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Abstract

We analyze the aggregation problem without the assumption that individu-

als and society have fully determined and observable preferences. More precisely,

we endow individuals and society with sets of possible von Neumann-Morgenstern

utility functions over lotteries. We generalize the classical neutrality assumption to

this setting and characterize the class of neutral social welfare function. This class

turns out to be considerably broader for indeterminate than for determinate util-

ities, where it basically reduces to utilitarianism. In particular, aggregation rules

may differ by the relationship between individual and social indeterminacy. We

characterize several subclasses of neutral aggregation rules and show that utilitar-

ian rules are those that yield the least indeterminate social utilities, although they

still fail to systematically yield a determinate social utility.

Keywords. Aggregation, vNM utility, indeterminacy, neutrality, utilitarianism.

JEL Classification. D71, D81.

1 Introduction

Arrovian social choice (Arrow, 1951) deals with the question of aggregating individual

preference relations over a set of social alternatives into a social preference relation over

this set. The main insight of Arrow’s celebrated impossibility theorem is that there is

no reasonable way to do so, unless one puts restrictions on either the domain or the
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structure of individual preferences. This led Sen (1970, 1973) to move to a richer frame-

work, replacing individual preferences by utility functions.1 This setting allows to for-

mulate various assumptions on the measurability and comparability of individual utility

functions, the Arrovian setting corresponding to the particular “ordinal measurability,

non-comparability” assumption, and to obtain possibility results under non-Arrovian as-

sumptions (D’Aspremont and Gevers, 1977).2 This approach of aggregating individual

utility functions into a social preference relation has since then become the standard one

in social choice theory.

In this paper we take issue with an assumption which is implicit in this standard

approach: that individuals have fully determined and observable utility functions. Indeed,

in many relevant situations, a social planner may be unable or unwilling to assign a

determinate utility function to each individual. First, individuals themselves may envision

more than one utility function, either because their preferences are incomplete (Aumann,

1962; Bewley, 1986; Dubra, Maccheroni, and Ok, 2004; Evren and Ok, 2010), or because

they are uncertain about their tastes (Koopmans, 1964; Kreps, 1979; Dekel, Lipman, and

Rustichini, 2001; Cerreia-Vioglio, 2009), or because they are driven by several “selves”

or “rationales” (May, 1954; Kalai, Rubinstein, and Spiegler, 2002; Ambrus and Rozen,

2009; Green and Hojman, 2009). Second, the “individuals” under consideration may in

fact be group of individuals, such as households, and the social planner may then want

to remain agnostic on how individual utilities are aggregated within such groups. Third,

even if all individuals have single, fully determined utility functions, the social planner

may only partially observe them (Manski, 2005, 2010).

In order to account for such situations, we endow individuals with sets of utility

functions. Such a set represents the possible utility functions this individual may have,

according to the social planner. The particular case where this set is a singleton then

corresponds to the standard setting in which the individual has a single, fully determined

utility function. We shall say that the individual’s utility function is determinate in this

case and indeterminate otherwise, to summarize the different situations mentioned above.

1.1 The aggregation problem

How can indeterminate utilities be aggregated? Although one might find it desirable that

the social planner settle for a fully determined social preference relation in all situations,

one can also conceive that the indeterminacy of individual utilities sometimes prevent

her to do so. In fact, even in situations where all individuals have fully determined util-

ity functions, a social planner could leave the social preference relation indeterminate in

1To be precise, Sen used the term “individual welfare function”. Although this terminology is more
rigorous, we will follow the usual one. A discussion of the interpretation of utility in social choice can be
found in Mongin and D’Aspremont (1998).

2See e.g. Blackorby, Donaldson, and Weymark (1984) or Roemer (1996) for surveys of these results.

2
 
Documents de Travail du Centre d'Economie de la Sorbonne - 2010.68



order to avoid inter-personal utility comparisons. Thus, in order to allow for all these

possibilities, it seems natural to consider the general problem of aggregating individual

sets of utility functions into a social set of preference relations (or, equivalently, an in-

complete social preference relation), the particular case where this latter set is a singleton

corresponding to fully determined social preferences.

This approach, however, encounters a major difficulty that we now explain. Virtually

all the possibility results for determinate utilities are obtained by means of a “neutral-

ity” assumption, according to which the social relative ranking between two alternatives

only depends on their respective utility levels for all individuals.3 This assumption con-

siderably simplifies the analysis because it basically boils the aggregation rule down to

a social preference relation over vectors of individual utility levels. Various additional

assumptions then characterize specific aggregation rules.

Now, when a utility function is indeterminate, so is, in general, the utility level of an

alternative. In other words, alternatives now have sets of possible utility levels, which

may or may not be singletons. This renders the neutrality assumption, now meaning

that the social relative ranking between two alternatives only depends on their respective

sets of utility levels for all individuals, much less reasonable. To illustrate this point,

consider two alternatives x and y and the sets of utility functions U = {u1, u2, u3} and

U ′ = {u1, u2, u4}, where the utility functions u1, u2, u3, and u4 are defined by the following

table.

u1 u2 u3 u4

x 1 0 1 0

y 1 0 0 1

For both sets of utility functions, the set of utility levels of both alternatives is {0, 1}.

Where the two sets of utility functions differ is in the “correlation” between the utility

levels of x and y. In fact, according to U , x is clearly at least as good as y and possibly

better whereas, according to U ′, this pattern is reversed. Nevertheless, under the neutral-

ity assumption, the social relative ranking between x and y must be the same whether

all individuals have the same set of utility functions U or all have the same set of utility

functions U ′, for instance. More generally, since sets of utility levels do not keep track

of utility “correlations”, neutrality implies that social preferences cannot take them into

account either, which is clearly an undesirable feature.

Our solution to this difficulty is to depart one step further from the standard approach

by considering aggregation of individual sets of utility functions into a social set of utility

functions rather than a social set of preference relations. In other words, we put heavier

weight on the social planner’s shoulders who must now not only determine the possible

3This assumption is usually decomposed into an “independence of irrelevant alternatives” assumption
and a “Pareto indifference” assumption, see below for formal definitions.
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social preference relations but also pin down the corresponding social utility functions.

This setting enables us to impose the following neutrality assumption: the social set of

utility levels of an alternative only depends on its sets of utility levels for all individuals.

This requirement (which ignores utility “correlations” at both the individual and social

level) is a reasonable one and, at the same time, makes the aggregation problem tractable

by inducing a mapping from vectors of individual sets of utility levels into social sets of

utility levels.

We also put restrictions on the domain and structure of individual and social sets of

utility functions. Namely, we take alternatives to be lotteries and restrict attention to

sets of von Neumann-Morgenstern (vNM) utility functions. This is, first, a salient setting

in decision and social choice theory and, furthermore, one in which the benchmark case of

determinate utilities (i.e. singleton sets of utility functions) is remarkably simple. Indeed,

Coulhon and Mongin (1989) have shown that if both individuals and society are assumed

to have determinate vNM utility functions then neutrality alone implies that the social

utility function must be an affine transformation of the individual utility functions.4 The

intuition behind this result is that, under neutrality, the affinity property of vNM utility

functions directly implies affinity of the aggregation rule. A standard “Pareto preference”

assumption then suffices to make the coefficients of the affine transforamtion non-negative,

i.e. yield utilitarianism.5 Thus, for determinate vNM utilities over lotteries, the class of

neutral aggregation rules “almost” reduces to that of utilitarian ones.6

1.2 Outline and summary of results

Section 2 introduces the formal setup. We let X denote the set of alternatives (lotteries)

and P denote the set of compact and convex sets of (vNM) utility functions. Given such

a set U of utility functions, the set U(x) of possible utility levels of an alternative x is

then a compact interval and we refer to it as the utility interval of x. Finally, we let I

denote the finite set of individuals and consider a social welfare function F associating to

each profile (Ui)i∈I of individual sets of utility functions a social set of utility functions

F ((Ui)i∈I). We restrict attention to the case where X is the set ∆(Z) of simple lotteries

over some set Z of social outcomes and the domain of F is the set of all possible profiles

of sets of (vNM) utility functions, until Section 6 in which we will show that our results

hold for more general alternatives and domains.

4Coulhon and Mongin’s result is a “multi-profile” version of Harsanyi (1955)’s celebrated aggregation
theorem, which is a “single-profile” result. As they discuss, the “multi-profile” approach has several ad-
vantages over the “single-profile” one, notably uniqueness of the coefficients of the affine transformation.

5By “utilitarianism” we mean what is sometimes referred to as “generalized utilitarianism”, i.e. social
utility being an affine transformation of individual utilities with non-negative coefficients.

6For determinate utilities over arbitrary alternatives, in contrast, additional assumptions are needed
to characterize different classes of neutral aggregation rules. To characterize utilitarianism, in particular,
a “cardinal measurability, unit comparability” and a “continuity” assumption must be added (Blackorby,
Donaldson, and Weymark, 1984).
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Our first task, in Section 3, is to provide a characterization of neutral social welfare

functions in our setting of (possibly) indeterminate vNM utilities. This turns out to be

substantially more difficult than in the benchmark case of determinate utilities, mainly

because vNM utility intervals do not in general enjoy the affinity property of vNM utility

functions. They do nevertheless satisfy (weaker) convexity properties and we are therefore

able to characterize the class of neutral social welfare functions (Theorem 1). Namely,

neutrality is equivalent to the following relationship between the individual and social

utility intervals: for some compact and convex set Φ ⊂ (RI
+)

2 × R,

F ((Ui)i∈I)(x) =
⋃

(α,β,γ)∈Φ

(

∑

i∈I

αiUi(x)−
∑

i∈I

βiUi(x) + γ

)

.

This is our most general result and many interesting corollaries follow from it. It pins

down the social utility interval as the union of a set of affine transformations of all in-

dividual utility intervals, each affine transformation corresponding to a weight-constant

vector (α, β, γ) ∈ Φ. Each individual i’s utility interval enters twice in each affine trans-

formation, once with a non-negative coefficient αi and once with a non-positive coefficient

βi. This duality of individual weights generalizes the benchmark case of determinate util-

ities in which individual utility levels enter only once in the affine transformation but

coefficients have no sign restriction and, accordingly, disappears if an additional “Pareto

preference” assumption (or, equivalently, a strengthening of the neutrality assumption)

is imposed. Indeed, the above relationship then reduces to the following one (Corollary

1): for some compact and convex set Ω ⊂ RI
+ × R,

F ((Ui)i∈I)(x) =
⋃

(θ,γ)∈Ω

(

∑

i∈I

θiUi(x) + γ

)

.

Even under these stronger assumptions, the class of neutral social welfare functions is

considerably broader for indeterminate than for determinate utilities. Indeed, first, dif-

ferent neutral welfare functions may differ by the size of the set Ω of weight-constant

vector, a larger Ω corresponding to a social planner who “generates” more indeterminacy

(whether individual utilities are determinate or not). Second, the latter relationship only

pins down the social utility intervals and this does not fully determine the social set of

utility functions, as explained above, so that different neutral social welfare functions

may differ in terms of social utility “correlations” even if they share the same Ω.

Our goal, from then on, is to explore the class of neutral social welfare functions

and characterize various interesting subclasses. Section 4 is concerned with the first of

the two dimensions mentioned above, the relationship between individual and social in-

determinacy. In particular, we obtain the following important consequence of Theorem

1 (Corollary 2): under neutrality, for the social utility function to be determinate, it
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is necessary that all individual utility functions be determinate as well (except for in-

dividuals that are “irrelevant” to the social planner). Thus, the social planner cannot

“resolve” individual indeterminacy. The best she can do, then, is to “preserve” individual

determinacy by adopting a determinate social utility function whenever all individuals

have determinate utility functions. Adding this “determinacy preservation” requirement

characterizes the particular case where the set Ω above is a singleton (Corollary 3), i.e.

for some θ ∈ RI
+ and some γ ∈ R,

F ((Ui)i∈I)(x) =
∑

i∈I

θiUi(x) + γ.

We call such aggregation rules locally utilitarian since they correspond to utilitarian ag-

gregation of individual utility intervals (but not necessarily of individual sets of utility

functions, as explained above). Among neutral aggregation rules, locally utilitarian ones

are those who do not avoid inter-personal utility comparisons and only exhibit social

indeterminacy in situations of individual indeterminacy. In contrast, a prominent aggre-

gation rule that is neutral but not locally utilitarian is the unanimity rule, which takes as

social set of utility functions the (convex hull of the) union of all individual sets of utility

functions. This rule corresponds to the Pareto dominance relation or, in other words, to

a social planner who systematically “generates” social indeterminacy rather than making

inter-personal utility comparisons. Note that this rule still satisfies a weak “determinacy

preservation” property: there exists at least some profile of determinate individual utili-

ties for which social utility is determinate as well (namely, here, any profile in which all

individuals have the same, determinate utility function). Weakening the “determinacy

preservation” requirement in this way characterizes the particular case where the set Ω

of weight-constant vectors can be decomposed into a set of weight vectors and a single

constant (Corollary 4), i.e. for some compact and convex set Θ ⊂ RI
+ and a some number

γ ∈ R such that, for all (Ui)i∈I ∈ D and all x ∈ X ,

F ((Ui)i∈I)(x) =

(

⋃

θ∈Θ

∑

i∈I

θiUi(x)

)

+ γ.

We call such aggregation rules locally multi-utilitarian and, under a mild “normalization”

assumption, we obtain the class of normalized multi-utilitarian rules for which Θ ⊆ ∆(I).

This class is bounded at one end by the normalized locally utilitarian rules corresponding

to Θ being a singleton, which are those yielding the least indeterminate social utilities,

and at the other end by the local unanimity rules (i.e. social welfare functions yielding

the same utility intervals as the unanimity rule) corresponding to Θ = ∆(I), which are

those yielding the most indeterminate social utilities.

Section 5 tackles the second of the two dimensions mentioned above, the possibility
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of different aggregation rules yielding the same social utility intervals but differing in

social utility “correlations”. Utility intervals, as explained above, do not convey enough

information to establish a relative ranking of alternatives and, for this reason, the “local”

characterization results obtained so far are not sufficient to help a social planner choose

an aggregation rule. In order to fully pin down the social set of utility functions, an

assumption that takes utility “correlations” into account is needed. We provide such an

assumption, in the form of a strengthening of the neutrality assumption, and show that,

provided the set Z of outcomes is infinite, adding it to the assumptions characterizing

local multi-utilitarian rules characterizes the class of rules that are fully multi-utilitarian

(Theorem 2), i.e. defined by

F ((Ui)i∈I) =

(

⋃

θ∈Θ

∑

i∈I

θiUi

)

+ γ.

Similarly, adding this strengthening of the neutrality assumption to the assumptions

characterizing local utilitarianism characterizes the class of rules that are fully utilitarian

(Corollary 5), i.e. defined by

F ((Ui)i∈I) =
∑

i∈I

θiUi + γ.

This latter characterization sheds a new light on the normative appeal of utilitarian

aggregation rules: when individual and social utilities may possibly be indeterminate,

utilitarianism is underlain not only by neutrality and “Pareto preference” assumptions (as

in the benchmark case of determinate utilities) but also by a “determinacy preservation”

assumption according to which social utility should be determinate whenever possible

(i.e. whenever all individual utilities are themselves determinate).

Finally, Section 6 extends our characterization results to more general alternatives and

domains. To this end, we adopt the “mixture space” framework (Herstein and Milnor,

1953) and show that our results hold for a large class of such spaces, including lotteries

with continuous densities or opportunity sets of lotteries, for instance. We also show that

our result apply to smaller domains than the full (vNM) domain considered so far, by

identifying general properties of the domain that are sufficient for the results to holds.

