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Abstract

In the Gordon-Schaefer model (G-S model), widely used to design �sheries man-

agement policy, only resource stock dynamic is considered and carrying capacity is

constant. We propose an extension to the G-S model that incorporates the dynamics

of carrying capacity as an indicator of dynamics of the marine habitats. The study

yields two main �ndings. First, we demonstrate that habitats matter, by showing that

the main outcomes of the G-S model are dramatically modi�ed if habitats are included

in the analysis. Second, through a heuristic model and simulations, we show, for the

�rst time, that our extended model provides an appropriate framework to analyse the

putative contribution of MPAs and ARs. The model presented in this article opens

the way to a better understanding of the bene�ts of MPAs and ARs, as well as other

habitat protection policies.
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1 Introduction

There have been many attempts to preserve �shing resources by various management tools

such as access limitations, quotas, taxes or subsidies. Most of such �sheries management

recommendations stems from the traditional approach to �sheries economics (Clark, 1990,

2006) based on Schaefer (1954) and Gordon (1954). Over the years, it has become obvious

that these tools have not succeeded in avoiding the severe decline of commercial species

and of marine resources in general. Speci�cally, the economics tools do not seem fully

appropriate resource conservation because of the pressure on non-target components of

marine ecosystems (see for example Reiss et al. (2010) on the case of TACs). The incidental

capture of targeted species and other components of the marine ecosystem or "by-catch"

problem, is one of the major issues facing commercial �sheries, since it can a�ect the

structure and function of marine systems at the population, community and ecosystem

levels (Hall et al., 2000).

As a result, not only are most commercial stocks are currently overexploited (Lauck

et al., 1998; Castilla, 2000; FAO, 2006), but entire trophic webs and habitats may be

disrupted at the ecosystem level (Harrington et al., 2005). Recent studies such as Pikitch

et al. (1998), Powers and Monk (1988), or Worm et al. (2006) promote a new vision for

�sheries management. According to them, ecosystem attributes must be integrated into

management and successful management cannot be achieved without a clear understanding

of biological processes at an ecosystem level. A major challenge is to incorporate this new

approach to marine resource management into standard mathematical models traditionally

used in �sheries economics. The standard framework of �sheries economics was developed

from seminal strudies by Schaefer (1954) and Gordon (1954). This model, referred to

as the Gordon-Schaefer model (hereafter, G-S model), has allowed managers to obtain

quantitative recommandations. In this paper, we incorporate into the G-S model ecosystem

concerns such as changes in the habitat of the targeted species of the �shery.

Indeed, following Barbault and Sastrapradja (1995) and Sala et al. (2000), a major

threat to marine biodiversity is habitat degradation. These authors state that, it is not

possible to protect species and their ecological functions without �rst protecting their

habitats. Burke et al. (2000) show that marine areas have endure high levels of habitat

destruction with about one-�fth of marine coastal areas having been highly modi�ed by

humans. For example, coral reefs which support a high �sh species diversity continue to

decline. It is therefore vital to combat marine habitat degradation.
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To this end, new policies have been implemented. In 1992, the European Council

established the "Habitats Directive" 1 which considers the conservation of natural habitats

as one of the essential objectives of general interest pursued by the European Community.

For marine habitats, the directive aims at encouraging the conservation of essential habitats

in order to maintain marine biodiversity in Europe. Some years earlier (1986) a similar

program for the management of marine habitats was developed by the Department of

Fisheries and Oceans of Canada. Its objective was an overall net gain in productive capacity

of marine habitats by means of the active conservation of the current productive capacity

of habitats, the recovery of damaged marine habitats and the development of habitats. To

adress these ecosystem concerns, �sheries management tools like marine protected areas

(hereafter MPAs, see Kar and Matsuda (1998); Sanchirico and Wilen (1999, 2001, 2005))

and arti�cial reefs (hereafter ARs, see Pickering and Whitmarsh (1997); Pickering et al.

(1998)) were developed with the clear objective of supporting �sheries via preserved or

restored ecosystems and habitats.

However, the �eld of �sheries economics o�ers no theoritical support knowledge re-

garding the management of marine habitats. To our knowledge, there has only been one

attempt to integrate habitats into the analysis of optimal �sheries management based on

the G-S model. Holland and Schnier (2006) studied the possibility of implementing an

individual habitat quota system to achieve habitat conservation via economic incentives.

They adapted the G-S model by integrating habitat stock endowed with its own dynamics.

By simulating the model, they investigated the conditions in which an individual habi-

tat quota regime is more cost-e�ective than an MPA. Although, their model establishes

no connection between �sh dynamics and the evolution of habitats. On the other hand,

Naiman and Latterell (2005) clearly state that �sh production is dynamic both on species

and in habitats. Yet there is no framework incorporating this important dimension to

�sheries management.

In this context, therefore the G-S model needs to be adapted. Degradation or improve-

ment of marine habitats must be taken into account to produce new quantitiative �sheries

management recommendations. It is no straightforward, however to incorporate "habitat"

into the G-S model and de�ning "habitat" is actually beyond both the scope of this paper

and the scope of economic theory. We adopt a very rough de�nition of habitat as a speci�c

area or environment in which a plant or a species lives. "Habitat" provides all the basic

1Council Directive 92/43/EEC of 21 May 1992 on the "`conservation of natural habitats and of wild
fauna and �ora".
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requirements for survival. On the other hand, carrying capacity is traditionally interpreted

as a maximal population level that can be supported in a given marine area. It is one of

the determinants of �sh stock dynamics and a major parameter in the G-S model. On

the other hand, Gri�en and Drake (2008) have found that carrying capacity is in�uenced

by habitat size and quality and is correlated with extinction time: larger habitats support

populations with higher carrying capacities; higher quality habitats support populations

with higher carrying capacities (see also Pimm et al. (1988); Hakoyama et al. (2000)). The

evolution of an area's carrying capacity results from that of marine habitats present in the

area and it can be stated that there is a positive relationship between habitat and carrying

capacity; if habitat in a marine area improves (degrades), so does carrying capacity in the

marine area. Thus, carrying capacity can be considered as depending on natural habitat

rehabilitation processes or man-made habitat rehabilitation processes (for example ARs)

and on habitat alterations due to natural processes or induced by �shing.

