Skip to Main content Skip to Navigation
Journal articles

A model of regulatory burden in technology diffusion: the case of plant-derived vaccines

Abstract : Plant-derived vaccines may soon displace conventional vaccines. Assuming there are no major technological barriers undermining the feasibility of this innovative technology, it is worthwhile to generate quantitative models of regulatory burden of producing and diffusing plant-derived vaccines in industrialized and developing countries. A dynamic simulation model of technology diffusion—and the data to populate it—has been generated for studying regulatory barriers in the diffusion of plant-derived vaccines. The role of regulatory burden is evaluated for a variety of scenarios in which plant-derived vaccines are produced and diffused. This model relates the innovative and conventional vaccine technologies and the effects of the impact of the uptake of the innovative technology on mortality and morbidity. This case study demonstrates how dynamic simulation models can be used to assess the long-term potential impact of novel technologies in terms of a variety of socio-economic indicators.
Document type :
Journal articles
Complete list of metadata
Contributor : Céline Bérard Connect in order to contact the contributor
Submitted on : Friday, September 17, 2010 - 9:01:59 PM
Last modification on : Thursday, September 2, 2021 - 8:14:03 AM


  • HAL Id : halshs-00519045, version 1


David Castle, Kira Kumagai, Céline Bérard, Martin Cloutier, Richard Gold. A model of regulatory burden in technology diffusion: the case of plant-derived vaccines. AgBioforum, University of Missouri, 2009, 12 (1), pp.108-118. ⟨halshs-00519045⟩



Record views