As a consequence of these extensions, we are able to show that our characterizations

of (full) utilitarianism and multi-utilitarianism remain valid if the set Z of outcomes is

finite, provided that the utility of some alternative with “full support” in Z is normalized

to a determinate level for all individuals.

Section 7 concludes. Proofs are gathered in the appendix.
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2 Setup

Let X be a non-empty set of social alternatives. We assume that X is the set ∆(Z) of

simple lotteries (i.e. probability distributions with finite support) on some non-empty set

Z of social (sure) outcomes. Given two alternatives x, y ∈ X and a number λ ∈ [0, 1],

we define the λ-mixture of x and y, denoted xλy, by xλy = λx+ (1− λ)y (clearly, then,

xλy ∈ X). We will maintain this assumption on X and use this definition of mixture

until Section 6, in which we will consider more general alternatives and mixtures.

A utility function on X is a function u : X → R associating to each alternative x ∈ X

a utility level u(x) ∈ R. A utility function u on X is said to be a vNM utility function

if u(xλy) = λu(x) + (1 − λ)u(y) for all x, y ∈ X and all λ ∈ [0, 1].7 Let P ⊆ RX denote

the set of all vNM utility functions on X . P is a linear subspace of RX and contains

all constant functions. Given a real number γ ∈ R, we abuse notation by also letting γ

denote the corresponding constant function in P .

We consider non-empty sets of utility functions, i.e. non-empty subsets of RX . Our

interpretation of such a set is that the utility function may possibly be any member of

the set, without further information being available. We say that the utility function is

determinate if the set is a singleton and indeterminate otherwise. We restrict attention

to sets of vNM utility functions. Let P denote the set of all non-empty, compact, and

convex subsets of P , where P is endowed with the subspace topology and RX with the

product topology. Note that P contains in particular all convex hulls of finite sets of

vNM utility functions on X and, hence, all singletons.

When the utility function is indeterminate, an alternative does not in general have

a single utility level but rather a set (in fact, a non-empty and compact interval) of

possible utility levels. Given a set U ∈ P of utility functions and an alternative x ∈ X ,

let U(x) = {u(x) : u ∈ U} denote this utility interval. Clearly, a set U ∈ P of utility

functions is a singleton if and only if the utility interval U(x) is a singleton for all x ∈ X

and, in this case, knowing the set U of utility functions is equivalent to knowing the

utility interval U(x) for all x ∈ X . In the general case of a non-singleton set of utility

functions, however, this is no longer true: a set of utility functions determines all utility

intervals but the converse does not necessarily hold, as observed in the introduction. In

other words, there are distinct sets of utility functions that yield the same utility intervals

for all alternatives.

Let I be a non-empty and finite set of individuals. Given a non-empty domain D ⊆

PI , an social welfare function F : D → P associates to each profile (Ui)i∈I of individual

sets of utility functions a social set U = F ((Ui)i∈I) of utility functions. We will maintain

7Given our assumption on X and definition of mixture, the two following are equivalent: (i) u is a
vNM utility function, (ii) u(x) =

∑

z∈Z x(z)u(z) for all x ∈ X . However, only (i) is still well-defined in
the more general setting that we will consider in Section 6, hence the use of (i) rather than (ii) which is
more usual in the current setting, for the definition of a vNM utility function.
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the assumption that D = PI from now on, and will relax it in Section 6.

3 Neutrality

In this Section, we first introduce a neutrality assumption for indeterminate utilities

and characterize the class of social welfare functions satisfying this assumption. This

leads to identifying three dimensions along which this characterization generalizes the

one obtained by Coulhon and Mongin (1989) in the particular case where both individual

and social utilities are determinate. We then elaborate on this and study to what extent

these generalizations are robust to a strengthening of the neutrality assumption.

3.1 A characterization: interval neutrality

Our first contribution is to characterize neutral social welfare functions in our setting of

indeterminate utilities. To this end, we start by generalizing the classical Independence

of Irrelevant Alternatives and Pareto Indifference axioms which are the two components

of neutrality for determinate utilities. Considering utility intervals rather than utility

levels naturally leads to the following generalizations.

Axiom 1 (Interval Independence of Irrelevant Alternatives). For all (Ui)i∈I , (U
′
i)i∈I ∈ D

and all x ∈ X , if Ui(x) = U ′
i(x) for all i ∈ I then F ((Ui)i∈I)(x) = F ((U ′

i)i∈I)(x).

Axiom 2 (Interval Pareto Indifference). For all (Ui)i∈I ∈ D and all x, y ∈ X , if Ui(x) =

Ui(y) for all i ∈ I then F ((Ui)i∈I)(x) = F ((Ui)i∈I)(y).

Axiom 3 (Interval Pareto Weak Preference). For all (Ui)i∈I ∈ D and all x, y ∈ X , if

Ui(x) ≥ Ui(y) for all i ∈ I then F ((Ui)i∈I)(x) ≥ F ((Ui)i∈I)(y).
8

Interval Independence of Irrelevant Alternatives expresses the fact that if a given al-

ternative has the same utility interval for all individuals according to two different profiles

of individual sets of utility functions, then it also has the same utility interval according

to the two corresponding social sets of utility functions. Interval Pareto Indifference, on

the other hand, states that if two alternatives have the same utility interval for all indi-

viduals according to a given profile of individual sets of utility functions, then they also

have the same utility interval according to the corresponding social set of utility func-

tions. Interval Pareto Weak Preference is an obvious strengthening of Interval Pareto

Indifference.

Remark 1. An alternative generalization of the classical Pareto Indifference axiom would

be Pointwise Pareto Indifference: for all (Ui)i∈I ∈ D and all x, y ∈ X , if ui(x) = ui(y)

8Given two compact intervals K,K ′ ⊂ R, K ≥ K ′ means maxK ≥ maxK ′ and minK ≥ minK ′.
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for all i ∈ I and all ui ∈ Ui then u(x) = u(y) for all u ∈ F ((Ui)i∈I). Similarly, we

could have stated a pointwise rather than interval version of the Pareto Weak Preference

axiom. Given Interval Independence of Irrelevant Alternatives, these pointwise versions

of the Pareto axioms are stronger than the corresponding interval versions. As it turns

out, the weaker interval versions that we use are sufficient for our results.

Since D = PI , the conjunction of Interval Independence of Irrelevant Alternatives

and Interval Pareto Indifference is equivalent to the following interval neutrality prop-

erty: for all (Ui)i∈I , (U
′
i)i∈I ∈ D and all x, y ∈ X , if Ui(x) = U ′

i(y) for all i ∈ I then

F ((Ui)i∈I)(x) = F ((U ′
i)i∈I)(y). Interval neutrality reflects the fact that the social utility

interval is fully determined by all individual utility intervals, independently of the par-

ticular profile and alternative that yield these individual utility intervals. Equivalently,

there exists a (unique) function G : K I → K , where K denotes the set of all non-empty

and compact real intervals, such that F ((Ui)i∈I)(x) = G((Ui(x))i∈I) for all (Ui)i∈I ∈ D

and all x ∈ X . As for determinate utilities, restricting attention to vNM utility functions

imposes some structure on this function G. However, since we work with sets of utility

functions rather than single utility functions, this structure turns out to be weaker than

affinity of G. The structure of this function is given in the following characterization of

interval neutral social welfare functions.

Theorem 1. Assume X = ∆(Z) with |Z| ≥ 2 and D = PI . Then a social welfare

function F satisfies Interval Independence of Irrelevant Alternatives and Interval Pareto

Indifference if and only if there exists a non-empty, compact, and convex set Φ ⊂ (RI
+)

2×R

such that, for all (Ui)i∈I ∈ D and all x ∈ X ,

F ((Ui)i∈I)(x) =
⋃

(α,β,γ)∈Φ

(

∑

i∈I

αiUi(x)−
∑

i∈I

βiUi(x) + γ

)

. (1)

Moreover, Φ can be taken such that (1) holds for some non-empty, compact, and convex

set Φ′ ⊂ (RI
+)

2 × R if and only if Φ ⊆ Φ′ ⊆ {(α− η, β − η, γ) : (α, β, γ) ∈ Φ, η ∈ RI
+}.

Thus a social welfare function F is interval neutral if and only if the social utility

interval is the union of a set of affine transformations of all individual utility intervals,

with individual i’s utility interval entering twice in each affine transformation, once with

a non-negative coefficient αi and once with a non-positive coefficient −βi. Moreover, the

set Φ of weight-constant vectors (α, β, γ) is “almost” unique in the sense that, first, there

exists a unique Φ that is minimal with respect to set inclusion and, second, another set

Φ′ satisfies (1) if and only if it consists in the minimal Φ to which are added weight-

constant vectors that are always irrelevant to the social utility interval. Indeed, it is

easily checked that, for all utility interval Ui(x), if αi ≥ αi − ηi ≥ 0 and βi ≥ βi − ηi ≥ 0

then (αi − ηi)Ui(x)− (βi − ηi)Ui(x) ⊆ αiUi(x)− βiUi(x).
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3.2 Discussion

How does Theorem 1 compare with the characterization of neutrality obtained by Coulhon

and Mongin (1989) in the particular case where both individual and social utilities are

determinate? A natural extension of their characterization to sets of utility functions

would be that, for some θ ∈ RI and γ ∈ R,

F ((Ui)i∈I) =
∑

i∈I

θiUi + γ. (2)

There are three dimensions along which (1) is more general than (2):

(i) whereas (2) fully pins down the social set of utility functions, (1) only pins down

all social utility intervals,

(ii) in (1) the social utility interval is made of several affine transformations of all

individual utility intervals, rather than a single one as in (2),

(iii) in (1) each individual i’s utility interval enters twice in each affine transformation

rather than once (so (2) corresponds to the particular case where either αi = 0 or

βi = 0).

Therefore, the class of interval neutral social welfare functions is substantially broader

for indeterminate utilities than for determinate utilities.

As we will see shortly, the first two dimensions are robust to a strengthening of Interval

Pareto Indifference whereas the third one is not. We thus defer the illustration of the

first two points to section 3.4 and only comment on the third point now.

To illustrate this point, let I = {1, 2} and consider the two social welfare functions

F1(U1, U2) = U1 + U2 and F2(U1, U2) = 2(U1 + U2) − (U1 + U2), which obviously satisfy

(1). F1 uses only one weight per individual whereas F2 uses two. These two functions

agree if both U1(x) and U2(x) are singletons, but otherwise F1 yields a smaller utility

interval than F2. For instance, F1([0, 1], [0, 1]) = [0, 2] ⊂ [−2, 4] = F2([0, 1], [0, 1]).

More generally, for any social welfare function F satisfying (1), we have

F ((Ui)i∈I)(x) =
⋃

(α,β,γ)∈Φ

{

∑

i∈I

(αiui(x)− βivi(x)) + γ : ui, vi ∈ Ui, i ∈ I

}

⊇
⋃

(α,β,γ)∈Φ

{

∑

i∈I

(αi − βi) ui(x) + γ : ui ∈ Ui, i ∈ I

}

=
⋃

(α,β,γ)∈Φ

(

∑

i∈I

(αi − βi)Ui(x) + γ

)

,
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where, in general, equality holds if and only if Ui(x) is a singleton for all i ∈ I. Thus,

allowing for two weights per individual rather than a single one brings in social welfare

functions yielding larger utility intervals.

3.3 Sketch of the proof

Before providing a brief sketch of the proof of Theorem 1, it is useful to gain insight into

the structure of vNM utility intervals. To this end consider the example represented in

Figure 1. The set of outcomes is Z = {z1, z2}. The left-hand side table defines utility

functions u1, u2, u3, u4 ∈ P (of course, a vNM utility function u ∈ P is affine and, hence,

fully determined by u(z1) and u(z2)). These utility functions are depicted on the right-

hand side graph, in which the thick horizontal segment represents the set X = ∆(Z)

of alternatives and the utility level of each alternative x ∈ X is measured along the

corresponding vertical axis.

The set U = conv({u1, u2, u3}) of utility functions (i.e. all convex combinations of u1,

u2, and u3) fills the shaded area on the graph.9 The utility interval U(x) of an alternative

x ∈ X corresponds to the intersection of the corresponding vertical axis with this shaded

area. The set U ′ = conv({u1, u2, u3, u4}) of utility functions fills the same shaded area on

the graph, so that we have U ′(x) = U(x) for all x ∈ X , although we clearly have U ′ 6= U

since u4 /∈ U . As explained above, this is because U and U ′ only differ in terms of utility

“correlations”: in both sets of utility functions it is possible that the utility level of z1 be

equal to 4 and it is also possible that the utility level of z2 be equal to 1, but in U ′ these

two possibilities may arise from the same utility function whereas in U they cannot.

Two key properties of utility intervals also appear from the graph of the set U (or,

equivalently, U ′) of utility functions. First, although affinity of vNM utility functions

does not extend to utility intervals, in the sense that one would have U(xλy) = λU(x) +

(1 − λ)U(y), an inclusion relation nevertheless holds, namely U(xλy) ⊆ λU(x) + (1 −

λ)U(y). Equivalently, the function x 7→ maxU(x) is convex and the function x 7→

minU(x) is concave. Second, although the shaded area on the graph is not convex, it

still contains all line segments joining the maximum of a utility interval with the minimum

of another utility interval, i.e. λmaxU(x) + (1− λ)minU(y) ∈ U(xλy). This establishes

a relationship between the two functions just defined. These two properties turn out to

be general properties of sets of (vNM) utility functions (see Lemma 1 in the appendix).

The “if” part of Theorem 1 is straightforward. To prove the “only if” part, first

note that, from interval neutrality, we know that F ((Ui)i∈I)(x) ∈ K is a function of

(Ui(x))i∈I ∈ K I . Equivalently, both maxF ((Ui)i∈I)(x) ∈ R and minF ((Ui)i∈I)(x) ∈

R are functions of (maxUi(x),minUi(x))i∈I ∈ (RI)2. These functions are not neces-

sarily affine but the two properties of utility intervals mentioned above nevertheless

9Given a set S, conv(S) denotes the convex hull of S.
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u1 u2 u3 u4

z1 1 2 4 4
z2 3 1 2 1
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4

2

1

2

3

u(x)

Figure 1: Example of set of utility functions

imposes some structure on them. Most importantly, the first property implies that

maxF ((Ui)i∈I)(x) is convex, non-decreasing in each maxUi(x), and non-increasing in each

minUi(x). Symmetrically, minF ((Ui)i∈I)(x) is concave, non-decreasing in each minUi(x),

and non-increasing in each maxUi(x). The second property implies that the two functions

are also Lipschitzian and have “asymptotic” relationships with each other. From these

and other properties, using results from convex analysis, we can construct a common,

compact set Φ ⊂ (RI
+)

2 × R such that

maxF ((Ui)i∈I)(x) = max
(α,β,γ)∈Φ

(

∑

i∈I

αi maxUi(x)−
∑

i∈I

βi minUi(x) + γ

)

,

minF ((Ui)i∈I)(x) = min
(α,β,γ)∈Φ

(

∑

i∈I

αi minUi(x)−
∑

i∈I

βi maxUi(x) + γ

)

,

which is equivalent to (1).