Here, therefore we propose an extension to the G-S model that incorporates the dynamics

of "habitats" through the dynamics of carrying capacity in a single-species model.

Carrying capacity now cease to be a parameter and becomes a state variable endowed

with its own dynamics in our model. In this �rst approach, we assume that carrying

capacity dynamics depends entirely on habitat dynamics. The latter assumption is clearly

too simple to model the complex processes occurring in actual marine ecosystems2. Yet

it allows us to address the question of �sheries management at ecosystem level with a

relatively simple model design and to obtain some signi�cant results. In particular, we

demonstrate that ignoring habitat dynamics can lead to inappropriate design of �sheries

management tools. Bionomic equilibria and optimal harvest policies are explored in the

following sections using analytic models and computer simulation models that explicitly

incorporate dynamics of habitat via carrying capacity dynamics.

In the next section we present our new model incorporating habitat dynamics. In

section 3 biological and bionomic equilibrums are characterized and Maximum Sustainable

Yield (MSY) is determined in this new framework. In section 4 the problem of optimal

management is addressed and Maximum Sustainble Yield (MSY) and Maximum Economic

Yield (MEY) are calculated in the model. In section 5, we build a heuristic model that

allows us to compare �sheries indicators as MEY and MSY between our model and G-S

2There are many studies about the relationship between habitats and abundance (Gratwicke and
Speight, 2005). Habitats and particularly their complexity are foundamental to explain species rich-
ness and abundance. The workshop on "`Economics and biological impacts of ARs"' organized by "`Aix
Marseille University"' in 2010 addresses this issue.
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model. Then, by means of simulations, we study the use of various management tools

like "open access", optimal mangement, MPAs, ARs, gear restrictions, with both models.

Finally, we conclude and discuss future perspectives.

2 The model

We begin by describting the G-S model. We then detail how the model is extended so that

habitat concerns can be taken into account in the analysis of optimal �sheries management,

as explained section 3.

2.1 Gordon-Schaefer model

Following Schaefer (1954), the biomass x of a given �sh species obeys the following equa-

tion:

ẋ = F (x)−H(x,E) (1)

where F (x) is the natural growth rate of the �sh population while H(x,E) is the harvest

rate.

The standard assumptions on the above functions are as follows (Clark, 1990):

H(x,E) = qxE where q is a constant parameter called the catchability coe�cient and E

is a variable called the �shing e�ort. More generally, the harvest function can be written

as H(x,E) = vρ(t)E with v catchability coe�cient per unit of density and ρ(t) referred to

as the mean density. When ρ(t) is proportional to x(t), we get the standard Schaefer model.

F (x) = rx
(
1− x

K

)
with r the intrinsic growth rate and K the area's environmental car-

rying capacity or saturation level for a given �sh species. The function F is called logistic

law. It was �rst formulated by Verhulst in 1838 in order to study population growth and

assumes that growth is limited by the availability of resources like light, space, nutrients

or water. In this context, the population increases at rate r up to a given K, the environ-

mental carrying capacity.

In the context of �shery, resources for growth are provided by marine habitats that

shelter �sh and provide means of survival. In line with this, any degradation of habitats

induced by �shing gear and resulting in disturbance of one (or more) of their functions
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implies a decline in the area's carrying capacity for a given �sh species (Turner et al.,

1999).3 Conversely, resources and habitat can be improved through implementation of

policies like MPAs or ARs, leading to increased carrying capacity.

2.2 Incorporating habitat considerations

In Gordon-Schaefer model, it is assumed that �shing activities only degrade the resource.

However, as explained above, certain �shing gears also deteriorate marine habitats. Since

habitats are linked to the parameter K, the �shers employing that kind of gears are also

expected to impact the carrying capacity K of the marine area. We hence modify the G-S

model by considering K as a state variable endowed with its own dynamics as follows:

K̇ = D(K)−G(E,K) (2)

where D(K) is the growth rate of carrying capacity K driven by habitat rehabilitation

and G(E,K) is the loss rate of K induced by habitat degradation. Since �shing has a

considerable e�ect on the habitat and thus on the carrying capacity K of the concerned

area, we focus on this aspect of habitat degradation.

D(K) is assumed to re�ect the growth of the fauna and �ora populations in the habitats

on which the targeted �sh species is ecologically dependent. The function D(K) embodies

not only natural recovery of habitats but also arti�cial recovery through policies such as

ARs and creation of new habitats as MPAs. A marine area being limited, it cannot support

an in�nite quantity of �sh and thus its carrying capacity is bounded by an upper limitKmax.

In the same manner, habitat degradation signi�es any alteration of habitats by natural

processes or, of particular relevance here, through poor management. It is well known

that some �shing techniques, like trawling, compromise habitat functions required for �sh

survival. Habitat degradation a�ects carrying capacity through the function G(E,K).

Using equation (2), di�erent situations can be depicted via the choice of functions D

and G. For example, G = 0 represents being forced to use habitat-friendly �shing methods,

or the absence of �shing in the marine area in question. In these cases, marine habitats

recover and an area's carrying capacity can increase to its maximum Kmax. Similarly, if

degradation processes are stronger than natural or arti�cial restoration of habitats, i.e.

G > D, carrying capacity can fall to almost zero and �sh can disappear from the area.

3We simplify by a�rming that damaging habitats in�uences only the carrying capacity of the area.
Decline in �sh quality is a possible consequence of such agressive �shing and, as a result, its market price
also decreases.
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2.3 Extended Gordon-Schaefer model

In our model, two state variables x and K are considered, each endowed with its own

dynamics:

ẋ = F (x,K)−H(x,E,K), (3)

K̇ = D(K)−G(E,K) (4)

with initial conditions x(0) = x0,K(0) = K0 and where functions F and H are as follows:

F (x,K) = rx
(
1− x

K

)
, (5)

H(x,E,K) = vE
x

K
(6)

In this extension to the G-S model, the link between the dynamics of �sh biomass and

the dynamics of habitats is taken into account by means of carrying capacity (see Figure

1). By damaging the habitats located in the area, �shing impacts carrying capacity and

hence disturbs the natural growth rate of �sh populations. Furthermore, the design of the

extended model re�ects that harvests depend on �sh density subject to both �sh stock

dynamics and carrying capacity dynamics. The density ρ(t) is here de�ned as the ratio
x(t)
K(t) . It should be noted here that in the Schaefer equation, lower stock level implies lower

harvest. With (6), we maintain this interpretation but express it in terms of density. For a

given level of �sh stock and a given level of �shing e�ort, higher carrying capacity implies

lower mean density and hence lower harvests via the catchability coe�cient per unit of

density v.

