J. M. Bilbao and P. Edelman, The Shapley value on convex geometries, Discrete Applied Mathematics, vol.103, issue.1-3, pp.33-40, 2000.
DOI : 10.1016/S0166-218X(99)00218-8

G. Birkhoff, Lattice theory, 1967.
DOI : 10.1090/coll/025

E. Calvo, J. Lasage, and A. Van-den-nouweland, Values of games with probabilistic graphs, Mathematical Social Sciences, vol.37, issue.1, pp.79-95, 1999.
DOI : 10.1016/S0165-4896(98)00013-4

G. Choquet, Theory of capacities. Annales de l'Institut Fourier, pp.131-295, 1953.

C. Deverdì-ere and Y. , Spectres de graphes, Collection S.M.F, 1998.

N. Deo, Graph theory with applications to engineering and computer science, 1974.

P. G. Doyle and J. L. Snell, Random walks and electric networks, 1984.
DOI : 10.5948/UPO9781614440222

URL : http://arxiv.org/abs/math/0001057

P. Dubey, A. Neyman, and R. J. Weber, Value Theory Without Efficiency, Mathematics of Operations Research, vol.6, issue.1, pp.122-128, 1981.
DOI : 10.1287/moor.6.1.122

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA066489

U. Faigle, Cores of games with restricted cooperation. ZOR ? Methods and Models of Operations Research, pp.405-422, 1989.

U. Faigle and W. Kern, The Shapley value for cooperative games under precedence constraints, International Journal of Game Theory, vol.25, issue.3, pp.249-266, 1992.
DOI : 10.1007/BF01258278

M. Grabisch and F. Lange, Games on lattices, multichoice games and the shapley value: a new approach, Mathematical Methods of Operations Research, vol.146, issue.1, pp.153-167, 2007.
DOI : 10.1007/s00186-006-0109-x

URL : https://hal.archives-ouvertes.fr/halshs-00178916

M. Grabisch, J. L. Marichal, and M. Roubens, Equivalent Representations of Set Functions, Mathematics of Operations Research, vol.25, issue.2, pp.157-178, 2000.
DOI : 10.1287/moor.

URL : https://hal.archives-ouvertes.fr/hal-01194919

A. Honda and M. Grabisch, Entropy of capacities on lattices and set systems, Information Sciences, vol.176, issue.23, pp.3472-3489, 2006.
DOI : 10.1016/j.ins.2006.02.011

URL : https://hal.archives-ouvertes.fr/hal-00179852

Y. A. Hwang and Y. H. Liao, Potential approach and characterizations of a Shapley value in multi-choice games, Mathematical Social Sciences, vol.56, issue.3, pp.321-335, 2008.
DOI : 10.1016/j.mathsocsci.2008.06.001

C. Labreuche, Interaction indices for games with forbidden coalitions In: 9th int. conf. on Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp.529-534, 2002.

R. B. Myerson, Graphs and Cooperation in Games, Mathematics of Operations Research, vol.2, issue.3, pp.225-229, 1977.
DOI : 10.1287/moor.2.3.225

L. S. Shapley, A value for n-person games, Contributions to the Theory of Games, pp.307-317, 1953.

R. Van-den-brink, G. Van-den-laan, and V. Pruzhansky, Harsanyi power solutions for graph-restricted games. Tinbergen Institute Discussion Paper, 2004.

R. J. Weber, Probabilistic values for games The Shapley Value, pp.101-119, 1988.

H. P. Young, Monotonic solutions of cooperative games, International Journal of Game Theory, vol.18, issue.3, pp.65-72, 1985.
DOI : 10.1007/BF01769885