3.4 Strengthening Interval Pareto Indifference

What is the effect of strengthening Interval Pareto Indifference to Interval Pareto Weak

Preference in Theorem 1? In the particular case of determinate utilities, in which neutral-

ity yields one weight per individual, Pareto Weak Preference ensures that all weights are

non-negative. Similarly, in the general case of indeterminate utilities, in which interval

neutrality yields one non-negative and one non-positive weight per individual, Interval

Pareto Weak Preference ensures that all non-positive weights are null. Indeed, for an

interval neutral social welfare function F , Interval Pareto Weak Preference means that

maxF ((Ui)i∈I)(x) and minF ((Ui)i∈I)(x) are both non-decreasing in each maxUi(x) and

each minUi(x). In particular, the maximum of the social utility interval must be non-

decreasing in the minimum of each individual’s utility interval, which implies that all β

coefficients must be equal to zero in (1).
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To prove this implication, fix two distinct alternatives x, y ∈ X and a real number

µ > 0 and consider, for each individual i ∈ I, a set Ui ∈ P of utility functions such

that Ui(x) = {0} and Ui(y) = [−µ, 0]. Interval Pareto Weak Preference then implies

maxF ((Ui)i∈I)(x) ≥ maxF ((Ui)i∈I)(y), i.e. max(α,β,γ)∈Φ γ ≥ max(α,β,γ)∈Φ(µ
∑

i∈i βi + γ)

by (1). Since this inequality must hold for any µ > 0, we must then have
∑

i∈i βi ≤ 0,

i.e. β = 0 since β ∈ RI
+, for all (α, β, γ) ∈ Φ.

Given the uniqueness part of Theorem 1, setting all β coefficients to 0 fully pins down

Φ. We thus obtain the following result.

Corollary 1. Assume X = ∆(Z) with |Z| ≥ 2 and D = PI . Then a social welfare

function F satisfies Interval Independence of Irrelevant Alternatives and Interval Pareto

Weak Preference if and only if there exists a non-empty, compact, and convex set Ω ⊂

RI
+ × R such that, for all (Ui)i∈I ∈ D and all x ∈ X ,

F ((Ui)i∈I)(x) =
⋃

(θ,γ)∈Ω

(

∑

i∈I

θiUi(x) + γ

)

. (3)

Moreover, Ω is unique.

Thus, as for determinate utilities, Interval Pareto Weak Preference fixes the sign of

individual weights. In so doing, it also yields a single weight per individual rather than two

and, thereby, fills part of the identified gap between interval neutrality and utilitarianism

(defined as (2) with θ ∈ RI
+) that arises from indeterminacy of utilities.

As explained above, there remain two dimensions along which (3) is more general than

utilitarianism. The first one is that (3) pins down all social utility intervals but not the

social set of utility functions. To illustrate this point, consider the social welfare functions

F1((Ui)i∈I) =
∑

i∈I Ui and F2((Ui)i∈I) = {u ∈ P : u(x) ∈
∑

i∈I Ui(x) for all x ∈ X}.

Then the two functions satisfy (1) and yield the same social utility intervals, but they

yield different sets of utility functions and, in fact, only F1 is utilitarian. For instance,

if Ui = [0, 1] for all i ∈ I, so that all individual sets of utility functions are made of

constant functions only, then F2((Ui)i∈I) = {u ∈ P : u(z) ∈ [0, |I|] for all z ∈ Z} contains

non-constant functions.10

The second dimension along which (3) is more general than utilitarianism is that in

(3) the social set of utility functions may contain more than one affine transformation

of all individual sets of utility functions. To illustrate this point, consider the unanimity

rule F ((Ui)i∈I) = conv(
⋃

i∈I Ui), which simply corresponds to the Pareto dominance

relation. For this rule, the social set of utility functions can equivalently be expressed as

F ((Ui)i∈I) =
⋃

θ∈∆(I)

∑

i∈I θiUi and, hence, is the union of a set of utilitarian rules.

10Note that this instance also shows that F2 does not satisfy Pointwise Pareto Weak Preference or
even Indifference, although it does satisfy Interval Pareto Weak Preference.
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3.5 An alternative characterization: max-min neutrality

Corollary 1 reduces (1) to (3) by strengthening Interval Pareto Indifference while keeping

Interval Independence of Irrelevant Alternatives. An alternative axiomatization of (3)

consists in strengthening Interval Independence of Irrelevant Alternatives while keeping

Interval Pareto Indifference. Namely, consider the following Max-Min Independence of

Irrelevant Alternatives axiom: for all (Ui)i∈I , (U
′
i)i∈I ∈ D and all x ∈ X ,

(i) if maxUi(x) = maxU ′
i(x) for all i ∈ I then maxF ((Ui)i∈I)(x) = maxF ((U ′

i)i∈I)(x),

(ii) if minUi(x) = minU ′
i(x) for all i ∈ I then minF ((Ui)i∈I)(x) = minF ((U ′

i)i∈I)(x).

Since D = PI , the conjunction of Max-Min Independence of Irrelevant Alternatives and

Interval Pareto Indifference is equivalent to the following max-min neutrality property:

for all (Ui)i∈I , (U
′
i)i∈I ∈ D and all x, y ∈ X ,

(i) if maxUi(x) = maxU ′
i(y) for all i ∈ I then maxF ((Ui)i∈I)(x) = maxF ((U ′

i)i∈I)(y),

(ii) if minUi(x) = minU ′
i(y) for all i ∈ I then minF ((Ui)i∈I)(x) = minF ((U ′

i)i∈I)(y).

Max-min neutrality expresses the fact that the maximum of the social utility interval is

fully determined by the maximum of all individual utility intervals whereas the minimum

of the social utility interval is fully determined by the minimum of all individual utility

intervals, which strengthens interval neutrality and, hence, implies (1).

It turns out that max-min neutrality is in fact equivalent to (3), i.e. to the conjunction

of Interval Independence of Irrelevant Alternatives and Interval Pareto Weak Preference.

Indeed, on the one hand, (3) is equivalent to

maxF ((Ui)i∈I)(x) = max
(θ,γ)∈Ω

(

∑

i∈I

θi maxUi(x) + γ

)

,

minF ((Ui)i∈I)(x) = min
(θ,γ)∈Ω

(

∑

i∈I

θi minUi(x) + γ

)

,

and, hence, implies max-min neutrality. On the other hand, recall that interval neutrality

implies that maxF ((Ui)i∈I)(x) is non-decreasing in each maxUi(x) and non-increasing in

each minUi(x) whereas minF ((Ui)i∈I)(x) is non-decreasing in each minUi(x) and non-

increasing in each maxUi(x). From there, Max-Min Independence of Irrelevant Alterna-

tives has the same effect as Interval Pareto Weak Preference: it eliminates the dependency

of the social maximum on each individual minimum as well as the dependency of the so-

cial minimum on each individual maximum and, thereby, yields (3). Thus, (3) can be

derived from neutrality axioms alone, without appealing to Pareto preference axioms.
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4 Individual and social indeterminacy

Allowing both individual and social utilities to be indeterminate raises the question of

the relationships between individual and social indeterminacy. More precisely, we may

ask the following questions:

(i) Given a social welfare function and a profile of individual sets of utility functions,

does indeterminacy of individual utilities cause indeterminacy of social utility?

(ii) Given a social welfare function, if individual utilities are more indeterminate in a

profile than in another, is it so for social utility as well?

(iii) Given a profile of individual utilities, when is social utility more indeterminate for

a social welfare function than another?

We will examine these three questions within the class of social welfare functions identified

in Corollary 1. Providing answers to these questions will lead us to identify further

conditions, which strengthen the characterization obtained in (3) but still fall short of

characterizing utilitarianism.

4.1 Does individual indeterminacy cause social indeterminacy?

We tackle here the first question and consider a social welfare function F satisfying (3)

and a profile (Ui)i∈I ∈ D . For a given alternative x ∈ X , a necessary condition for the

social utility interval F ((Ui)i∈I)(x) to be a singleton is that for each vector (θ, γ) ∈ Ω, the

corresponding affine transformation of utility intervals
∑

i∈I θiUi(x)+ γ be a singleton as

well. This necessary condition, in turn, can only be satisfied if each individual i’s utility

interval Ui(x) is itself a singleton, unless θi = 0, in which case individual i is “irrelevant”

in this affine transformation. Thus, if all individuals are “relevant” then the social utility

level are determinate only if all individual utility levels are themselves determinate.

To formalize this point, say that an individual i ∈ I is interval null if, for all

(Uj)j∈I , (U
′
j)j∈I ∈ D and all x ∈ X , F ((Uj)j∈I)(x) = F ((U ′

j)j∈I)(x) whenever Uj(x) =

U ′
j(x) for all j ∈ I \ {i}. This reflects the idea that individual i is completely “irrelevant”

to the social planner. For a social welfare function satisfying (3), an individual i ∈ I is

interval null if and only if θi = 0 for all (θ, γ) ∈ Ω. The “if” part of this statement is

straightforward. To prove the “only if” part, assume individual i ∈ I is interval null, fix

a real number µ > 0, and consider the sets of utility functions Ui = {µ}, U ′
i = {0}, and

Uj = U ′
j = {0} for all j ∈ I \ {i}. Since i is interval null, we then have, for all x ∈ X ,

maxF ((Ui)i∈I)(x) = maxF ((U ′
i)i∈I)(x), i.e. max(θ,γ)∈Ω(µθi + γ) = max(θ,γ)∈Ω γ by (3).

Since this inequality must hold for all µ > 0, we must then have θi ≤ 0, i.e. θi = 0 since

θ ∈ RI
+, for all (θ, γ) ∈ Ω.
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Hence, for all (Ui)i∈I ∈ D and all x ∈ X , if F ((Ui)i∈I)(x) is a singleton then, for all

i ∈ I, either Ui(x) is a singleton or i is interval null. Since a set U of utility functions is

a singleton if and only if the utility interval U(x) is a singleton for all x ∈ X , we then

obtain the following result.

Corollary 2. Assume X = ∆(Z) with |Z| ≥ 2 and D = PI . Let F be a social welfare

function satisfying (3). Then for all (Ui)i∈I ∈ D , if F ((Ui)i∈I) is a singleton then, for all

i ∈ I, either Ui is a singleton or i is interval null.

Thus, if all individuals are “relevant” then the social utility function can only be de-

terminate if all individual utility functions are themselves determinate. Society cannot

“resolve” individual indeterminacy. For example, one may find it desirable that society

selects a profile (ui)i∈I of individual utility functions out of each profile (Ui)i∈I of indi-

vidual sets of utility functions and use some affine transformation
∑

i∈I θiui + γ of the

selected individual utility functions as the (determinate) social utility function, but this

is incompatible with the axioms of Corollary 1, unless θ = 0. This point, in fact, only

relies on interval neutrality and not on Interval Pareto Weak Preference, so if one wants

society to “resolve” individual indeterminacy then one must give up the assumption that

the social utility interval is fully determined by all individual utility intervals.11

The converse to Corollary 2 does not hold: even if all individual utilities are deter-

minate, social utility may well be indeterminate. This is the case, for example, for the

unanimity rule, which yields an indeterminate social utility function whenever all indi-

viduals do not have the same, determinate utility function. A utilitarian social welfare

function F ((Ui)i∈i) =
∑

i∈I θiUi+γ, on the other hand, yields a determinate social utility

function whenever all individuals have determinate utility functions. The latter function

always “preserves” determinacy by making inter-personal utility comparisons whereas the

former, by avoiding such comparisons, sometimes “generates” indeterminacy. This raises

the question of characterizing the class of all social welfare functions satisfying (3) that

always “preserve” determinacy.

4.2 Local utilitarianism

The following axiom captures the fact that the social welfare function does not “generate”

social indeterminacy by avoiding inter-personal utility comparisons.

Axiom 4 (Strong Determinacy Preservation). For all ({ui})i∈I ∈ D , there exists u ∈ P

such that F (({ui})i∈I) = {u}.

The effect of adding Strong Determinacy Preservation to the axioms of Corollary 1

is to reduce Ω to a singleton in (3). To prove this, let (θ, γ), (θ′, γ′) ∈ Ω. Then, letting

11Using the same argument as above, it is easily shown that for a social welfare function satisfying (1),
an individual i ∈ I is interval null if and only if αi = βi = 0 for all (α, β, γ) ∈ Φ.
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Ui = {0} for all i ∈ I, we have {γ, γ′} ⊆ F ((Ui)i∈I)(x) for all x ∈ X , so γ = γ′. Hence,

fixing some individual i ∈ I and letting Ui = {1} and Uj = {0} for all j ∈ I \ {i}, we

have {θi + γ, θ′i + γ} ⊆ F ((Ui)i∈I)(x) for all x ∈ X , so θi = θ′i. Since this must hold for

all i ∈ I, we must have θ = θ′, so that Ω is a singleton. We thus obtain the following

characterization.

Corollary 3. Assume X = ∆(Z) with |Z| ≥ 2 and D = PI . Then a social welfare

function F satisfies Interval Independence of Irrelevant Alternatives, Interval Pareto Weak

Preference, and Strong Determinacy Preservation if and only if there exist a vector θ ∈ RI
+

and a number γ ∈ R such that, for all (Ui)i∈I ∈ D and all x ∈ X ,

F ((Ui)i∈I)(x) =
∑

i∈I

θiUi(x) + γ. (4)

Moreover, θ and γ are unique.

Call locally utilitarian any social welfare function satisfying (4). Corollary 3 shows

that the social welfare functions satisfying (3) that always “preserve” determinacy or,

equivalently, never “generate” indeterminacy, are precisely the locally utilitarian ones.

This includes, in particular, all utilitarian social welfare functions, but not only: other

social welfare functions belong to this class, such as the example F ((Ui)i∈I) = {u ∈ P :

u(x) ∈
∑

i∈I Ui(x) for all x ∈ X} considered in Section 3.4.

4.3 Local multi-utilitarianism

At the other end of the spectrum of social welfare functions satisfying (3) are functions

that always “generate” indeterminacy, i.e. such that the social utility level is indeter-

minate whatever the individual utility levels. A trivial example of such a function is

F ((Ui)i∈i) =
∑

i∈i Ui + [0, 1], which satisfies (3) with Ω = {(1, γ) : γ ∈ [0, 1]}, and for

which F ((Ui)i∈i)(x) is never a singleton. The unanimity rule defined above stands some-

where in between these two extremes, since it sometimes “preserves” determinacy and

sometimes “generates” indeterminacy. We shall now give a characterization of the social

welfare functions that do not always “generate” indeterminacy, i.e. satisfy the following

axiom

Axiom 5 (Weak Determinacy Preservation). There exist ({ui})i∈I ∈ D , u ∈ P , and

x ∈ X such that ui(x) = 0 for all i ∈ I and F (({ui})i∈I) = {u}.

It would in fact be sufficient for our purpose to require that there exist ({ui})i∈I ∈

D and u ∈ P such that F (({ui})i∈I) = {u}, and we only require the existence of an

alternative x ∈ X such that ui(x) = 0 for all i ∈ I in order to simplify the exposition.

Thus, the idea of this axiom is simply that there exists a profile of determinate individual
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utility functions for which the social utility function is determinate as well. This is

clearly a weakening of Strong Determinacy Preservation. The effect of adding Weak

Determinacy Preservation to the axioms of Corollary 1 is to equalize the constants of all

weight-constant pairs belonging to Ω in (3) (the proof of this fact is identical to the first

half of the proof of Corollary 3 and is, therefore, omitted).

Corollary 4. Assume X = ∆(Z) with |Z| ≥ 2 and D = PI . Then a social welfare

function F satisfies Interval Independence of Irrelevant Alternatives, Interval Pareto Weak

Preference, and Weak Determinacy Preservation if and only if there exist a non-empty,

compact, and convex set Θ ⊂ RI
+ and a number γ ∈ R such that, for all (Ui)i∈I ∈ D and

all x ∈ X ,

F ((Ui)i∈I)(x) =

(

⋃

θ∈Θ

∑

i∈I

θiUi(x)

)

+ γ. (5)

Moreover, Θ and γ are unique.