2.4 Basic speci�cation

In this section we specify the functions of the model (3)-(4) and describe variable behavior

in this model.

To get straight comparisons with the G-S model, we start by assuming that D obeys

the logistic law and G has a form similar to that of harvest function H, then

ẋ = rx
(
1− x

K

)
− vEx

K
(7)
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Figure 1: This scheme illustrates connexions between di�erent components of the model.

It shows the role of marine habitats in the behaviour of �sh populations and hence in the

formation of the economic pro�t of �shery.

K̇ = τK

(
1− K

Kmax

)
− γEK (8)

where τ is the growth rate of K driven by habitat recovery (or "growth"), γ is the loss

rate of K due to habitat alteration caused by aggressive �shing and Kmax is the area's

maximum possible carrying capacity.

Let us state the main characteristics of the model (7)-(8). Note that the assumptions

concerning the dynamics of carrying capacity are interpreted from the perspective of habi-

tats because, as noted previously, they are supposed to entirely determine the behavior of

K.

1) Properties of the natural growth rate of �sh population F (x,K):

(1a) F has a parabolic shape and ∂2F
∂x2

< 0; Given K, the population grows up to K,

the saturation level.

(1b) ∂F
∂K > 0 and (1c) ∂2F

∂K2 < 0;

According to (1b), �sh biomass grows faster in a marine area with larger carrying

capacity. This means that higher availability of habitats encourages �sh reproduction.

(1c) indicates that the contribution of K to �sh biomass growth rate F decreases as K
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increases.

2) Properties of the harvest function H(x,K,E):

(2a) ∂H
∂x > 0, (2b) ∂H

∂E > 0 and (2c) ∂H
∂K < 0;

H can be interpreted as a production function with constant returns to scale, with E

and x the "factors of production". (2a) and (2b) are the usual conditions : the output

increases with increasing inputs E and x. (2c) can be interpreted as follows: for a given

level of �sh stock x and a given level of �shing e�ort E, higher carrying capacity leads to

a lower mean density of �sh, which is why it is more di�cult to catch them.

3) Properties of the carrying capacity growth rate D(K):

(3a) D has a parabolic shape and ∂2D
∂K2 < 0;

Since habitat recovery corresponds to the growth of plant and animal communities,

on which the �sh species in question is ecologically dependent, it is relevant to adopt the

same assumptions as for the �sh growth rate F . There is a certain level of these plant

and animal populations beyond which their growth rate decreases due to environmental

saturation4.

4) Properties of the loss rate G(K,E) of the area's carrying capacity:

(4a) ∂G
∂K > 0 and (4b) ∂G

∂E > 0;

For G we adopt the same assumptions as for the harvest function H. (4a) means

that larger habitats, and hence greater carrying capacity, provide more opportunities for

habitats to be impacted by �shing, which implies higher losses in K. In the same vein,

(4b) states that the higher the �shing pressure E on habitats, the more serious the damage

in�icted on them and thus the higher the losses in K.

3 Equilibrium analysis

3.1 Biological equilibrium with harvesting

Equilibria are determined and behavior of steady-states is analyzed. For this purpose, let

us consider that the �shing e�ort E is a parameter and analyze the solution of the system

of equations ẋ = K̇ = 0. Then the steady states of (7)-(8) are x∗1 = 0, x∗2 = K∗ − v
rE

and K∗1 = 0, K∗2 = Kmax(1 − γ
τE). However, K∗1 is not acceptable because of the form

of the harvest function H. Hence system (7)-(8) has only two steady states (x∗1,K
∗
2 ) and

(x∗2,K
∗
2 ). The �rst one is trivial and we focus on the positive equilibrium point (x∗2,K

∗
2 ).

4One of the reasons of saturation is that any marine area is geometrically limited. We assume that this
saturation threshold can be expressed in terms of carrying capacity.
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We now look at the behavior of the system at the steady state. To do this, the system

of equations (7)-(8) is linearized at (x∗2,K
∗
2 ). Then, we write the Jacobian of the system

V (x∗2,K
∗
2 ) =

(
vE
K∗2
− r r − vE

K∗2

0 γE − τ

)
.

Due to the condition of positivity of x∗2 andK
∗
2 , we obtain negative eigen values

vE
K∗2
−r <

0 and γE − τ < 0. As a result, (x∗2,K
∗
2 ) is locally asymptotically stable.

The behavior of the model at the steady state depends on the �shing e�ort E. If no

�shing takes place, i.e. E = 0, for non zero initial carrying capacity and �sh stock, both

attain their maximum x∗ = Kmax, K
∗ = Kmax. Fish stock and carrying capacity are

positive at the steady state if the e�ort E < Kmax/(
γKmax

τ + v
r ).

As we can see, the level of �sh stock x at equilibrium depends on the area's carrying

capacity K. It increases with K and can collapse if e�ort E is such that E = rK
v . Thus,

for higher K, higher e�ort can be applied without leading to a total shortage of the �sh

population. Conversely, for lower K, lower e�ort can result in �sh collapse. Furthermore,

in addition to the usual constraint of �sh stock positivity E < rK
v , the �shing e�ort must

be su�ciently low to keep the carrying capacity above zero, i.e. E < τ
γ , in order to avoid

a shortage of �sh in the area.

The above analysis demonstrates that incorporating the dynamics of carrying capacity

provides a powerful tool to address the issue of �sheries conservation. Through its equilib-

rium behavior, the model exhibits such features of marine ecosystems as the potential for

�sh stock to collapse because of the destruction of habitats leading to decreased carrying

capacity. Thus, the biological and the economic arguments justifying habitat conservation

become obvious. The resource cannot be preserved without protecting habitats.

3.2 Biological and economic over�shing

Following Gordon (1954), under open access the �shing e�ort E increases while the eco-

nomic rent is positive because additional �shing units are attracted to the �shery. When

the rent is negative, some �shing units withdraw from the �shery, reducing the level of

e�ort. Hence, in the open-access �shery e�ort tends to reach the bionomic equilibrium

where the rent dissipates.

