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ABSTRACT

Data warehouses and OLAP (Online Analytical Praogggrovide tools to explore
and navigate through data cubes in order to eximgatesting information under different
perspectives and levels of granularity. Nevertrel€d AP techniques do not allow the
identification of relationships, groupings or extieps that could hold in a data cube. To that
end, we propose to enrich OLAP techniques with datang facilities to benefit from the
capabilities they offer.

In this paper, we propose an on-line environmentrfiming association rules in data
cubes. Our environment, call@.EMAR(On-Line Environment for Mining Association
Rules), is designed to extract associations frortidimensional data. It allows the extraction
of inter-dimensionahssociation rules from data cubes accordingsiana-based aggregate
measurea more general indicator than aggregate valumsaded by the traditional COUNT
measure. In our approach, OLAP users are ablaewe dmining process guided by a meta-
rule which meets their analysis objectives. In &ddj the environment is based on a
formalization which exploits aggregate measura®visit the definition of the support and
the confidence of discovered rules. This formaiaratlso helps evaluate the interestingness
of association rules according to two additionadlgy measuredLift andLoevinger
Furthermore, in order to focus on the discoverasmeations and validate them, we provide a
visual representation based on ¢inaphic semiologyrinciples. Such a representation
consists in a graphic encoding of frequent pattantsassociation rules in the same
multidimensional space as the one associated hatimined data cube. We have developed
our approach as a component in a general on-liakysia platform, calledliningcubes
according to a\priori-like algorithm, which helps extract inter-dimensab association

rules directly from materialized multidimensionaiustures of data. In order to illustrate the
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effectiveness and the efficiency of our proposa&,amalyze a real-life case study about breast
cancer data and conduct performance experimentatitire mining process.
Keywords: Data warehouses, OLAP, data cubes, guided minie¢g-rules, association

rules, visualization.
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INTRODUCTION

Data warehousing and OLAP (Online Analytical Preoeg) technologies have
gained a widespread acceptance since the 90supparsfor decision making. A data
warehouse is a collection of subject-oriented,grdated, consolidated, time-varying and non-
volatile data (Kimball, 1996; Inmon, 1996). It ismpulated through OLAP tools which offer
visualization and navigation mechanisms of multielrsional data views, commonly called
data cubes

A data cube is a multidimensional representati@dus view data in a warehouse
(Chaudhuri & Dayal, 1997). The data cube contéacssor cellsthat havaneasuresvhich
are values based on a set of dimensions whered&aeimsion usually consists of a set of
categorical descriptors, callattributesor membersConsider for example $ales
application where the dimensions of interest majuie, CostumeyrProduct Location and
Time If the measure of interest in this applicatiothissales amounthen an OLAP fact
represents the sales measure corresponding tgla siember in the considered dimensions.
A dimension may be organized into a hierarchy.iRstance, the location dimension may
form the hierarchgity - state-> region Such dimension hierarchies allow different levels
of granularity in the data warehouse. For examgptegioncorresponds to a high level of
granularity whereas @ity corresponds to a lower level. Classical aggregatidLAP
considers the process of summarizing data valuesdwng from a hierarchical level of a
dimension to a higher one. Typically, additive data suitable for simple computation
according to aggregation functions (SUM, AVERAGEAK] MIN and COUNT). For
example, according to such a computation, a usgraibserve the sum of sales of products

according to year and region.
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Furthermore, with efficient techniques developedcfamputing data cubes, users
have become widely able to explore multidimensialzh. Nevertheless, the OLAP
technology is quite limited to an exploratory tasid does not provide automatic tools to
identify and visualize patterns (e.g., clusterspammtions) of huge multidimensional data.

In order to enhance its analysis capabilities, voppse to couple OLAP with data
mining mechanisms. The two fields are complementang associating them can be a
solution to cope with their respective limitatio@LAP technology has the ability to query
and analyze multidimensional data through exploratwhile data mining is known for its
ability to discover knowledge from data. The gehmsue of coupling database systems with
data mining was already discussed and motivatddhiglinski and Mannila (1996). The
authors state that data mining leads to new clggleim the database area, and to a second
generation of database systems for managing KD\{#adge Discovery in Databases)
applications just as classical ones manage busomess More generally, the association of
OLAP and data mining allows elaborated analysikst@xceeding the simple exploration of
data. Our idea is to exploit the benefits of OLAT @aata mining techniques and to integrate
them in the same analysis framework. In spite efftict that both OLAP and data mining
were considered two separate fields for a whilees recent studies showed the benefits of
coupling them.