Call locally multi-utilitarian any social welfare function satisfying (5). Corollary 4

shows that the social welfare functions that do not always “generate” indeterminacy

are precisely the locally multi-utilitarian ones. This includes, in particular, all locally

utilitarian social welfare functions, since they never “generate” indeterminacy, as well as

the unanimity rule, which corresponds to Θ = ∆(I) in (5).

4.4 The comparative statics of individual indeterminacy

The answer to the second question raised at the beginning of the section is quite simple:

it is an immediate consequence of (3) that for all profiles (Ui)i∈I , (U
′
i)i∈I ∈ D and all

alternatives x, y ∈ X , if Ui(x) ⊆ U ′
i(y) for all i ∈ I then F ((Ui)i∈I)(x) ⊆ F ((U ′

i)i∈I)(y).

So indeed, for any social welfare function satisfying the axioms of Corollary 1, more

indeterminacy at the individual level translates to more indeterminacy at the social level.

This implies, in particular, that Weak Determinacy Preservation can be further weakened

in Corollary 4 in the following way: there exist (Ui)i∈I ∈ D , u ∈ P , and x ∈ X such that

0 ∈ Ui(x) for all i ∈ I and F ((Ui)i∈I) = {u} (where, again, the requirement that 0 ∈ Ui(x)

for all i ∈ I is for simplicity only). Thus, the class of locally multi-utilitarian social welfare

functions can equivalently be described as the class of social welfare functions satisfying

(3) for which social utility is not always indeterminate.

4.5 Interval expansion

To provide an answer to the third question raised at the beginning of the section, we need

to make precise what we mean by a social welfare function being “more indeterminate”
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than another one. Given two social welfare functions F1 and F2 on some common domain

D , say that F2 is an interval expansion of F1 if F1((Ui)i∈I)(x) ⊆ F2((Ui)i∈I)(x) for all

(Ui)i∈I ∈ D and all x ∈ X . This simply means that F2 yields a more indeterminate social

utility level than F1 for all profiles.

If F1 and F2 satisfy (3) then, denoting their corresponding sets of weight-constant

vectors by Ω1 and Ω2, respectively, we have that F2 is an interval expansion of F1 if

and only if Ω1 ⊆ Ω2. The “if” part of this statement is straightforward. To prove

the “only if” part, assume Ω1 * Ω2 and let x ∈ X . Then since Ω1 and Ω2 are

compact and convex subsets of RI × R, there exists (ρ, κ) ∈ RI × R with κ 6= 0

such that max(θ,γ)∈Ω1
(
∑

i∈I θiρi + κγ) > max(θ,γ)∈Ω2
(
∑

i∈I θiρi + κγ). If κ > 0 then

dividing by κ yields maxF1((
ρi
κ
)i∈I)(x) > maxF2((

ρi
κ
)i∈I)(x). If κ < 0 then divid-

ing by κ yields minF1((
ρi
κ
)i∈I)(x) < minF2((

ρi
κ
)i∈I)(x) for all x ∈ X . In both cases,

F1((
ρi
κ
)i∈I)(x) 6⊆ F2((

ρi
κ
)i∈I)(x).

Hence, in particular, locally utilitarian social welfare functions (which correspond to

Ω being a singleton) are the social welfare functions satisfying (3) that yield the smallest

social utility intervals in the sense that, first, any social welfare function satisfying (3)

is an interval expansion of some locally utilitarian social welfare function and, second, a

locally utilitarian social welfare function is not an interval expansion of any social welfare

function satisfying (3) other than itself. On the other hand, there is no social welfare

function satisfying (3) that yields the largest social utility intervals, simply because there

is no largest Ω. This remains true, of course, if we restrict attention to locally multi-

utilitarian social welfare functions (i.e. satisfying (5)), in which case we have that F2 is

an interval expansion of F1 if and only if Θ1 ⊆ Θ2 and γ1 = γ2. We may only notice

that any social welfare function satisfying (3) but not (5) is an interval expansion of some

social welfare function satisfying (5).

To say more, we need to impose some normalization on the weight-constant vectors.

To this end, consider the following Determinate Normalization axiom: for all (Ui)i∈I ∈ D

and all u ∈ P , if Ui = {u} for all i ∈ I then F ((Ui)i∈I) = {u}. According to this

axiom, if all individuals have the same, determinate utility function then society also

has this determinate utility function. Note that this axiom implies Weak Determinacy

Preservation. Adding it to the axioms of Corollary 1 yields (5) with the additional

normalization Θ ⊆ ∆(I). To see this, simply observe that letting Ui = {0} for all i ∈ I

yields γ = 0 and letting Ui = {1} for all i ∈ I then yields
∑

i∈I θi = 1 for all θ ∈ Θ.

The normalized locally multi-utilitarian social welfare functions yielding the small-

est social utility intervals are, of course, the normalized locally utilitarian ones. But

it is now also the case that those yielding the largest social utility intervals are those

corresponding to Θ = ∆(I), i.e. such that F ((Ui)i∈I)(x) = conv(
⋃

i∈I Ui(x)), that we

shall call local unanimity rules. This class is not restricted to the unanimity rule but

also includes, for example, the social welfare function F ((Ui)i∈I) = {u ∈ P : u(x) ∈
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conv(
⋃

i∈I Ui(x)) for all x ∈ X}, which is distinct from the unanimity rule (for instance,

if Ui = [0, 1] for all i ∈ I, so that all individual sets of utility functions are made of

constant functions only, then F ((Ui)i∈I) = {u ∈ P : u(z) ∈ [0, 1] for all z ∈ Z} contains

non-constant functions).

5 Utilitarianism

We now come to the question of characterizing utilitarianism for indeterminate utilities.

The closest characterization we have obtained so far is that of local utilitarianism in

Corollary 3. Utilitarianism, however, is only a particular case of local utilitarianism and,

therefore, must be characterized by stronger axioms.

To introduce the issue, consider a social planner who abides by the axioms of Interval

Independence of Irrelevant Alternatives, Interval Pareto Weak Preference, and Strong

Determinacy Preservation and is willing to give equal weight to all individuals. By

Corollary 3, this social planner should adopt a locally utilitarian social welfare function

and set θi =
1
|I|

for all i ∈ I and γ = 0 in (4) (we also assume Determinate Normalization

for simplicity). This alone determines all social utility intervals, namely F ((Ui)i∈I)(x) =
∑

i∈I
1
|I|
Ui(x), so that without exactly knowing the social set of utility functions, the social

planner already knows, for example, whether the social utility level of a given alternative

is determinate or indeterminate.

However, if the social planner is interested in comparing different alternatives with

one another rather than evaluating a single alternative in isolation, then more information

is required. As a trivial example, if Ui = [0, 1] for each individual i then all alternatives

necessarily have the same social utility interval [0, 1], but it might either be the case that

all social utility functions deem all alternatives indifferent (if F ((Ui)i∈I) =
∑

i∈I
1
|I|
Ui,

which is utilitarian) or that social utility functions always disagree on the relative ranking

of two distinct alternatives (e.g. if F ((Ui)i∈I) = {u ∈ P : u(x) ∈
∑

i∈I
1
|I|
Ui(x) for all x ∈

X}, which is not utilitarian). In such cases, the social planner needs to exactly know the

social set of utility functions and, in particular, whether it is utilitarian or not.

5.1 Characterization of utilitarianism

The example above also illustrates the fact that to characterize utilitarianism, we need

to strengthen the axioms of Corollary 3 in a way that takes into account not only utility

intervals but also utility “correlations”. To this end, we first introduce the following

notation: given a subset Y of X and a set U ∈ P of utility functions, we let U |Y

denote the restriction of U to Y , i.e. U |Y = {u|Y : u ∈ U}.12 If Y is a singleton

12Given a function f on a set S and a subset T of S, f |T denotes the function on T defined by
f |T (s) = f(s) for all s ∈ T .
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then U |Y is just the utility interval of the corresponding alternative. If Y contains more

than one alternative, however, U |Y is more than the collection of utility intervals of all

alternatives in Y , just the same way a set of utility functions is more than the collection

of all corresponding utility intervals. We now introduce the following strengthening of

the Interval Independence of Irrelevant Alternatives axiom.

Axiom 6 (Setwise Independence of Irrelevant Alternatives). For all (Ui)i∈I , (U
′
i)i∈I ∈ D

and all finite subset Y of X , if Ui|Y = U ′
i |Y for all i ∈ I then F ((Ui)i∈I)|Y = F ((U ′

i)i∈I)|Y .

Obviously, Interval Independence of Irrelevant Alternatives corresponds to the partic-

ular case of Setwise Independence Alternatives where Y = {x}. What the latter adds to

the former is that individual utility “correlations” determine social utility “correlations”.

Assuming the set Z of outcomes is infinite (as we will see in Section 6, the result also

holds for specific domains D ⊂ PI if Z is finite), we obtain the following result.

Theorem 2. Assume X = ∆(Z) with |Z| = ∞ and D = PI . Then a social welfare

function F satisfies Setwise Independence of Irrelevant Alternatives, Interval Pareto Weak

Preference, and Weak Determinacy Preservation if and only if there exist a non-empty,

compact, and convex set Θ ⊂ RI
+ and a number γ ∈ R such that, for all (Ui)i∈I ∈ D ,

F ((Ui)i∈I) =

(

⋃

θ∈Θ

∑

i∈I

θiUi

)

+ γ. (6)

Moreover, Θ and γ are unique.

Strengthening Weak Determinacy Preservation to Determinate Normalization yields

the additional normalization Θ ∈ ∆(I) in (6).

Thus, strengthening Interval Independence of Irrelevant Alternatives to Setwise In-

dependence of Irrelevant Alternatives yields a characterization of multi-utilitarian (and

not only locally multi-utilitarian) social welfare functions. Merely strengthening Weak

Determinacy Preservation to Strong Determinacy Preservation then yields the following

characterization of utilitarianism (the proof is identical to that of Corollary 3 and hence

omitted).

Corollary 5. Assume X = ∆(Z) with |Z| = ∞ and D = PI . Then a social welfare

function F satisfies Setwise Independence of Irrelevant Alternatives, Interval Pareto Weak

Preference, and Strong Determinacy Preservation if and only if there exist a vector θ ∈ RI
+

and a number γ ∈ R such that, for all (Ui)i∈I ∈ D ,

F ((Ui)i∈I) =
∑

i∈I

θiUi + γ. (7)

Moreover, θ and γ are unique.
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Remark 2. Both Theorem 2 and Corollary 5 can equivalently be stated with the Point-

wise Pareto Weak Preference axiom in place of Interval Pareto Weak Preference. Indeed,

the pointwise version is stronger than the interval version under interval neutrality and,

hence, is sufficient. Conversely, (6) (and, hence, (7)) implies Pointwise Pareto Weak

Preference, which is therefore necessary as well.

5.2 Further properties

The results of Section 4 concerning individual and social indeterminacy can now be stated

in terms of utility functions rather than utility levels. Define now an individual i ∈ I

to be null if, for all (Uj)j∈I , (U
′
j)j∈I ∈ D , F ((Uj)j∈I) = F ((U ′

j)j∈I) whenever Uj = U ′
j

for all j ∈ I \ {i}. We then obtain, first, that for a social welfare function satisfying

(6), an individual i ∈ I is null if and only if θi = 0 for all θ ∈ Θ. Second, it is an

immediate consequence of (6) that for all profiles (Ui)i∈I , (U
′
i)i∈I ∈ D , if Ui ⊆ U ′

i for

all i ∈ I then F ((Ui)i∈I) ⊆ F ((U ′
i)i∈I). Third, defining F2 to be an expansion of F1 if

F1((Ui)i∈I) ⊆ F2((Ui)i∈I) for all (Ui)i∈I ∈ D , we obtain that if F1 and F2 satisfy (6) then,

denoting their corresponding sets of weight vectors by Θ1 and Θ2, respectively, F2 is an

expansion of F1 if and only if Θ1 ⊆ Θ2.

In the particular case where both individual and social utilities are determinate, util-

itarianism is known to satisfy the following “cardinal measurability, full comparability”

invariance property: for all ({ui})i∈I , ({u
′
i})i∈I ∈ D , if there exist a non-negative real

number a and a collection (bi)i∈I of real numbers such that u′
i = aui + b for all i ∈ I

then there exists a real number b such that F (({u′
i})i∈i) = aF (({ui})i∈I) + b. In the

general case of indeterminate utilities, multi-utilitarian social welfare functions satisfy a

generalization of this invariance property: for all (Ui)i∈I , (U
′
i)i∈I ∈ D , if there exist a

non-empty subset A of R+ and a collection (Bi)i∈I of non-empty subsets of R such that

U ′
i = AUi + Bi (i.e. U ′

i = {au + b : a ∈ A, b ∈ Bi, u ∈ Ui}) for all i ∈ I then there

exists a non-empty subset B of R such that F ((U ′
i)i∈I) = AF ((Ui)i∈I) + B. Moreover,

for normalized multi-utilitarian as well as for utilitarian social welfare functions, if Bi is

a singleton for all i ∈ I then B is a singleton. Hence, for such functions, taking A to be

a singleton as well yields F ((U ′
i)i∈i) = aF ((Ui)i∈I) + b if U ′

i = aUi + b for all i ∈ I, which

is the same invariance property as in the particular case of determinate utilities.

5.3 Sketch of the proof

Before sketching the proof of Theorem 2, which will shed light on the role of the Setwise

Independence of Irrelevant Alternatives axiom as well as the assumption that Z is infinite,

it is useful to understand in more detail why a set of utility functions is only partially

pinned down by all utility intervals. To this end, let us go back to the example that

we considered in Section 3.3 and represented in Figure 1. The left-hand side table of
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u1 u2 u3 u4

z1 1 2 4 4
z2 3 1 2 1

u(z1)

u(z2)

u4

u1

u2
x

u3

0 1 2 3 4

1

2

3

4

Figure 2: Example of set of utility functions (continued)

Figure 2 recalls the definitions of the four utility functions u1, u2, u3, u4 ∈ P on the set

Z = {z1, z2}. The right-hand side graph depicts these utility functions but this time

in RZ rather than RX (this is possible, of course, since a vNM utility function u ∈ P

is fully determined by the vector (u(z1), u(z2)) ∈ RZ). The set U = conv({u1, u2, u3})

of utility functions now corresponds to the shaded triangle u1u2u3. The utility interval

U(x) of alternative x ∈ X (the set X = ∆(Z) of alternatives is represented by the thick

segment on the graph) can now be visualized as follows: maxU(x) corresponds to the

hyperplane supporting U in the (normal) direction x whereas minU(x) corresponds to

the hyperplane supporting U in the direction −x.

Being essentially a compact and convex subset of RZ , a set of utility functions is fully

determined by its supporting hyperplanes in all directions of RZ . The utility intervals

of all alternatives, however, only determine these supporting hyperplanes in the non-

negative and non-positive directions and, hence, do not fully pin down the set of utility

functions. Thus, the set U ′ = conv({u1, u2, u3, u4}) of utility functions (corresponding

to the quadrilateral u1u2u3u4), although strictly larger than U , only differs from U in

directions with both positive and negative components and, hence, yields the same utility

intervals as U for all alternatives.

Nevertheless, there are cases in which the utility intervals of all alternatives fully pin

down the set of utility functions. This is true, in particular, if the utility interval of some

lottery with full support in Z (such as the lottery x in the figure) is a singleton. Indeed,

in this case, the set of utility functions must be entirely contained in some hyperplane in

the direction x and, hence, is fully determined by the utility intervals of all alternatives

in some neighborhood of x. Since x has full support, all these directions correspond to

lotteries in ∆(X).