Here the economic rent R is represented by the following function:

R(x,K,E) = p
vEx

K
− cE (9)
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where p is the constant price per unit of harvested �sh and c is the constant cost per unit

of e�ort. Price p and cost c are exogenous.

The bionomic equilibium is attained at

x∞ = cK∞
pv , K∞ = Kmax/

(
1 + rγKmax

τv (1− c
pv )
)
and

E∞ = KM

(
1− c

pv

)
/
(
v
r +

γKM
τ

(
1− c

pv

))
.

As in the G-S model, the e�ort E∞ leading to rent dissipation depends on the economic

parameters of the �shery p, c and catchability coe�cient v as well as on the intrinsic �sh

growth rate r. However, in our model and as expected, it also depends on the parameters

τ and γ describing the dynamics of carrying capacity. Parameters c and γ are negatively

related to E∞ whereas p, r, τ and Kmax are positively related to it.

Clearly, in the model incorporating habitat considerations, equilibrium stock level and

equilibrium e�ort di�er from those in the G-S model . Other things being equal, for a higher

rate of habitat rehabilitation (implying higher τ), higher e�ort E∞ can be supported by

the �shery at equilibrium. Similarly, a higher habitat degradation rate leads to lower E∞.

There is hence a strong link between habitat and �shing e�ort. Let us propose the following

framework to compare the standard G-S model and our extension. The carrying capacity

in the G-S model is taken to be the initial condition in our extended G-S model. It is

noted as K0. The density function is supposed to take the following form: ρ(t) = x(t)/K0.

In our variation of the G-S model, this de�nition of carrying capacity corresponds to the

initial carrying capacity K(0) = K0. In our notations, the e�ort at bionomic equlibrium

calculated on the basis of the G-S model can be written as EGS∞ = r
vK0(1− c

pv ). Comparing

it with e�ort that we obtained with the extension, it is easy to see that our model predicts

that the rent dissipates at a lower e�ort than that stated by the G-S model. Supposing

that our formalization of the �shery better describes the functionning of real ecosystems,

Gordon's recommendation to limit the access to the resource by EGS∞ is not su�cient to

avoid the dissipation of the rent.

It is well known that bionomic equilibrium describes the situation of economic over�sh-

ing in which an excessive level of e�ort leads to a zero rent situation, although it can be

positive for lower e�ort levels (Clark, 1990). Another type of overexploitation addressed

in Clark (1990) is the biological over�shing that occurs if the level of �sh stock is lower

than the Maximum Sustainable Yield (MSY). Given K and for any given level of �sh stock

x below K, there is a level of harvest H such that H = F (x) and H can be harvested

in perpetuity without altering the stock level. MSY is achieved for the population level

11



x where the function F reaches its maximum. By de�nition, HMSY = maxF (x). These

conclusions are now discussed in our model. In this case, sustainable harvest H(x∗2,K
∗
2 , E)

is maximized at

xMSY = KMSY − v
rEMSY ,

KMSY = Kmax

√
v/
(
rγKmax

τ + v
)
,

EMSY = τ
γ

(
1−

√
v/
(
rγKmax

τ + v
))

.

Similarly to the G-S model, the e�ort level that maximizes the sustainable harvest

depends only on parameters speci�c to �sh stock and to carrying capacity dynamics. Note

also that the level of carrying capacity at which MSY is attained is not its maximum Kmax.

This result is not suprising because KMSY trades o� posititive impact of K on harvest

function H via �sh stock x and its negative relation to �sh concentration. On the other

hand, the MSY recommendation calculated on the basis of the G-S model is to exert the

e�ort EGSMSY = rK0
2v . Since the model does not take into account the evolution of habitats,

i.e. parameterK0 is considered as constant, no recommendations are given regarding area's

carrying capacity. As a result, if K0 is lower than KMSY , then the MSY in the sense of

our model is not achieved and the resource faces biological overexploitation. Conversely, if

K0 is higher than KMSY the �sh stock stabilizes at a level higher than xMSY .

This result is very important, because it illustrates how MSY based on the G-S model

could overestimate the capacity of the resource to support �shing activities. This is consis-

tent with the widely observed failure of current management tools using MSY which stems

from the G-S model to preserve �sheries, and underlines the need to integrate habitats into

the design of management plans, as put forward by many recent studies (see for instance

Naiman and Latterell (2005)).

4 Optimal harvesting

MSY guarantees the absence ofbiological over�shing. However, it does not guarantee that

the resource is not economically overexploited. We hence search for optimal harvesting

policy that maximizes the total discounted net revenues of a �shery.

4.1 Economic interpretation of necessary optimality conditions

Consider a sole owner for this �shery (government agency or private �rm), having complete

knowledge of and control over the �sh population. According to economic theory, the owner
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of the resource seeks to maximize the total discounted present value of economic pro�ts.

In our framework, we get the following optimization problem:

Max
06E6EM

J{E} =
∞∫
0

e−δtR(x,E,K)dt (10)

ẋ = F (x,K)−H(x,E,K),

K̇ = D(K)−G(E,K),

x(0) = x0,

K(0) = K0

where E is a control variable and δ denotes the discount rate.

Integration of the dynamics of carrying capacity into the model provides new insight

into the interpretation of the objective functional. The owner of the resource takes into

account, among other things, the degradation of habitats caused by aggressive �shing

through the dynamics of carrying capacity, when he decides on e�ort policy. Economic

pro�t is now determined not only via the usual two factors, E and x, but also via a new

factor, potentially impacting pro�ts, K.

Optimal �sheries management can be viewed as a problem of optimal strategy for

investment in assets in order to maximize the pro�tability of the �shery. In this case, the

objective of the resource owner is interpreted in terms of capital assets. He expects the

asset to earn dividends. Contrary to the G-S model, here there are two capital assets - �sh

stock and carrying capacity - where the latter in�uences the former 5. In order to solve

this maximization problem, we build its Hamiltonian:

H(x,K, t, E, λ, µ) = R(x,K,E) + λ(F (x,K)−H(x,K,E)) + µ(D(K)−G(K,E)), (11)

where, as usual, λ(t) can be interpreted as the shadow price of a �sh "in the sea" and µ(t)

as the shadow price of the carrying capacity of the marine area.

