44 (0.02) 0.48
INTC 0.23 (0.06) 0.38 (0.02) 0.53
WMT 0.31 (0.04) 0.42 (0.02) 0.46
C 0.08 (0.04) 0.40 (0.02) 0.51
PFE 0.16 (0.05) 0.40 (0.02) 0.55
XOM 0.10 (0.06) 0.41 (0.02) 0.49
MSFT 0.21 (0.03) 0.43 (0.02) 0.53
GE 0.04 (0.06) 0.44 (0.02) 0.50

Table 2: Estimation of the long memory parametér,by our method and different semi-
parameter methods (Geweke and Porter-Hudak (GPH) and)Harsll the assets, over the
whole period (from 01/01/1994 to 12/31/2003). For the GPtihestor we also give the stan-
dard deviation.

40



Whole Before After
period bubble burst bubble burst
CSCO dg) 0.33(0.06) 0.27(0.04) 0.18(0.04)
w (0.12) (0.57) (0.55)
Q (0.12) (0.80) (0.55)
MRK d(s) 0.22(0.05) 0.30(0.04) 0.08(0.04)
w (0.43) (0.43) (0.45)
Q (0.312) (0.66) (0.39)
KO d(@) 0.16(0.05) 0.19(0.04) 0.20(0.05)
w (0.46) (0.41) (0.47)
! (0.62) (0.66) (0.41)
AlIG d(s) 0.10(0.03) 0.26(0.05) -0.32(0.04)
W (0.64) (0.61) (0.12)
a (0.64) (0.45) (0.85)
MSFT d@) 0.21(0.03) 0.34(0.04) -
w (0.66) (0.70) -
a (0.54) (0.50) -

Table 3: Estimation of the long memory parametdand its standard deviation), the param-
etera and the weightv by using the auto-correlations method for some large dagataons,
over the whole period (from 01/01/1994 to 12/31/2003). bkthat the optimization fails to
converge for the after bubble burst period for Microsoft.
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