The “if” part of Theorem 1 is straightforward. To prove the “only if” part, first note

that, from Corollary 4, we know that F satisfies (5). We want to strengthen (5) to (6).
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In fact, given our topological assumptions, it turns out to be sufficient to show that (6)

holds when restricted to all finite subsets Y of Z, i.e.

F ((Ui)i∈I)|Y =

((

⋃

θ∈Θ

∑

i∈I

θiUi

)

+ γ

)∣

∣

∣

∣

∣

Y

.

The restriction of a set of utility functions to such a finite set Y is a compact and convex

subset of the finite-dimensional Euclidean space RY so, by the argument above and Weak

Determinacy Preservation, we know that (6) holds for any profile (Ui)i∈I ∈ D such that,

for some lottery with full support in Y , Ui(x) = {0} for all i ∈ I. Finally, consider a

profile (Ui)i∈I ∈ D that does not satisfy the latter property. Since Y is finite and Z is

infinite, there exists an outcome z /∈ Y . We can then construct a profile (U ′
i)i∈I ∈ D such

that (i) for some lottery x with full support in Y ∪ {z}, U ′
i(x) = {0} for all i ∈ I and

(ii) U ′|Y = U |Y for all i ∈ I. By the latter point, (i) implies that (6) holds for (U ′
i)i∈I

restricted to Y ∪ {z} (and, hence, restricted to Y as well). By Setwise Independence of

Irrelevant Alternatives, (ii) then implies that (6) also holds for (Ui)i∈I restricted to Y .

Note that Weak Determinacy Preservation plays a crucial role in the proof: it en-

sures the existence of “well-behaved” profiles for which the social utility intervals of

some lotteries are singletons and which, therefore, satisfy (6) (the proof is then com-

pleted by extending (6) from these profiles to arbitrary profiles). This explains, in par-

ticular, why there is no counterpart to Corollary 1, in the sense that assuming Set-

wise Independence of Irrelevant Alternatives and Z infinite in Corollary 1 would imply

F ((Ui)i∈I) =
⋃

(θ,γ)∈Ω(
∑

i∈I θiUi + γ): without Weak Determinacy Preservation, there is

no “well-behaved” profile to start from. The role of Setwise Independence of Irrelevant

Alternatives and the assumption that Z is infinite is then to extend (6) from the “well-

behaved” profiles to arbitrary profiles. In particular, if Z is finite (and under the axioms

of Corollary 4 alone), (6) holds for the “well-behaved” profiles but not necessarily for

arbitrary profiles. As we will see in the next section, some reasonable restrictions on the

domain D ensure that all profiles are in fact “well-behaved” and, hence, that Theorem 2

and Corollary 5 also hold for finite Z.

6 General alternatives and domains

Up to now we have maintained two assumptions in order to simplify the exposition. First,

the set of alternatives is the set of all simple lotteries over some set of outcomes. Second,

the domain of the social welfare function is the set of all possible profiles of sets of (vNM)

utility functions. Our results, however, also hold for other alternatives and domains. In

this section we state general properties of the set of alternatives and the domain of the

social welfare functions that are sufficient for our results and we discuss some particular
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settings in which these properties are satisfied.

6.1 Mixture spaces

Re now assume that X is a mixture space, i.e. any set endowed with a mixing operation

[0, 1]×X ×X → X , (λ, x, y) 7→ xλy, such that for all x, y ∈ X and all λ, µ ∈ [0, 1],

x1y = x, xλy = y(1− λ)x, (xλy)µy = x(λµ)y.

Note that all definitions and axioms introduced so far have been stated with this general

notation and, hence, apply to any mixture space.

The set X = ∆(Z) of all simple lotteries over some set Z of outcomes, endowed with

the mixing operation defined above, is an example of mixture space. Another example

that has received recent attention in the literature is the set of all compact and convex sets

of such lotteries, interpreted as opportunity sets. One can also consider, instead of simple

lotteries, lotteries with continuous density on a set of monetary prizes or commodity

bundles.

More generally, whenever X is a convex subset of some linear space, defining the

mixing operation xλy = λx + (1 − λ)y by means of the vector addition and scalar

multiplication operations turns it into a mixture space. Such a mixture space, in addition,

will have the particular property that any two distinct alternatives x, y ∈ X are separated,

i.e. there exists u ∈ P such that u(x) 6= u(y). In fact, Mongin (2001) shows that any two

distinct alternatives in X are separated if and only if there exists a mixture preserving

bijection from X into a convex subset of some linear space (and that, moreover, the affine

dimension of this subset is unique), and provides examples of mixture spaces in which

no, or some but not all, distinct alternatives are separated.

We restrict attention to mixture spaces that are weakly non-degenerate, i.e. that con-

tain at least two separated alternatives. Moreover, some of our results only hold for

mixture spaces that are strongly non-degenerate, i.e. that contain at least two distinct

alternatives and in which any two distinct alternatives are separated. By the argument

above, a mixture space is strongly non-degenerate if and only if it is isomorphic to some

non-singleton convex subset of some linear space.

6.2 Weakly regular domains

We now introduce a richness condition on the domain of the social welfare function.

Namely, say that a domain D ⊆ PI is weakly regular if there exist two alternatives

x, y ∈ X , x 6= y, such that:

(i) for all non-empty and finite (Wi)i∈I ⊂ (R{x,y})I , there exists (Ui)i∈I ∈ D such that

Ui|{x,y} = conv(Wi) for all i ∈ I,
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(ii) for all (Ui)i∈I ∈ D and all z ∈ X , there exists (U ′
i)i∈I ∈ D such that Ui(z) = U ′

i(z) =

U ′
i(x) for all i ∈ I.

In words, there must exist a pair of distinct alternatives satisfying the two following

properties. First, any profile of (convex hulls of) finite sets of pairs of utility levels

corresponds to the restriction of some profile in the domain to this pair of alternatives.

Second, for any profile in the domain and any alternative, there exists another profile

in the domain in which, for each individual, the utility interval of this alternative is the

same as in the initial profile and one alternative in the pair also has this same utility

interval. Note that the first property implies that the two alternatives in the pair are

separated (and, hence, that X is weakly non-degenerate).

As one can check, the full (vNM) domain D = PI is weakly regular. Another example

is the set of all profiles of convex hulls of finite sets of utility functions. If X is a convex

subset of some linear space and if the affine dimension of X is greater or equal to 2

(e.g. X = ∆(Z) with |Z| ≥ 3), then one may also normalize the utility level of some

alternative x ∈ X (to 0, for simplicity), i.e. take D to be the set of all profiles of sets of

utility functions such that Ui(x) = 0 for all i ∈ I. For all these domains, the results of

Sections 3 and 4 hold.13

Proposition 1. Theorem 1 and Corollaries 1, 2, 3, and 4 hold provided X is a weakly

non-degenerate mixture space and D is a weakly regular domain.

Technically, the second of the two properties in the definition of weak regularity is

needed for Interval Independence of Irrelevant Alternatives and Interval Pareto Indiffer-

ence to imply interval neutrality (see Lemma 2 in the appendix). The first one ensures

that any profile of real intervals corresponds to the utility intervals of some alternative in

some profile in the domain, and also allows the construction of some particular profiles

in the proof of Theorem 1.

6.3 Strongly regular domains

For the results of Section 5, we need a stronger assumption on the domain. We first

introduce some notation. A subset Y of X is said to be a mixture subspace of X if

xλy ∈ Y for all x, y ∈ Y and all λ ∈ [0, 1]. The mixture hull of a subset Y of X is the set

mix(Y ) =
⋃

n∈N Yn, where Y0 = Y and, for all n ∈ N, Yn+1 = {xλy : x, y ∈ Yn, λ ∈ [0, 1]}

(i.e. mix(Y ) is the smallest mixture subspace of X containing Y ). The mixture interior

of a mixture subspace Y of X is the set mint(Y ) of alternatives x ∈ Y such that, for all

y ∈ Y , there exist z ∈ Y and λ ∈ (0, 1) such that x = yλz.

13The proof of Theorem 1 in the appendix is directly stated under these general assumptions, and that
the corollaries follow from the theorem is independent of these assumptions.
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To illustrate these notions, consider the case where X is a convex subset of some

linear space. Then, given a subset Y of X , we have mix(Y ) = conv(Y ) (so Y is a mixture

subspace of X if and only if it is convex). Moreover, mint(Y ) is the relative interior of Y

if Y is finite dimensional and, more generally, the pseudo relative interior of Y (Borwein

and Goebel, 2003).

A domain D ⊆ PI is said to be strongly regular if:

(i) D is weakly regular,

(ii) for all profile (Ui)i∈I ∈ D and all finite subset Y of X , there exist a finite subset Y ′

of X , an alternative x ∈ mint(mix(Y ∪ Y ′)), and a profile (U ′
i)i∈I ∈ D such that,

for all i ∈ I, U ′
i |Y = Ui|Y and U ′

i(x) = 0.

In words, what this adds to weak regularity is that for any profile in the domain and any

finite subset of alternatives, there must exist a (weakly) larger finite subset of alternatives

and a second profile in the domain that agrees with the first profile on the initial subset

and for which the utility level of some lottery with “full support” in the larger subset is

determinate (and normalized to 0, for simplicity).

We also make a stronger assumption on the set of alternatives by requiring that X

be strongly non-degenerate. As explained above, X is then essentially a convex subset of

some linear space. Moreover, if the affine dimension of X is infinite (e.g. X = ∆(Z) with

Z infinite) then the full (vNM) domain D = PI is strongly regular. To prove this, for

all U ∈ P and all finite subset Y of X , fix some maximal affinely independent subsets

Z of Y and Z ∪ Z ′ of X with Z ∩ Z ′ = ∅, and let Y ′ = {z′} for some z′ ∈ Z ′. Then for

all u ∈ P , there exists u′ ∈ P such that u′|Z = u|Z and u′(z′) = −
∑

z∈Z u(z), so that

u′(x) = 0, where x =
∑

z∈Z
1
|Z|

z ∈ mint(mix(Y ∪ Y ′)). Hence, letting U ′ = {u′ : u ∈ U},

we have U ′ ∈ P, U ′|Y = U |Y , and U ′(x) = 0.

As above, one may also restrict attention to the profiles of convex hulls of finite sets

of utility functions. Now, if the affine dimension of X is finite (e.g. X = ∆(Z) with Z

finite) then these domains are no longer strongly regular. Indeed, a finite subset Y of X

may then have full affine dimension in X and, in this case, U ′
i |Y = Ui|Y implies U ′

i = Ui

in the definition of strong regularity. This is the reason why Theorem 2 and Corollary 5

do not hold for finite Z.

However, in this case, we can obtain a strongly regular domain by normalizing the

utility level of some alternative x ∈ mint(X) (to 0, for simplicity), provided the affine

dimension of X is greater or equal to 2 (i.e. |Z| ≥ 3). Indeed, in this case, strong

regularity is always verified for this x and Y ′ = Z. For all these domains, the results of

Section 5 hold.14

14Again, the proof of Theorem 2 in the appendix is directly stated under these general assumptions,
and that the corollary follows from the theorem is independent of these assumptions.
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Figure 3: Summary of results

Proposition 2. Theorem 2 and Corollary 5 hold provided X is a strongly non-degenerate

mixture space and D is a strongly regular domain.

Technically, the role of the additional condition in the definition of strong regularity

is to ensure that the step of the proof of Theorem 2 in which arbitrary profiles are linked

to “well-behaved” profiles (see the proof sketch above) can still be carried out. Indeed,

whereas the possibility of such links is granted in the particular case where X = ∆(Z)

with Z infinite and D = PI , it must be explicitly assumed in the more general setting

of this section.

7 Conclusion

This paper is concerned with the problem of aggregating indeterminate utilities. We

have formalized the problem by endowing both individuals and society with sets of utility

functions, generalized the classical neutrality assumption to this setting and characterized

the class of neutral social welfare function. This class turns out to be considerably

broader for indeterminate than for determinate utilities, even under an additional “Pareto

preference” assumption, and in particular aggregation rules may differ by the relationship

between individual and social indeterminacy. We have characterized several subclasses

of neutral aggregation rules, which are summarized in Figure 3 (moving eastwards or

downwards in the figure corresponds to stronger assumptions). The most specific of these

subclasses is utilitarianism and, in particular, utilitarian rules are those that yield the least

indeterminate social utilities, although they still fail to systematically yield a determinate

social utility. Thus, an aggregation rule that systematically yields a determinate social

utility must necessarily violate the neutrality assumption.

Appendix: proofs

We directly state the proofs in the general setting of Section 6.
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Preliminary lemmas

Lemma 1. Let X be a non-empty mixture space. Then:

(a) For all non-empty and finite U ⊂ P , conv(U) ∈ P.

(b) For all U ∈ P and x ∈ X , U(x) is a non-empty and compact interval.

(c) For all U ∈ P, x, y ∈ X , and λ ∈ [0, 1], U(xλy) ⊆ λU(x) + (1− λ)U(y).

(d) For all U ∈ P, x, y ∈ X , and λ ∈ [0, 1], λmaxU(x) + (1− λ)minU(y) ∈ U(xλy).

Proof. (a) Let U ⊂ P be non-empty and finite. Then conv(U) is non-empty and convex

by definition. Moreover, U is compact in RX since it is finite. Hence conv(U) is compact

in RX (Aliprantis and Border, 1999, Theorem 5.1, Corollary 5.15). Hence conv(U) is

compact in P since P is a topological subspace of RX , so conv(U) ∈ P.

(b) Let U ∈ P and x ∈ X . Clearly, U(x) is non-empty and convex since U is. More-

over, U(x) = projx(U) by definition.15 Hence U(x) is compact since projx is continuous

by definition of the product topology on RX (Aliprantis and Border, 1999, Theorem 2.31),

so U(x) is a non-empty and compact interval.

(c) Let U ∈ P, x, y ∈ X , and λ ∈ [0, 1]. Then by definition,

U(xλy) = {u(xλy) : u ∈ U}

= {λu(x) + (1− λ)u(y) : u ∈ U}

⊆ {λu(x) + (1− λ)v(y) : u, v ∈ U}

= λU(x) + (1− λ)U(y).

(d) Let U ∈ P, x, y ∈ X , and λ ∈ [0, 1]. Then by definition, there exist u, u′ ∈ U such

that u(x) = maxU(x) and u′(y) = minU(y). Suppose λmaxU(x) + (1 − λ)minU(y) >

maxU(xλy). Then λmaxU(x)+(1−λ)minU(y) > u(xλy) = λu(x)+(1−λ)u(y). Hence,

since u(x) = maxU(x), it must be that u(y) < minU(y), a contradiction since u ∈ U .

Similarly, suppose λmaxU(x)+(1−λ)minU(y) < minU(xλy). Then λmaxU(x)+(1−

λ)minU(y) < u′(xλy) = λu′(x) + (1 − λ)u′(y). Hence, since u′(y) = minU(y), it must

be that u′(x) > maxU(x), a contradiction since u′ ∈ U .

Lemma 2. Let X be a weakly non-degenerate mixture space and D be a weakly regular

domain. Then a social welfare function F satisfies Interval Independence of Irrelevant

Alternatives and Interval Pareto Indifference if and only if it is interval neutral.