Three terms on the right side of the expression (11) are value �ows: the �rst denotes

the �ow of pro�ts at time t in the objective functional J ; the second can be viewed as the

investment �ow in the �sh stock x at time t ; the last term is a new one and denotes the

�ow of investment in carrying capacity K at time t. Thus the Hamiltonian H(.) represents
the total rate of increase of pro�ts and of both capital assets.

5The possibility of the inverse is not taken into account in our model.
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Along with the two capital assets, two types of production are involved in the Hamil-

tonian H. First, �shing units "produce" �sh by harvesting. Second, they accidentally

"remove" a certain number of habitats due to agressive �shing (for instance, removal or

scattering of non-target benthos in the case of bottom-�shing gear). Since removal of

habitat substrate, fauna or �ora reduces carrying capacity, we can speak of "removal" of

carrying capacity. The �rst is a product that can be sold on the market, whereas the

second can be viewed almost as a bycatch.

Thus, the optimal control E(t) must maximize the rate of increase of total assets.

Given the linear form of the harvest and cost functions (see equations (6) and (9)), the

Hamiltonian (11) depends linearly on E with coe�cient

σ = p
∂H

∂E
− c− λ∂H

∂E
− µ∂G

∂E
(12)

referred to as the switching function. In this case three solutions for E are possible: either

the extremes 0 or EM , or an interior solution E∗. When σ is positive, i.e. the shadow

prices λ and µ are su�ciently low, there should be as much �shing as possible. When σ is

negative, i.e. the shadow prices λ and µ are su�ciently high, there should be no �shing.

When σ is nul, the control E should be set at its �singular value� E∗.

With respect to this, by the Pontryagin conditions, we have :

λ̇ = δλ− ∂H
∂x

= δλ− p∂H
∂x
− λ

(
∂F

∂x
− ∂H

∂x

)
, (13)

µ̇ = δµ− ∂H
∂K

= δµ− p∂H
∂K
− λ

(
∂F

∂K
− ∂H

∂K

)
− µ

(
∂D

∂K
− ∂G

∂K

)
. (14)

For singular control we obtain:

(p− λ)∂H
∂E

= c+ µ
∂G

∂E
. (15)

This equation states that the last unit of e�ort is such that the net value of the marginal

product (its market price if caught minus its shadow price if uncaught) equals marginal

user cost. The marginal user cost consists of the marginal cost of e�ort and the cost due

to damaging marine habitats (shadow value of "removed" carrying capacity).

Write (13) and (14) as:

(p− λ)∂H
∂x

+ λ̇ = δλ− λ∂F
∂x

, (16)

14



(p− λ)∂H
∂K

+ µ̇ = δµ− λ ∂F
∂K
− µ

(
∂D

∂K
− ∂G

∂K

)
. (17)

The left-hand side of the expression (16) is the marginal net payo� from an uncaught

�sh i.e. the value of the marginal product of a �sh in the sea plus gains from �sh capital.

The right-hand side is the marginal net cost of an uncaught �sh i.e. the "�nancial cost" of

an uncaught �sh minus (plus) the value of "appreciation" (depreciation) at the "biological

own rate of interest".

In the same manner, the left-hand side of (17) is recognized as the marginal net payo�

from the carrying capacity not impacted by �shing. The right-hand side is the marginal

net cost. There are four terms describing user costs:

• "�nancial cost" of not "removing" carrying capacity,

• plus (minus) value of depreciation (appreciation) of �sh capital,

• plus (minus) value of depreciation (appreciation) of carrying capacity capital,

• plus (minus) value of marginal increase (decrease) of carrying capacity loss rate in-

duced by �shing.

To summarize, taking habitats into consideration through carrying capacity results

in a more complex optimization problem. The regulator has to �nd a tradeo� not only

between pro�ts from a �sh being caught and the ensuing loss in �sh capital, but also

between economic bene�ts derived from damaging habitats and loss of carrying capacity

capital.

4.2 Optimal steady state

We seek now to characterize steady state in this optimal problem. In view of the model

speci�cation (7)-(8), the Hamiltonian (11) is rewritten as:

H =
(pvx
K
− c
)
E + λ

(
rx
(
1− x

K

)
− vEx

K

)
+ µ

(
τK

(
1− K

Kmax

)
− γEK

)
. (18)

The switching function and co-state equations are as follows:

σ =
pvx

K
− c− λvx

K
− µγK; (19)
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λ̇ =

(
δ − r + 2rx

K
+
vE

K

)
λ− pvE

K
; (20)

µ̇ =

(
δ − τ + 2τK

Kmax
+ γE

)
µ−

(
rx2

K2
+
vEx

K2

)
λ+

pvEx

K2
. (21)

Since, with more than one state equation, the Pontryagin conditions are considerably

more complicated, we focus attention on the interior equilibrium solution. We hence equal-

ize state, costate and switching equations to zero:

ẋ = 0 =⇒ x = K − vE

r
; (22)

K̇ = 0 =⇒ K = Kmax

(
1− γE

τ

)
; (23)

λ̇ = 0 =⇒ λ =
pvE/K

δ + f
; (24)

µ̇ = 0 =⇒ µ =
λx

K

(
r − δ − f
δ + g

)
; (25)

pvx

K
− c− λvx

K
− µγK = 0, (26)

where f = −
(
∂F
∂x −

F
x

)
= rx

K and g = −
(
dD
dK −

D
K

)
= τK

Kmax
.

The expression (22) represents the standard condition of sustainable yield H that can

be harvested while maintaining a �xed population level x. In similar way, equation (23)

describes sustainable a amount G of carrying capacity that can be lost while maintaining

a �xed level K.

It is obvious that the shadow price λ is strictly positive. If E < rK
q (condition of

�sh stock positivity), meaning that a �sh in the sea has a nonzero value. Therefore, the

regulator is incited to invest in the resource's future productivity and not to harvest all the

�sh instantaneously. The positivity of µ is not as obvious: it depends on the relationship

between parameters r, δ and f . The holder of carrying capacity capital is incited to invest

in it if r > δ + f . If δ > r, which means in simple language that money-in-the-bank at

interest rate δ grows faster (or at the same rate) than a �sh in the sea. This makes the

option of �shing at the risk of decreasing the carrying capacity of the marine area more
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attractive than trying to avoid losses in carrying capacity for future pro�ts.

By virtue of (24) and (25), the equation (26) is rewritten as

x

(
1− vE/K

δ + f
− γE(r − δ − f)

(δ + f)(δ + g)

)
=
cK

pv
. (27)

When the future is entirely discounted so that δ = +∞, the equation (26) simpli�es

to x = cK
pv , which corresponds to the dissipation of economic rent. It also can be veri�ed

that the case of δ = 0 where future revenues are weighted equally with current revenues

corresponds to the maximization of sustainable rent. Moreover both x∗ and K∗ satisfying

(27) decrease with increasing δ toward x∞ and K∞ respectively. Our problem therefore

possesses an equilibrium solution verifying the necessary Pontryagin conditions.

After some calculations we get

x∗ = Kmax −
(
v

r
+
γKmax

τ

)
E∗, (28)

K∗ = Kmax

(
1− γE∗

τ

)
, (29)

λ∗ =
pvE∗

Kmax(δ + r)−
(
v − γKmax

τ (δ + r)
)
E∗

, (30)

µ∗ =
λ∗x∗

K∗

(
vE∗/K∗ − δ
δ + τ − γE∗

)
, (31)

where E∗ is a root of the following polynomial of degree 3:

a0E
3 + a1E

2 + a2E + a3 = 0, (32)

with

a0 = −γ[(rγKmax + τv)2 − rγKmax
c
pv (δγKmax + rγKmax + τv)];

a1 = (rγKmax + τv)(δ2γKmax + τ(3rγKmax + 2τv) + δ(2τv + γKmax(r + τ)))−
−rγKmax

c
pv (δ

2γKmax + τ(3rγKmax + 2τv) + δ(τv + γKmax(r + 3τ)));

a2 = τKmax[r
c
pv (2δ

2γKmax + τ(3rγKmax + τv) + δ(2rγKmax + 3τγKmax + τv)) −
(3rτ(rγKmax + τv) + δ2(2rγKmax + τv) + δ(2rγKmax(r + τ) + τv(3r + τ)))];

a3 = rτ2K2
max (δ + r) (δ + τ)

(
1− c

pv

)
.
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The term a3 is positive due to the natural constraint of nonnegative sustainable eco-

nomic rent that is sati�ed for c
pv < 1. Thus�for any set of parameters such that a0 < 0, we

can guarantee that this polynomial has at least one positive root. Imposing negativity on

a0 means constraining the ratio c
pv by some upper bound i.e.

c
pv <

(rγKmax+τv)2

rγKmax(δγKmax+rγKmax+τv)
.

The equation (32) can have up to three real positive solutions, one of which is the

optimal singular control. It is not easy to interpret the equilibrium solution from an

economic point of view. Furthermore, it seems to be di�cult to determine the optimal

approach path, unlike the one-dimensional model for which the optimal transition is the

most rapid approach path. What we do know is that it consists of bang-bang (when the

control variable takes on its extreme values) and singular controls. In Appendix A, we

calculate optimal steady state solution for a given set of model parameters (their values

are presented in Table 1). We give results for three di�erent values of discount rate δ (see

Table 3). In this numerical example, we obtain a unique solution to (22)-(26).

5 What the simulations reveal?

This section presents results obtained using an heuristic model to simulate6 our extended

G-S model that permits habitats to be taken into account. The values of model parameters

are given in Table 1.

In the �rst simulation we observe what happens when recommendations yielded by

G-S model such as MSY and MEY are applied in the framework of the extended model

(see Table 2). The goal of the second simulation is to show how the extended G-S model

provides an appropriate framework to explore ecosystem based management tools more

speci�cally MPAs ans ARs.

Simulations take equations (7)-(8) as baseline model.

ẋ = rx
(
1− x

K

)
− vEx

K
, (33)

K̇ = τK

(
1− K

Kmax

)
− γEK (34)

where x(0) = x0 and K(0) = K0

6Simulations were performed via the modelling environment ModelMaker.
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Table 1: Model parameters.
Ecological parameters Value Unit

r 0, 5 year−1

τ 0, 01 year−1

γ 0, 00001 year−1

Kmax 5000000 kg

Economic parameters Value Unit

p 15 euros

c 100 euros per unit of e�ort

v 20 year−1 per unit of density

n 0, 0001 year−1

Initial conditions Value Unit

x0 200000 kg

K0 500000 kg

E0 170 vessel-days

Table 2: E�ort levels corresponding to di�erent reference points.
Reference point G-S model Extended G-S model

Bionomic equilibrium EGS∞ = 8333 E∞ = 988
Maximum Sustainable Yield EGSMSY = 6250 EMSY = 910
Maximum Economic Yield EGSMEY = 4198 EMEY = 891

When we assume open access to a �shery, we need to describe the dynamics of e�ort to

implement simulations. For the sake of interpretation, the open access �shery is depicted

here by the dynamic model of Smith (1968) which links the entry and exit of �shing units

to the level of pro�tability, here R = (pvxK − c)E. Then the e�ort dynamics is as follows:

Ė = n
(pvx
K
− c
)
E, (35)

where n is an adjustment parameter and E(0) = E0 is initial e�ort. The model of Smith

replicates the main result of Gordon (1954) namely that the economic rent dissipates at

equilibrium if access is not regulated.

5.1 Do habitats matter?

A �rst set of simuations compare how "Open Access" scenario works with the extended

G-S model (equations (7), (8) and (38)) and with the standard G-S model (equations

(7) and (38)). At equilibrium, the stock and the carrying capacity in the extended G-S

model (green curves) are lower than in the G-S model (red curves), as depicted in Figure
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2. Although this result is rather technical since it arises from introducing in the model

the possibility that the �shers decrease carrying capacity when they are �shing, it is yet

based on real observations that carrying capacity declines when the �shers deteriorate the

habitats. In light of this, we argue that habitats do matter and a policy conceived without

taking into account this component of a marine ecosystem could be irrelevant.