Proof. Clearly, interval neutrality implies Interval Independence of Irrelevant Alternatives

and Interval Pareto Indifference. Conversely, assume F satisfies these two axioms and

15Given a set S = Πj∈JSj , projj denotes the projection from S onto Sj .
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let (Ui)i∈I , (U
′
i)i∈I ∈ D and x, y ∈ X such that Ui(x) = U ′

i(y) for all i ∈ I. Then, by

part (ii) of weak regularity, there exist z ∈ X and (Vi)i∈I , (V
′
i )i∈I ∈ D such that, for all

i ∈ I, Ui(x) = Vi(x) = Vi(z) = V ′
i (z) = V ′

i (y) = U ′
i(y). Hence, by successive applications

of Interval Independence of Irrelevant Alternatives and Interval Pareto Indifference, we

have F ((Ui)i∈I)(x) = F ((Vi)i∈I)(x) = F ((Vi)i∈I)(z) = F ((V ′
i )i∈I)(z) = F ((V ′

i )i∈I)(y) =

F ((U ′
i)i∈I)(y), so F is interval neutral.

Proof of Theorem 1

Assume X is a weakly regular mixture space and D is a weakly regular domain (see

Section 6 for definitions). Clearly, if there exists a non-empty, compact, and convex set

Φ ⊂ (RI
+)

2 × R such that (1) holds then F satisfies Interval Independence of Irrelevant

Alternatives and Interval Pareto Indifference. Conversely, assume F satisfies these two

axioms. Note that for a given non-empty, compact, and convex set Φ ⊂ (RI
+)

2 × R, (1)

holds if and only if, for all (Ui)i∈I ∈ D and all x ∈ X ,

maxF ((Ui)i∈I)(x) = max
(α,β,γ)∈Φ

(

∑

i∈I

αi maxUi(x)−
∑

i∈I

βi minUi(x) + γ

)

,

minF ((Ui)i∈I)(x) = min
(α,β,γ)∈Φ

(

∑

i∈I

αi minUi(x)−
∑

i∈I

βi maxUi(x) + γ

)

.

(8)

Let K denote the set of all non-empty and compact real intervals. Since D is weakly

regular, there exists x ∈ X such that, for all (Ki)i∈I ∈ K I , there exists (Ui)i∈I ∈ D such

that Ui(x) = Ki for all i ∈ I. Hence {(Ui(x))i∈I : (Ui)i∈I ∈ D , x ∈ X} = K I so, by

Interval Independence of Irrelevant Alternatives and Interval Pareto Indifference, there

exists a unique function G : K I → K such that, for all (Ui)i∈I ∈ D and all x ∈ X ,

F ((Ui)i∈I)(x) = G((Ui(x))i∈I).

Let T = {(r, s) ∈ (RI)2 : r+s ≥ 0}, which is clearly a half-space, and define the functions

G,G : (RI)2 → R ∪ {−∞,+∞} by, for all (r, s) ∈ (RI)2,

G(r, s) =







maxG(([−si, ri])i∈I) if (r, s) ∈ T,

+∞ otherwise,

G(r, s) =







−minG(([−ri, si])i∈I) if (r, s) ∈ T,

+∞ otherwise.
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Clearly, dom(G) = dom(G) = T .16 Moreover, G(r, s) > −∞ and G(r, s) > −∞ for all

(r, s) ∈ (RI)2, so G and G are proper. Also note that, for all (r, s) ∈ T ,

G(r, s) +G(s, r) = maxG(([−si, ri])i∈I)−minG(([−si, ri])i∈I) ≥ 0.

Finally, for all (Ui)i∈I ∈ D and all x ∈ X , we have

maxF ((Ui)i∈I)(x) = maxG((Ui(x))i∈I) = G((maxUi(x),−minUi(x))i∈I),

minF ((Ui)i∈I)(x) = minG((Ui(x))i∈I) = −G((−minUi(x),maxUi(x))i∈I),

so for a given non-empty, compact, and convex set Φ ⊂ (RI
+)

2 × R, (8) holds if and only

if, for all (r, s) ∈ T ,

G(r, s) = max
(α,β,γ)∈Φ

(αr + βs− γ), G(r, s) = max
(α,β,γ)∈Φ

(αr + βs+ γ). (9)

Lemma 3. G and G are convex.

Proof. We only state the proof for G, the argument for G is similar. Let (r, s), (r′, s′) ∈ T .

Since D is weakly regular, there exist x, y ∈ X , x 6= y, and (Ui)i∈I ∈ D such that

Ui|{x,y} = conv({wi, w
′
i}) for all i ∈ I, where wi, w

′
i ∈ R{x,y} are defined by

wi(x) = −si, w′
i(x) = ri,

wi(y) = −s′i, w′
i(y) = r′i.

Note that for all i ∈ I and all λ ∈ [0, 1], we have Ui(xλy) = [−λsi−(1−λ)s′i, λri+(1−λ)r′i].

Hence, for all λ ∈ [0, 1],

G(λ(r, s) + (1− λ)(r′, s′)) = G(λr + (1− λ)r′, λs+ (1− λ)s′)

= maxG(([−λsi − (1− λ)s′i, λri + (1− λ)r′i])i∈I)

= maxG((Ui(xλy))i∈I)

= maxF ((Ui)i∈I)(xλy)

≤ λmaxF ((Ui)i∈I)(x) + (1− λ)maxF ((Ui)i∈I)(y)

= λmaxG((Ui(x))i∈I) + (1− λ)maxG((Ui(y))i∈I)

= λmaxG(([−si, ri])i∈I) + (1− λ)maxG(([−s′i, r
′
i])i∈I)

= λG(r, s) + (1− λ)G(r′, s′),

where the inequality follows from Lemma 1(c).

Lemma 4. G and G are non-decreasing.

16Given a function f , dom(f) denotes the effective domain of f .
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Proof. We only state the proof for G, the argument for G is similar. We first prove that

G is non-decreasing on T ′ = {(r, s) ∈ (RI)2 : r + s > 0} ⊂ T . To this end, it is sufficient

to show that G(r′, s′) ≥ G(r, s) for all (r, s), (r′, s′) ∈ T ′ such that (r′, s′) ≥ (r, s) and

r′+ s′ ≤ 2(r+ s). So let (r, s), (r′, s′) ∈ T ′ such that (r′, s′) ≥ (r, s) and r′+ s′ ≤ 2(r+ s).

Since D is weakly regular, there exist x, y ∈ X , x 6= y, and (Ui)i∈I ∈ D such that

Ui|{x,y} = conv({wi, w
′
i, w

′′
i , w

′′′
i }) for all i ∈ I, where wi, w

′
i, w

′′
i , w

′′′
i ∈ R{x,y} are defined

by

wi(x) = −s′i, w′
i(x) = s′i − 2si, w′′

i (x) = r′i, w′′′
i (x) = 2ri − r′i,

wi(y) = s′i − 2si, w′
i(y) = −s′i, w′′

i (y) = 2ri − r′i, w′′′
i (y) = r′i.

Note that for all i ∈ I, we have Ui(x) = Ui(y) = [−s′i, r
′
i] and Ui(x

1
2
y) = [−si, ri]. Hence,

G(r, s) = maxG(([−si, ri])i∈I)

= maxG((Ui(x
1
2
y))i∈I)

= maxF ((Ui)i∈I)(x
1
2
y)

≤ 1
2
maxF ((Ui)i∈I)(x) +

1
2
maxF ((Ui)i∈I)(y)

= 1
2
maxG((Ui(x))i∈I) +

1
2
maxG((Ui(y))i∈I)

= 1
2
maxG(([−s′i, r

′
i])i∈I) +

1
2
maxG(([−s′i, r

′
i])i∈I)

= G(r′, s′),

where the inequality follows from Lemma 1(c).

It only remains to prove that G(r′, s′) ≥ G(r, s) for all (r, s), (r′, s′) ∈ T such that

(r′, s′) ≥ (r, s) and r+ s = 0. So suppose there exist (r, s), (r′, s′) ∈ T such that (r′, s′) ≥

(r, s), r + s = 0, and G(r′, s′) < G(r, s). Clearly, it must then be that r′ + s′ > r + s, so

(r′, s′) ∈ T ′. Since D is weakly regular, there exist x, y ∈ X , x 6= y, and (Ui)i∈I ∈ D such

that Ui|{x,y} = conv({wi, w
′
i}) for all i ∈ I, where wi, w

′
i ∈ R{x,y} are defined by

wi(x) = −si = ri, w′
i(x) = −si = ri,

wi(y) = −s′i, w′
i(y) = r′i.

Note that for all i ∈ I and all λ ∈ [0, 1], we have Ui(xλy) = [−λsi−(1−λ)s′i, λri+(1−λ)r′i].

Hence,

maxF ((Ui)i∈I)(x) = maxG((Ui(x))i∈I)

= maxG([−si, ri])i∈I)

= G(r, s)

> G(r′, s′)
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= maxG([−s′i, r
′
i])i∈I)

= maxG((Ui(y))i∈I)

= maxF ((Ui)i∈I)(y),

so there exists λ ∈ (0, 1) such that λmaxF ((Ui)i∈I)(x) + (1 − λ)minF ((Ui)i∈I)(y) >

maxF ((Ui)i∈I)(y). Moreover,

maxF ((Ui)i∈I)(xλy) = maxG((Ui(xλy))i∈I)

= maxG([−λsi − (1− λ)s′i, λri + (1− λ)r′i])i∈I)

= G(λ(r, s) + (1− λ)(r′, s′))

≤ G(r′, s′)

= maxF ((Ui)i∈I)(y),

where the inequality follows from the previous paragraph since λ(r, s) + (1− λ)(r′, s′) ∈

T ′ and λ(r, s) + (1 − λ)(r′, s′) < (r, s). It follows that λmaxF ((Ui)i∈I)(x) + (1 −

λ)minF ((Ui)i∈I)(y) > maxF ((Ui)i∈I)(xλy), a contradiction by Lemma 1(d).

Lemma 5. G and G are continuous.

Proof. We only state the proof for G, the argument for G is similar. By Lemma 3, G is

upper semi-continuous since T is a half-space (Rockafellar, 1970, Theorem 10.2), so it is

sufficient to prove that G is lower semi-continuous, i.e. that clG = G.17 By definition,

clG ≤ G. Conversely, let (r, s) ∈ (RI)2. If (r, s) /∈ T then clG(r, s) = G(r, s) = +∞ since

T is closed. If (r, s) ∈ T then let (r′, s′) ∈ (RI)2 such that (r′, s′) > (r, s). Then (r′, s′)

belongs to the relative interior of T and, hence, clG(r, s) = limλ→0+ G((1 − λ)(r, s) +

λ(r′, s′)) (Rockafellar, 1970, Theorem 7.5). By Lemma 4, we have G(r, s) ≤ G((1 −

λ)(r, s) + λ(r′, s′)) for all λ ∈ [0, 1] and, hence, G(r, s) ≤ clG(r, s).

Let G0+, G0+ : (RI)2 → R ∪ {−∞,+∞} denote the recession functions of G and G,

respectively, i.e. (Rockafellar, 1970, Theorem 8.5) for all (r, s) ∈ (RI)2,

G0+(r, s) = lim
µ→+∞

G(µ(r, s))

µ
, G0+(r, s) = lim

µ→+∞

G(µ(r, s))

µ
.

G0+ and G0+ are positively homogenous, proper convex functions by definition, and are

closed since G and G are closed. Also note that G0+ and G0+ are non-decreasing by

Lemma 4.

Lemma 6. dom(G0+) = T and G0+ = G0+.

17Given a function f , cl f denotes the closure of f .
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Proof. Let (r, s) ∈ (RI)2. If (r, s) /∈ T then, clearly, G0+(r, s) = G0+(r, s) = +∞. Hence

it is sufficient to show that if (r, s) ∈ T then limµ→+∞
G(µ(r,s))

µ
= limµ→+∞

G(µ(r,s))
µ

< +∞.

So assume r+s ≥ 0 and let µ > 1. Since D is weakly regular, there exist x, y ∈ X , x 6= y,

and (Ui)i∈I ∈ D such that Ui|{x,y} = conv({wi, w
′
i}) for all i ∈ I, where wi, w

′
i ∈ R{x,y}

are defined by

wi(x) = −µsi, w′
i(x) = −µri,

wi(y) = µri, w′
i(y) = µsi.

Note that for all i ∈ I, we have Ui(x) = [−µsi, µri], Ui(y) = [−µri, µsi], Ui(x
1
2
y) = {0},

and Ui(x
1
µ
(x1

2
y)) = [−si, ri]. Hence,

1
µ
G(µ(r, s))− (1− 1

µ
)G(0, 0) = 1

µ
maxF ((Ui)i∈I)(x) + (1− 1

µ
)minF ((Ui)i∈I)(x

1
2
y)

≤ maxF ((Ui)i∈I)(x
1
µ
(x1

2
y))

= G(r, s),

where the inequality follows from Lemma 1(d), so 1
µ
G(µ(r, s)) ≤ G(r, s)+ (1− 1

µ
)G(0, 0).

Since this must hold for all µ > 1, we have limµ→+∞
1
µ
G(µ(r, s)) ≤ G(r, s)+G(0, 0) < +∞.

Moreover, again by Lemma 1(d),

1
2
G(µ(r, s))− 1

2
G(µ(r, s)) = 1

2
maxF ((Ui)i∈I)(x) +

1
2
minF ((Ui)i∈I)(y)

∈ [minF ((Ui)i∈I)(x
1
2
y),maxF ((Ui)i∈I)(x

1
2
y)]

= [−G(0, 0), G(0, 0)],

so − 2
µ
G(0, 0) ≤ 1

µ
G(µ(r, s))− 1

µ
G(µ(r, s)) ≤ 2

µ
G(0, 0). Since this must hold for all µ > 1,

we have limµ→+∞
G(µ(r,s))

µ
= limµ→+∞

G(µ(r,s))
µ

.

Lemma 7. G, G, G0+, and G0+ are Lipschitzian.

Proof. We only state the proof for G and G0+, the argument for G and G0+ is similar.

First, for all (r, s) ∈ (RI)2, let T (r, s) = ((−min{−ri, si},max{−ri, si})i∈I). Note that

T (r, s) ∈ T for all (r, s) ∈ (RI)2 and T (r, s) = (r, s) for all (r, s) ∈ T . Define the function

g : (RI)2 → R ∪ {−∞,+∞} by, for all (r, s) ∈ (RI)2, g(r, s) = G(T (r, s)). Clearly,

dom(g) = (RI)2 and, for all (r, s) ∈ T , g(r, s) = G(r, s). Moreover, g is convex since, for

all (r, s), (r′, s′) ∈ (RI)2 and all λ ∈ [0, 1],

g(λ(r, s) + (1− λ)(r′, s′)) = G





(

−min{λ(−ri) + (1− λ)(−r′i), λsi + (1− λ)s′i},

max{λ(−ri) + (1− λ)(−r′i), λsi + (1− λ)s′i}

)

i∈I





35
 
Documents de Travail du Centre d'Economie de la Sorbonne - 2010.68



≤ G





(

−(λmin{−ri, si}+ (1− λ)min{−r′i, s
′
i}),

λmax{−ri, si}+ (1− λ)max{−r′i, s
′
i}

)

i∈I





= G

(

λ(−min{−ri, si},max{−ri, si})i∈I

+(1− λ)(−min{−r′i, s
′
i},max{−r′i, s

′
i})i∈I

)

≤
λG((−min{−ri, si},max{−ri, si})i∈I)

+(1− λ)G((−min{−r′i, s
′
i},max{−r′i, s

′
i})i∈I)

= λg(r, s) + (1− λ)g(r′, s′),

where the first inequality follows from Lemma 4 and the second one from Lemma 3.