Figure 2: Open access: G-S model vs. Extended G-S model

Indicators such as MSY and MEY, which are guidelines for �sheries management,

need to be carefully determined in order to design e�cient management tools. They are

usually based on the G-S model, where habitat issues are omitted. Suppose, as we claim,

that habitats do matter; then by using the extended G-S model that integrates carrying

capacity dynamics, we can expect to obtain a better description of the behavior of marine

ecosystems and �shery dynamics. We show below that sticking to the G-S framework will

result in ecosystem and �shery collapses because of the excessive �shing e�ort produced

by the model.

First e�ort levels EGSMSY and EGSMEY corresponding to MSY and MEY, are determined

from the G-S model (see Table 2); second we calculate EMSY and EMEY relying on the

extended framework of G-S model developed herein (see Table 2). We use the parameter

values in Table 1 and formulas from the previous sections. Figure 3 illustrates the behavior

of the system when e�ort is restricted to MSY e�ort level. Recall that, theorically, this

e�ort level leads to a level of catch that can be harvested in perpetuity without altering the

stock of the resource. Thus, the level of �shing e�ort is taken as constant and equals EGSMSY

for the red curve and EMSY for the green curve. Three trajectories are simulated: �sh
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stock, carrying capacity and economic pro�t. As expected, all three trajectories described

by green curves converge to calculated equilibrium levels (see Table 3). Conversely, the

red curves portray the collapse of the system driven by excessive �shing pressure. The

same reasoning is applicable to MEY (see Figure 4). If the "true" model is the extended

G-S model, applying EGSMEY does not imply maximization of pro�ts but quite the contrary:

pro�t decrease sharply until it becomes negative.

Figure 3 and Figure 4 show that leaving habitat considerations out of the analysis

leads to considerably overestimated of MSY and MEY and therefore to resource collapse.

If such recommendations are used in the design, for example, of a TAC regime, the limits

for TACs will be several times the acceptable amount. Thus, even with TACs, �sh stock

and �sheries risk rapid depletion and collapse.

Figure 3: Maximum Sustainable Yield: G-S model vs. Extended G-S model.
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Figure 4: Maximum Economic Yield: G-S model vs. Extended G-S model.

5.2 Solving the problem of habitat management

Consider a marine area with poor habitats. In the extended G-S model, poor habitats can

be interpreted by low initial level of carrying capacity, denoted asK(0). In order to preserve

the resource and its associated �shery, recommendations may include MPAs, gear zoning

or area rotation depending on particular gear and habitat type (Guillén et al., 1994). The

use of ARs has also been suggested as a way to prevent trawling which greatly damages

marine habitats (see for instance, Jennings and Kaiser (1998), Turner et al. (1999)) or

to favor reproduction of �sh populations by providing means of survival (Pickering and

Whitmarsh, 1997). This wide range of policies could not previously be properly assessed

on the basis of the G-S model. Yet their assessment becomes possible using the extended

model developed herein.
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In the present paper, the following policies are considered: gear restriction, MPAs, ARs

and optimal �sheries management (as described in the previous section). All of them focus

on preserving both �shery pro�tability and the marine ecosystem. For resource managers,

combining both objectives is the main characteristic of sustainable management.

5.2.1 Gear restriction

One way to respect the marine environment is to forbid the use of aggressive �shing gear.

From this perspective, we understand by gear restriction the use of habitat-frendly tech-

niques which have no negative impact on marine habitats. Gear restriction policy can be

enforced by immersing ARs of protection that prevent the use of aggressive �shing tech-

niques such as bottom trawling. In the open access �shery, we propose to model the impact

of habitat-frendly techniques by adapting model (7)-(8) and (38) in the following manner

(the second part of equation (8) disappears, i.e. loss rate G = 0):

ẋ = rx
(
1− x

K

)
− vEx

K
, (36)

K̇ = τK

(
1− K

Kmax

)
, (37)

Ė = n
(pvx
K
− c
)
E, (38)

where x(0) = x0, K(0) = K0 and E(0) = E0.

Our benchmark is what we have called the baseline model (equations (7), (8) and (38)).

Under gear restriction the carrying capacity of the area increases until Kmax (green curve

in Figure 5). In the short term, we observe higher economic pro�t than in the situation

where no gear restriction is put into place (red curve). However, in the long term, the rent

dissipates, as expected in the open access �shery. Yet, �sh stock and carrying capacity

do better than in the absence of gear restriction. Moreover, the area can support higher

�shing e�ort, since the techniques employed are habitat-friendly and, thereby, have no

impact on habitats.

5.2.2 Is it necessary to manage access to ARs?

ARs of production are usually implemented in marine areas with highly disturbed habitats.

By providing additional means for �sh survival, they are expected to enhance the area's
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Figure 5: Open access vs. Gear restriction.

carrying capacity and �sh stock. These controversial issues obviously need to be addressed

in collaboration with marine biologists, as organized in the workshop at the University

of the Mediterranean (Marseille) in 2010. Here, for the sake of simplicity, let us assume

that ARs of production are immersed and their e�ect on the area's carrying capacity is

instantaneous. We also assume that it is possible to estimate what size, quantity and

structure of ARs will lead to instantaneous increase in carrying capacity such that K(0) =

K∗, the optimal steady state level determined in the previous section taking discount rate

δ = 0, 01 (see Table 3 in Appendix A).

Three scenarios are simulated in this subsection:

1. Benchmark still described by the baseline model (7)-(8) and (38) with initial condi-

tions K(0) = K0, x(0) = x0 and E(0) = E0;
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2. ARs under open access modelled by equations (7)-(8) and (38) but whereK(0) = K∗,

x(0) = x0 and E(0) = E0;

3. ARs with regulated access modelled by equations (7)-(8) but where K(0) = K∗,

x(0) = x0 and E(0) = E∗.

Fish stock, carrying capacity, �shing e�ort and economic pro�t are the indicators ob-

served. Their trajectories are presented in Figure 6.

When open access (red curve) and ARs under open access (green curve) are compared,

several points emerge. Fish stock and carrying capacity increase in the short term in the

latter scenario, followed by a decrease, so that the curve joins the red one. These mo-

mentary ecological bene�ts yielded by ARs open up pro�table opportunities for expanding

�shing e�ort further than with the open access scenario. This is one of the negative e�ects

from immersion of ARs without appropriate management. Very similar e�ect is also re-

vealed for MPAs (for instance, see Boncoeur et al. (2002)) which lose their positive impact

when �shing e�ort is not regulated.

In the third scenario we set the initial �shing e�ort to its optimal steady state level,

i.e. E(0) = E∗ throughout simulation (blue line). We also set initial condition on carrying

capacity to its optimal level K(0) = K∗. Under these conditions, we simulate stock, carry-

ing capacity and pro�t dynamics. Since we start with optimal steady state level, carrying

capapcity remains at the same level K∗ throughout the simulation. At the beginning of

the simulation, �sh stock and pro�t increase and converge to their steady state level (see

Table 3 in Appendix A). As expected, this scenario leads to higher long-term pro�ts than

previous scenarios (the blue curve is higher than the red and green ones). This policy also

results in a better ecological situation as measured by �sh stock and carrying capacity,

than previous scenarios.

This simple analysis supports the claim of Pickering and Whitmarsh (1997) that the

ecological and economic bene�ts of ARs are short-term and dissipate in the long term,

which illustrates the need to manage access to ARs areas.

5.3 Capturing the full e�ects of MPAs

The large body of literature on MPAs is based on the G-S model. However, MPAs are

expected not only to increase �sh biomass but also to favor the recovery of habitats located

within their boundaries. While the �rst e�ect may be captured by the G-S model, the e�ect
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Figure 6: Open access vs. ARs under open access vs. ARs under optimal steady state

e�ort.

of habitat conservation on �sh reproduction may not. In contrast, the extended G-S model

is able to give a better idea of what happens at the ecosystem level (see Figure 7)7.

Figure 7 shows the interaction between �sh stock dynamics and carrying capacity re-

vealed by the extended G-S model and its absence in the G-S model. It is precisely this

e�ect that we set out to capture.

6 Conclusion

First, it has been demonstrated that habitats matter since, the main outcomes of the G-

S model are dramatically modi�ed if habitat dynamics is included in the analysis. This

7To model MPA policy, we set e�ort E to 0.
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Figure 7: No-take zone: G-S model vs Extended G-S model.

result is consistent with the claims of marine biologist and marine managers that habitat

deterioration is one of the most important factor in the decline of �sheries in many areas

in the world. From this point of view, our extended G-S model should be more relevant

to the design �shery policies. Second, through a heuristic model and simulations, we have

shown how the extended G-S model provides a better understanding of common habitat

protection policies like MPAs and ARs. This new model allows policy makers to set targets

in terms of optimal amount of carrying capacity necessary to maximize thz pro�ts derived

from a �shery. Equilibrium analysis comparing standard �shery indicators such as resource

stocks and �shing e�ort associated with MSY and MEY reveals how important habitats

are. More precisely, we �nd that �shing e�ort associated with MSY and MEY, calculated

from G-S model are systematically higher than those calculated from the extended G-S

model. Thus, if habitats are indeed signi�cantly impacted by �shing activities, we can

conclude that �shery policies like TACs, where allowable catch levels are determined using

the G-S model, systematically permits more harvesting than the ecosystem can support.

This misspeci�cation of e�ort and catch may explain why some resource stocks and their

associated �sheries have collapsed. Similar misspeci�cations are found at biological and

bionomic equilibria.

To guide policymakers in the design of habitat protection policies for optimal �sheries

management, some analytical results are given herein. They imply the existence of optimal

levels for both carrying capacity and �shing e�ort. Information on those levels could help

managers to design sustainable marine policies, by taking into account both ecosystem
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and �shery pro�tability. Such policies could well include MPAs and ARs which have

been applied worldwide as a means of habitat rehabilitation and protection. But they are

controversial both extensively debated and extensively used.

The extended G-S model provides �rst theoretical support for implementing these

ecosystem-based management tools because it o�ers an appropriate framework for analysing

the economic bene�ts of MPAs and ARs. In others words, it explain why the Habitat Di-

rective recommendations make sense.

Moreover, this framework allows us to distinguish between the e�ects of ARs and

those of MPAs. In constrast to existing models, our model clearly establishes the relative

e�ectiveness of both policies in habitat protection and shows how they achieve it.

With MPAs, �sh and habitat are protected by eliminating �shing pressure in protected

areas. With Ars, �sh and habitat conservation are ensured through the creation of new

habitats.

It is true that for the purposes of this study, we have adopted certain simplifying

assumptions. While biologists themselves argue the existence of a link between habitat

and carrying capacity, the latter is likely to be weaker than we suppose in this study where

we have assumed that they are interchangeable. Further studies could well challenge this

view, adding to the debate among biologists about production and concentration e�ects of

ARs.

To study the concentration e�ect a patchy model in which resource stock will be able to

move from one patch to another is required. Nevertheless, we have established a framework

allowing �sheries management to be analyzed at ecosystem level. The extended G-S model

we present here could be adapted to integrate heterogeneity of habitats and �sh stocks by

extending to going towards spatial and multi-species models.
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8 Appendix A

Level of �sh stock, carrying capacity and e�ort at bionomic equilibrium, MSY and optimal

steady state are summarized in Table 3. It also conveys the impact of discount rate δ on

the optimal level of e�ort E∗. Recall that from previous sections, we know that optimal

steady state e�ort is positively related to discount rate: the more the resource manager is

concerned about future bene�ts (lower δ), the lower e�ort he applies. According to Table

3, �sh stock and carrying capacity are negatively related to discount rate: their equilibrium

values increase as δ decreases and approach the MEY level. Conversely, when δ increases,

the optimal steady state coverges toward bionomic equilibrium.
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Table 3: Reference points and optimal values provided by the extended G-S model.
Bionomic equilibrium Value Unit

x∞ 19763 kg

K∞ 59289 kg

E∞ 988 vessel-days

Maximum Sustainable Yield Value Unit

xMSY 409005 kg

KMSY 445442 kg

EMSY 911 vessel-days

Optimal steady state and control δ = 0 Value Unit

x∗ 508822 kg

K∗ 544466 kg

E∗ 891 vessel-days

Optimal steady state and control for δ = 0, 005 Value Unit

x∗ 170904 kg

K∗ 209230 kg

E∗ 958 vessel-days

Optimal steady state and control for δ = 0, 05 Value Unit

x∗ 77423 kg

K∗ 116491 kg

E∗ 977 vessel-days
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