Now, suppose G is not Lipschitzian. Then g is not Lipschitzian either. Hence, since g is

finite and convex, there must exist (r, s) ∈ (RI)2 such that g0+(r, s) = +∞ (Rockafellar,

1970, Theorem 10.5), i.e. G0+(T (r, s)) = +∞, a contradiction by Lemma 6. Finally, note

that for all (r, s) ∈ (RI)2, g0+(r, s) = G0+(T (r, s)) < +∞ by Lemma 6. Hence g0+ is

Lipschitzian since it is its own recession function (Rockafellar, 1970, Theorem 10.5), so

G0+ is Lipschitzian.

Lemma 8. For all (r, s), (r′, s′) ∈ (RI)2, if G0+
′
((r, s), (r′, s′)) = −G0+

′
((r, s),−(r′, s′))

then18

G0+
′
((r, s), (r′, s′)) = lim

µ→+∞
G

′
(µ(r, s), (r′, s′))

= lim
µ→+∞

−G
′
(µ(r, s),−(r′, s′))

= lim
µ→+∞

G′(µ(r, s), (r′, s′))

= lim
µ→+∞

−G′(µ(r, s),−(r′, s′)).

Proof. We only state the proof for G, the argument for G is similar, given Lemma 6.

Let (r, s), (r′, s′) ∈ (RI)2. If (r, s) /∈ T then the lemma is trivially true (all directional

derivatives are equal to +∞), so assume (r, s) ∈ T . Then, by definition of G0+
′
, for all

ε > 0, there exists δ0 > 0 such that

G0+((r, s) + δ0(r
′, s′))−G0+(r, s)

δ0
≤ G0+

′
(r, s) + ε

and, hence,

lim
µ→+∞

G(µ(r, s) + µδ0(r
′, s′))−G(µ(r, s))

µδ0
≤ G0+

′
(r, s) + ε.

18Given a function f and a point x ∈ dom(f), f ′(x, y) denotes the (one-sided) directional derivative

of f at x in direction y, i.e. f ′(x, y) = limδ→0+
f(x+δy)−f(x)

δ
if x ∈ dom(f) and f ′(x, y) = +∞ otherwise.
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Hence, for all ε > 0, there exist δ0 > 0 and µ0 > 1 such that, for all µ ≥ µ0,

G(µ(r, s) + µδ0(r
′, s′))−G(µ(r, s))

µδ0
≤ G0+

′
(r, s) + ε.

Moreover, since µ(r, s) + δ0(r
′, s′) = (1− 1

µ
)(µ(r, s)) + 1

µ
(µ(rs) + µδ0(r

′, s′)), we have

G(µ(r, s) + δ0(r
′, s′)) ≤ (1− 1

µ
)G(µ(r, s)) + 1

µ
G(µ(rs) + µδ0(r

′, s′))

by Lemma 3 and, hence,

G(µ(r, s) + δ0(r
′, s′))−G(µ(r, s))

δ0
≤

G(µ(r, s) + µδ0(r
′, s′))−G(µ(r, s))

µδ0
.

Hence, for all ε > 0, there exist δ0 > 0 and µ0 > 1 such that, for all µ ≥ µ0,

G(µ(r, s) + δ0(r
′, s′))−G(µ(r, s))

δ0
≤ G0+

′
(r, s) + ε

and, hence, for all δ ∈ (0, δ0),

G(µ(r, s) + δ(r′, s′))−G(µ(r, s))

δ
≤ G0+

′
(r, s) + ε

by Lemma 3 (Rockafellar, 1970, Theorem 23.1). Hence, by definition of G
′
, for all ε > 0,

there exists µ0 > 1 such that G
′
(µ(r, s), (r′, s′)) ≤ G0+

′
(r, s) + ε for all µ ≥ µ0.

Now, assume G0+
′
((r, s), (r′, s′)) = −G0+

′
((r, s),−(r′, s′)). Then, by the preceding

paragraph, for all ε > 0, there exists µ0 > 1 such that, for all µ ≥ µ0,

G
′
(µ(r, s), (r′, s′))− ε ≤ G0+

′
(r, s)

= −G0+
′
((r, s),−(r′, s′))

≤ −G
′
(µ(r, s),−(r′, s′)) + ε

≤ G(µ(r, s), (r′, s′)) + ε

(where the last inequality follows from Rockafellar, 1970, Theorem 23.1), so we ob-

tain limµ→+∞G
′
(µ(r, s), (r′, s′)) = limµ→+∞−G

′
(µ(r, s),−(r′, s′)) = G0+

′
((r, s), (r′, s′))

by passing to the limit as ε → 0+.

Let G
∗
, G∗ : (RI)2 → R ∪ {−∞,+∞} denote the conjugate functions of G and G,

respectively, i.e. for all (α, β) ∈ (RI)2,

G
∗
(α, β) = sup

(r,s)∈T

(αr + βs−G(r, s)), G∗(α, β) = sup
(r,s)∈T

(αr + βs−G(r, s)).
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Since G and G are closed proper convex functions, so are G
∗
and G∗ (Rockafellar, 1970,

Theorem 12.2). Moreover, G
∗
and G∗ are clearly bounded below since, for all (α, β) ∈

(RI)2, G
∗
(α, β) ≥ −G(0, 0) and G∗(α, β) ≥ −G(0, 0).

Let C = {(−η,−η) : η ∈ RI
+} ⊂ (RI

+)
2. Clearly, C is a non-empty, closed, and convex

cone containing no line and, moreover, we have C = T ◦.19 Let L ⊂ (RI)2 be the set

of points where G0+ is differentiable. Clearly, cl(L) = T (Rockafellar, 1970, Theorem

25.5), so L is non-empty.20 Let E = {∇G0+(r, s) : (r, s) ∈ L} and M = cl(conv(E)).

By Lemmas 4 and 7, E is a non-empty and bounded subset of (RI
+)

2 and, hence, M is a

non-empty, compact, and convex subset of (RI
+)

2.

Lemma 9. dom(G
∗
) = dom(G∗) = M + C and, for all (α, β) ∈ M + C, G

∗
(α, β) +

G∗(α, β) ≤ 0.

Proof. By definition of G
∗
, G0+, G∗, and G0+, we have

cl(dom(G
∗
)) = {(α, β) ∈ (RI)2 : ∀(r, s) ∈ (RI)2, αr + βs ≤ G0+(r, s)},

cl(dom(G∗)) = {(α, β) ∈ (RI)2 : ∀(r, s) ∈ (RI)2, αr + βs ≤ G0+(r, s)}

(Rockafellar, 1970, Corollary 13.2.1, Theorem 13.3), so cl(dom(G
∗
)) = cl(dom(G∗)) by

Lemma 6. Moreover, since dom(G0+) = T , we have 0+ cl(dom(G
∗
)) = {(α, β) ∈ (RI)2 :

∀(r, s) ∈ T, αr + βs ≤ 0} = T ◦ = C.21 Hence cl(dom(G
∗
)) contains no line, so

cl(dom(G
∗
)) = cl(conv(exp(cl(dom(G

∗
)))) + C)

(Rockafellar, 1970, Theorem 18.7).22 Moreover, exp(cl(dom(G
∗
))) = E (Rockafellar,

1970, Corollary 25.1.3) and, hence, cl(dom(G
∗
)) = M+C since E is bounded (Rockafellar,

1970, Corollary 9.1.1).

Now we claim that (α, β) ∈ dom(G
∗
) ∩ dom(G∗) and G

∗
(α, β) + G∗(α, β) ≤ 0 for all

(α, β) ∈ E. If the claim is correct then, since G
∗
and G∗ are closed and bounded below,

we have (α, β) ∈ dom(G
∗
) ∩ dom(G∗) and G

∗
(α, β) + G∗(α, β) ≤ 0 for all (α, β) ∈ M

(Rockafellar, 1970, Theorem 17.2, Theorem 18.6). Moreover, for all η ∈ RI
+, we have

G
∗
(α−η, β−η) = sup(r,s)∈T (αr+βs−η(r+s)−G(r, s)) ≤ G

∗
(α, β) and G∗(α−η, β−η) =

sup(r,s)∈T (αr+βs−η(r+ s)−G(r, s)) ≤ G∗(α, β) since r+ s ≥ 0 for all (r, s) ∈ T . Hence

(α, β) ∈ dom(G
∗
) ∩ dom(G∗) and G

∗
(α, β) +G∗(α, β) ≤ 0 for all (α, β) ∈ M + C, so the

proof is complete.

To prove the claim, let (α, β) ∈ E, i.e. (α, β) = ∇G0+(r, s) for some (r, s) ∈ L.

Clearly, (r, s) must then belong to the interior of T (Rockafellar, 1970, Corollary 25.1.1).

19Given a cone S, S◦ denotes the polar cone of S, i.e. S◦ = {y : ∀s ∈ S, xy ≤ 0}.
20Given a set S, cl(S) denotes the closure of S.
21Given a set S, 0+S denotes the recession cone of S, i.e. 0+S = {y : ∀x ∈ S, ∀µ > 0, x+ µy ∈ S}.
22Given a set S, exp(S) denotes the set of exposed points of S.
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Hence, for all µ ≥ 1, µ(r, s) also belongs to the interior of T , so ∂G(µ(r, s)) is non-

empty and compact (Rockafellar, 1970, Theorem 23.4).23 It follows that there exists

(αµ, βµ) ∈ ∂G(µ(r, s)) such that G
′
(µ(r, s),−(r, s)) = −αµr−βµs since G

′
(µ(r, s), ·) is the

support function of ∂G(µ(r, s)) (Rockafellar, 1970, Theorem 23.2, Theorem 23.4). Hence

we have G(µ(r, s)) +G
∗
(αµ, βµ) = µ(αµr + βµs) (Rockafellar, 1970, Theorem 23.5) and,

hence, −G
∗
(αµ, βµ) = G(µ(r, s))+µG

′
(µ(r, s),−(r, s)). Hence, by definition of G

′
, for all

κ > −G
∗
(αµ, βµ), there exists λ ∈ (0, 1) such that λG(µ(r, s)) + (1 − λ)κ > G(λµ(r, s))

(Rockafellar, 1970, Theorem 23.1). Similarly, there exists (αµ, βµ
) ∈ ∂G(µ(r, s)) such

that, for all κ > −G∗(αµ, βµ
), there exists λ ∈ (0, 1) such that λG(µ(r, s)) + (1 − λ)κ >

G(λµ(r, s)). Equivalently, for all κ < G∗(αµ, βµ
), there exists λ ∈ (0, 1) such that

λ(−G(µ(r, s))) + (1 − λ)κ < −G(λµ(r, s)). Consequently, if for all i ∈ I we define

ui, vi, and Ui as in the proof of Lemma 6, we obtain

−G
∗
(αµ, βµ) ≥

1
2
G(µ(r, s))− 1

2
G(µ(r, s)) ≥ G∗(αµ, βµ

)

by Lemma 1(d), so G
∗
(αµ, βµ) + G∗(αµ, βµ

) ≤ 0. Hence, since G
∗
and G∗ are bounded

below, the sequences (G
∗
(αµ, βµ))µ≥1 and (G∗(αµ, βµ

))µ≥1 have subsequences converging

as µ → +∞ to limits κ and κ, respectively, such that κ+κ ≤ 0. Moreover, G0+
′
((r, s), ·)

is linear since (r, s) ∈ L (Rockafellar, 1970, Theorem 25.2) and, hence, (G
′
(µ(r, s), ·))µ≥1

and (G′(µ(r, s), ·))µ≥1 converge pointwise to G0+
′
((r, s), ·) as µ → +∞ by Lemma 8.

Since G0+
′
((r, s), ·) is the support function of ∂G0+(r, s) = {∇G0+(r, s)} = {(α, β)},

it follows that limµ→+∞(αµ, βµ) = limµ→+∞(αµ, βµ
) = (α, β) (Schneider, 1993, Theorem

1.8.11, Theorem 1.8.12). Hence G
∗
(α, β) ≤ κ and G∗(α, β) ≤ κ since G

∗
and G∗ are

closed, so (α, β) ∈ dom(G
∗
) ∩ dom(G∗) and G

∗
(α, β) +G∗(α, β) ≤ 0.

Let C ′ = C × R+ ⊂ (RI
+)

2 × R. Clearly, C ′ is a non-empty, closed, and convex cone

containing no line. Let L, L ⊂ (RI)2 be the set of points where G and G are differentiable,

respectively. Clearly, cl(L) = cl(L) = T (Rockafellar, 1970, Theorem 25.5), so L and L

are non-empty. Let E = {∇G(r, s) : (r, s) ∈ L} and E = {∇G(r, s) : (r, s) ∈ L}. By

Lemmas 4 and 7, E and E are non-empty and bounded subsets of (RI
+)

2. Moreover, we

have E ⊆ dom(G
∗
) and E ⊆ dom(G∗) (Rockafellar, 1970, Theorem 23.5) and, hence, the

sets E
′
= {(α, β,G

∗
(α, β)) : (α, β) ∈ E} and E ′ = {(α, β,G∗(α, β)) : (α, β) ∈ E} are

non-empty and bounded subsets of (RI
+)

2 × R since G
∗
are bounded below and above

by Lemma 9. Hence the sets M
′
= cl(conv(E

′
)) and M ′ = cl(conv(E ′)) are non-empty,

compact, and convex subsets of (RI
+)

2 × R.

Lemma 10. For all non-empty, compact, and convex set Φ ⊂ (RI
+)

2 × R, M
′
⊆ Φ ⊆

M
′
+ C ′ if and only if, for all (r, s) ∈ T , G(r, s) = max(α,β,γ)∈Φ(αr + βs− γ). Similarly,

23Given a function f and a point x, ∂f(x) denotes the subdifferential of f at x, i.e. ∂f(x) = {x∗ :
∀y, f(y) ≥ f(x) + (y − x)x∗}.
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for all non-empty, compact, and convex set Φ ⊂ (RI
+)

2 × R, M ′ ⊆ Φ ⊆ M ′ + C ′ if and

only if, for all (r, s) ∈ T , G(r, s) = max(α,β,γ)∈Φ(αr + βs− γ).

Proof. We only state the proof for G, the argument for G is similar. By definition of G
∗
,

we have, for all (r, s) ∈ T ,24

G(r, s) = sup
(α,β)∈dom(G

∗
)

(αr + βs−G∗(α, β)) = sup
(α,β,γ)∈epi(G

∗
)

(αr + βs− γ).

We now prove that epi(G
∗
) = M

′
+C ′. First, we clearly have 0+ epi(G

∗
) ⊆ 0+ dom(G

∗
)×

R = C×R. Moreover, since G
∗
is bounded below, we have in fact 0+ epi(G

∗
) ⊆ C×R+ =

C ′. Conversely, since G
∗
(α−η, β−η) ≤ G∗(α, β) for all (α, β) ∈ dom(G

∗
) and all η ∈ RI

+

(see the proof of Lemma 9), we have C ′ ⊆ 0+ epi(G
∗
). Hence 0+ epi(G

∗
) = C ′ and, hence,

epi(G
∗
) contains no line, so we have epi(G

∗
) = cl(conv(exp(epi(G

∗
))) + C ′) since G

∗
is

closed (Rockafellar, 1970, Theorem 18.7). Moreover, exp(epi(G
∗
)) = E

′
(Rockafellar,

1970, Corollary 25.1.2) and, hence, epi(G
∗
) = M

′
+ C ′ since E

′
is bounded (Rockafellar,

1970, Corollary 9.1.1).

Thus, for all (r, s) ∈ T , we have G(r, s) = sup(α,β,γ)∈M
′
+C′(αr + βs − γ). Hence,

since G is finite on T by definition and since M
′
is compact, it must be that G(r, s) =

sup(α,β,γ)∈M
′(αr + βs − γ) = max(α,β,γ)∈M ′(αr + βs − γ). It follows that G(r, s) =

max(α,β,γ)∈Φ(αr+βs−γ) for all non-empty, compact, and convex set Φ ⊂ (RI
+)

2×R such

that M
′
⊆ Φ ⊆ M

′
+C ′. For the converse, first assume that Φ 6⊆ M

′
+C ′, i.e. that there

exists (α0, β0, γ0) ∈ Φ\(M
′
+C ′). Then, sinceM

′
+C ′ is closed and convex and contains no

line, there exists (r, s, t) ∈ (RI)2×R with t 6= 0 such that α0r+β0s+γ0t > αr+βs+γt for

all (α, β, γ) ∈ M
′
+C ′. Clearly, it must then be that (r, s, t) ∈ C ′◦ = T ×R−. Hence, if we

let (r′, s′) = ( r
|t|
, s
|t|
) ∈ T , we have α0r

′+β0s
′−γ0 > αr′+βs′−γ for all (α, β, γ) ∈ M

′
+C ′,

so sup(α,β,γ)∈Φ(αr
′ + βs′ − γ) > sup(α,β,γ)∈M

′
+C′(αr

′ + βs′ − γ) = G(r′, s′). Now, assume

that Φ ⊆ M
′
+ C ′ but M

′
6⊆ Φ, i.e. that there exists (α0, β0, γ0) ∈ M

′
\ Φ. Then

there exists (α0, β0, γ0) ∈ E
′
\ Φ (Rockafellar, 1970, Theorem 18.6) and, hence, there

exists (r, s, t) ∈ (RI)2 × R with t 6= 0 such that α0r + β0s + γ0t > αr + βs + γt for

all (α, β, γ) ∈ Φ + C ′ ⊆ M
′
+ C ′ (Rockafellar, 1970, Corollary 25.1.2). Clearly, it must

then be that (r, s, t) ∈ C ′◦ = T × R−. Hence, if we let (r′, s′) = ( r
|t|
, s
|t|
) ∈ T , we have

α0r
′ + β0s

′ − γ0 > αr′ + βs′ − γ for all (α, β, γ) ∈ Φ, so sup(α,β,γ)∈Φ(αr
′ + βs′ − γ) <

sup
(α,β,γ)∈M

′
+C′(αr

′ + βs′ − γ) = G(r′, s′).

Let M
′′
= {(α, β,−γ) : (α, β, γ ∈ M

′
} and C ′′ = C × R−. It follows from Lemma 10

that (9) holds if and only if conv(M ′ ∪M
′′
) ⊆ Φ ⊆ (M ′ + C ′) ∩ (M

′′
+ C ′′).

Lemma 11. (M ′ + C ′) ∩ (M
′′
+ C ′′) = conv(M ′ ∪M

′′
) + (C × {0}).

24Given a real-valued function f , epi(f) denotes the epigraph of f , i.e. epi(f) = {(x, γ) : γ ≥ f(x)}.
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Proof. Since 0 ∈ C ′ ∩ C ′′, we have M ′ ⊆ M ′ + C ′ and M
′′
⊆ M

′′
+ C ′′. Moreover, M ′ ⊆

M
′′
+C ′′ and M

′′
⊆ M ′+C ′ by Lemma 9. Hence conv(M ′∪M

′′
) ⊆ (M ′+C ′)∩(M

′′
+C ′′)

since the set on the right hand side is convex. Hence conv(M ′ ∪ M
′′
) + (C × {0}) ⊆

(M ′+C ′)∩(M
′′
+C ′′) since (C×{0}) = C ′∩C ′′. Conversely, let ν ∈ (M ′+C ′)∩(M

′′
+C ′′).

By definition, there exist (α, β, γ) ∈ M ′, (α, β, γ) ∈ M
′′
, and η, η, τ , τ ∈ R+ such that

ν = (α, β, γ) + (−η,−η, τ) = (α, β, γ) + (−η,−η,−τ ).

Hence, setting τ
τ+τ

= τ

τ+τ
= 1

2
in case τ = τ = 0, we have

ν = τ
τ+τ

((

α, β, γ
)

+
(

−η,−η, τ
))

+ τ

τ+τ

((

α, β, γ
)

+ (−η,−η,−τ )
)

= τ
τ+τ

((

α, β, γ
)

+
(

α, β, γ
))

+
(

−
(

τ
τ+τ

η + τ

τ+τ
η
)

,−
(

τ
τ+τ

η + τ

τ+τ
η
)

, 0
)

,

so ν ∈ conv(M ′ ∪M
′′
) + (C × {0}).

Finally, let Φ = conv(M ′ ∪M
′′
). Then (9) holds, as well as the uniqueness result, by

Lemma 11.

Proof of Theorem 2

Assume X is a strongly regular mixture space and D is a strongly regular domain (see

Section 6 for definitions). Clearly, if there exist a non-empty, compact, and convex set

Θ ⊂ RI
+ and a number γ ∈ R such that (6) holds then F satisfies Setwise Independence of

Irrelevant Alternatives, Interval Pareto Weak Preference, and Weak Determinacy Preser-

vation. Conversely, assume F satisfies these three axioms. Since Setwise Independence

of Irrelevant Alternatives implies Interval Independence of Irrelevant Alternatives, there

then exist a (unique) non-empty, compact, and convex set Θ ⊂ RI
+ and a number γ ∈ R

such that (5) holds. Hence, to complete the proof of the theorem (including the unique-

ness part), it is sufficient to show that (5) can be strengthened to (6).

Since X is strongly non-degenerate, there exists a mixture preserving bijection from

X into some convex subset of some linear space (Mongin, 2001), so we can assume

without loss of generality that X itself is a convex subset of a linear space. Let Z be a

maximal affinely independent subset of X , so that for all x ∈ X there exists a unique

ζx ∈ RZ
+ with only finitely many non-zero components such that

∑

z∈Z ζx(z) = 1 and

x =
∑

z∈Z ζx(z)z. Endow RZ with the product topology, and recall that RX is endowed

with the product topology and P ⊆ RX with the subspace topology, so that P and RZ

are linear topological spaces (Aliprantis and Border, 1999, Lemma 5.1, Theorem 5.2).

Define the function ϕ : P → RZ by, for all u ∈ P , ϕ(u) = u|Z .

Lemma 12. ϕ is a linear homeomorphism.
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Proof. Clearly, ϕ is linear. We now show that ϕ is a bijection. First, let w ∈ RZ

and define the function u ∈ RX by, for all x ∈ X , u(x) =
∑

z∈Z ζx(z)w(z). It is then

easy to see that u ∈ P and that u|Z = w, so that ϕ is surjective. Moreover, for all

u′ ∈ P such that u′|Z = w, we have u′(x) =
∑

z∈Z ζx(z)u
′(z) = u(x) for all x ∈ X

since u′ is mixture preserving and, hence, u′ = u, so that ϕ is injective. Hence ϕ is

bijective and its inverse function ϕ−1 : RZ → P is defined by, for all w ∈ RZ and all

x ∈ X , ϕ−1(w)(x) =
∑

z∈Z ζx(z)w(z). Hence it only remains to prove that ϕ and ϕ−1 are

continuous.

To prove that ϕ is continuous, it is sufficient, by definition of the product topology on

RZ , to prove that for all z ∈ Z and all open subset O of R, ϕ−1(O × RZ\{z}) is an open

subset of P . To this end, note that

ϕ−1(O × RZ\{z}) = {u ∈ P : u(z) ∈ O}

= {u ∈ RX : u(z) ∈ O} ∩ P

=
(

O ∩ RX\{z}
)

∩ P.

Moreover, O ∩ RX\{z} is an open subset of RX by definition of the product topology on

RX , so that ϕ−1(O×RZ\{z}) is an open subset of P by definition of the subspace topology

on P .

To prove that ϕ−1 is continuous, it is sufficient, by definition of the product topology

on RX and of the subspace topology on P , to prove that for all x ∈ X and all open subset

O of R, ϕ((O × RX\{x}) ∩ P ) is an open subset of RZ . To this end, note that

ϕ((O × RX\{x}) ∩ P ) =

{

w ∈ RZ :
∑

z∈Z

ζx(z)w(z) ∈ O

}

= ρ−1(O),

where ρ : RZ → R is defined by, for all w ∈ RZ , ρ(w) =
∑

z∈Z ζx(z)w(z), so that it is

sufficient to show that ρ is continuous. To this end, let Z ′ = {z ∈ Z : ζx(z) 6= 0}, which

is a finite subset of Z by definition, and note that ρ = ρ2 ◦ ρ1, where ρ1 : RZ → RZ′

is defined by for all w ∈ RZ , ρ1(w) = w|Z′ and ρ2 : RZ′

→ R is defined by for all

w′ ∈ RZ′

, ρ2(w
′) =

∑

z∈Z′ ζx(z)w
′(z). Moreover, if RZ′

is endowed with the product

topology then, since Z ′ is finite, ρ1 is continuous by definition of the product topology

and ρ2 is continuous since it is linear, so that ρ is continuous.

Let W denote the set of all non-empty, compact, and convex subsets of RZ . By

Lemma 12, we then have W = {ϕ(U) : U ∈ P} and P = {ϕ−1(W ) : W ∈ W }. Let A =

{(ϕ(Ui))i∈I : (Ui)i∈I ∈ D} ⊆ W I , so that D = {(ϕ−1(Wi))i∈I : (Wi)i∈I ∈ A }. Define the

function B : A → W by, for all (Wi)i∈I ∈ A , B((Wi)i∈I) = ϕ(F ((ϕ−1(Wi)i∈I))), so that

for all (Ui)i∈I ∈ D , F ((Ui)i∈I) = ϕ−1(B((ϕ(Ui))i∈I)). In order to establish (6), it is then
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sufficient to show that, for all (Wi)i∈I ∈ A ,

B((Wi)i∈I) =

(

⋃

θ∈Θ

∑

i∈I

θiWi

)

+ γ. (10)

So fix such a (Wi)i∈I .

Lemma 13. Let W and W ′ be closed subsets of RZ . If W |Z′ = W ′|Z′ for all finite subset

Z ′ of Z then W = W ′.

Proof. Assume W 6= W ′. Then (without loss of generality) there exists w′ ∈ W ′ \ W .

Hence w′ ∈ W c, where W c denotes the complement of W in RZ (which is an open set

since W is closed). Hence, by definition of the product topology, there must exist a finite

subset Z ′ of Z and a collection (Oz)z∈Z′ of open subsets of R such that w′ ∈ O ⊆ W c,

where O = (
∏

z∈Z′ Oz) × RZ\Z′

. By definition of O, it follows that w ∈ O and, hence,

w /∈ W for all w ∈ RZ such that w|Z′ = w′|Z′. Hence w′|Z′ /∈ W |Z′, so W |Z′ 6= W ′|Z′.

By Lemma 13, in order to establish (10), it is sufficient to show that for all finite

subset Z ′ of Z,

B((Wi)i∈I)|Z′ =

((

⋃

θ∈Θ

∑

i∈I

θiWi

)

+ γ

)∣

∣

∣

∣

∣

Z′

. (11)

So fix such a Z ′. Since D is strongly regular, there exist a finite subset Y ′ of X , an

alternative x′ belonging to the relative interior of conv(X ′), where X ′ = Y ′ ∪ Z ′, and a

profile (U ′
i)i∈I ∈ D such that, for all i ∈ I, U ′

i |Z′ = ϕ−1(Wi)|Z′ and U ′
i(x

′) = 0. Hence, by

Setwise Independence of Irrelevant Alternatives, we have

F ((U ′
i)i∈I)|Z′ = F ((ϕ−1(Wi))i∈I)

∣

∣

Z′

= F ((ϕ−1(Wi))i∈I)
∣

∣

Z

∣

∣

Z′

= ϕ
(

F ((ϕ−1(Wi))i∈I)
)∣

∣

Z′

= B((Wi)i∈I)|Z′ .

Moreover, by (5), we have

F ((U ′
i)i∈I)(x) =

((

⋃

θ∈Θ

∑

i∈I

θiU
′
i

)

+ γ

)

(x)

for all x ∈ conv(X ′) and, in particular, F ((U ′
i)i∈I)(x

′) = 0.

Lemma 14. Let X ′ be a finite subset of X and let U, U ′ ∈ P such that U(x) = U ′(x)

for all x ∈ conv(X ′) and U(x′) is a singleton for some x′ belonging to the relative interior

of conv(X ′). Then U |X′ = U ′|X′.
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Proof. By assumption, we have U(x′) = U ′(x′) = {η} for some η ∈ R. Let V = U |X′ ⊂

RX′

and V ′ = U ′|X′ ⊂ RX′

, and suppose V 6= V ′. Then (without loss of generality)

there exists v′ ∈ V ′ \ V . Hence, since V is non-empty, closed and convex, there exists

t ∈ RX′

, t 6= 0, such that
∑

y∈X′ t(y)v′(y) >
∑

y∈X′ t(y)v(y) for all v ∈ V . If t >

0 then the vector x =
∑

y∈X′

t(y)∑
y′∈X′ t(y′)

y belongs to conv(X ′) and we have u′(x) =
∑

y∈X′ x(y)v′(y) >
∑

y∈X′ x(y)v(y) = u(x) for all u ∈ U and, hence, U ′(x) 6⊆ U(x), a

contradiction. Otherwise, note that for all λ ∈ (0, 1) and all v ∈ V ,

∑

y∈X′

(λt+ (1− λ)x′)(y)v′(y) = λ
∑

y∈X′

t(y)v′(y) + (1− λ)
∑

y∈X′

x′(y)v′(y)

= λ
∑

y∈X′

t(y)v′(y) + (1− λ)η

> λ
∑

y∈X′

t(y)v(y) + (1− λ)η

= λ
∑

y∈X′

t(y)v(y) + (1− λ)
∑

y∈X′

x′(y)v(y)

=
∑

y∈X′

(λt+ (1− λ)x′)(y)v(y).

Moreover, x′(y) > 0 for all y ∈ X ′ since x′ belongs to the relative interior of conv(X ′)

and, hence, λt + (1 − λ)x′ > 0 for all λ ∈ (0, 1) sufficiently close to 0. So pick such a λ

and complete the argument as above by defining x =
∑

y∈X′

λt(y)+(1−λ)x′(y)∑
y′∈X′(λt(y′)+(1−λ)x′(y′))

y.

By Lemma 14, we have

F ((U ′
i)i∈I)|X′ =

((

⋃

θ∈Θ

∑

i∈I

θiU
′
i

)

+ γ

)∣

∣

∣

∣

∣

X′

and, hence, since Z ′ ⊆ X ′,

F ((U ′
i)i∈I)|Z′ = F ((U ′

i)i∈I)|X′ |Z′

=

((

⋃

θ∈Θ

∑

i∈I

θiU
′
i

)

+ γ

)∣

∣

∣

∣

∣

X′

∣

∣

∣

∣

∣

Z′

=

((

⋃

θ∈Θ

∑

i∈I

θiU
′
i

)

+ γ

)∣

∣

∣

∣

∣

Z′

=

(

⋃

θ∈Θ

∑

i∈I

θiU
′
i |Z′

)

+ γ

=

(

⋃

θ∈Θ

∑

i∈I

θiWi|Z′

)

+ γ
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=

((

⋃

θ∈Θ

∑

i∈I

θiWi

)

+ γ

)∣

∣

∣

∣

∣

Z′

,

which yields (11) since B((Wi)i∈I)|Z′ = F ((U ′
i)i∈I)|Z′.
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