In our previous studies, we have shown the poteoitieoupling OLAP and data
mining techniques through two main approaches.fitsirapproach deals with the
reorganization of data cubes for a better repratientand exploration of multidimensional
data (Ben Messaoud, Boussaid & Loudcher, 20063 .approach is based on multiple
correspondence analysis (MCA) which allows the troicson of new arrangements of
modalities in each dimension of a data cube. Sueloanization aims at bringing together

cells in a reduced part of the multidimensionakspand hence giving a better view of the
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cube. Our second approach constructs a new OLARmpdor data clustering, call€&pAC
(Ben Messaoud, Boussaid & Loudcher, 2006b), whedbaised on the agglomerative
hierarchical clustering (AHC).

In this paper, we present a third approach whish &dllows the general issue of
coupling OLAP with data mining techniques but cansehe mining of association rules in
multidimensional data. In (Ben Messaoud, LoudcBeyssaid & Missaoui, 2006), we have
proposed a guided-mining process of associati@srial data cubes. Here, we enrich this
proposal and establish a complete On-Line Envirarirfog Mining Association Rules
(OLEMAR. In fact, it consists of a mining and visualipatipackage for the extraction and
the representation of associations from data culreslitionally, with OLAP analysis, we are
used to observe summarized facts by aggregatimgnigasures according to groups of
descriptors (members) from analysis dimensionse Heith OLEMAR we propose to use
association rules in order to better understansetisemmarized facts according to their
descriptors. For instance, we can note from a gilaa cube that sales sleeping bagsre
particularly high in a given city. Current OLAP tealo not provide explanations of such
particular fact. Users are generally supposed pioes the data cube according to its
dimensions in order to manually find an explanafmma given phenomenon. For instance,
one possible interpretation of the previous examplesists in associating salesstédeping
bagswith thesummer seasacandyoung tourist costumers

In the recent years, many studies addressed the tdperforming data mining tasks
on data warehouses. Some of them were specificadiyested in mining patterns and
association rules in data cubes. For instance, kanitan and Chiang (1997) state that it is
important to explore data cubes by using assoaatite algorithms. Further, Imiékki,
Khachiyan, and Abdulghani (2002) believe that OLiARlosely interlinked with association

rules and shares with them the goal of findinggrat in the data. Goil and Choudhary (1998)
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argue that automated techniques of data miningraee OLAP more useful and easier to
apply in the overall scheme of decision supportesys. Moreover, cell frequencies can
facilitate the computation of the support and thefilence, while dimension hierarchies can
be used to generate multilevel association rules.
OLEMARIs mainly based on a mining process which explpossible relationships
of data by extractinguter-dimensionahssociation rules from data cubes (i.e., ruleschin
from multiple dimensions without repetition of premtes in each dimension). This process is
guided by the notion ahter-dimensional meta-rulevhich is designed by users according to
their analysis needs. Therefore, the search otadsm rules can focus on particular regions
of the mined cube in order to meet specific analgbiectives. Traditionally, the COUNT
measure corresponds to the frequency of facts. Mwless, in an analysis process, users are
usually interested in observing multidimensiondbdand their associations according to
measures more elaborated than simple frequenaiesirlapproach, we propose a redefinition
of the support and the confidence to evaluatertezastingness of mined association rules
whenSUM-basedneasures are used. Therefore, the support anatifidence according to
the COUNT measure become particular cases of awargkedefinition. In addition to support
and confidence, we use two other descriptive caitgift andLoevinge) in order to evaluate
the interestingness of mined associations. Thetiarare also computed faum-based
aggregate measures the data cube and reflect interestingnesssd@ations in a more
relevant way than what is offered by support andfidence.
The mining algorithm works in lottom-upmanner and is an adaptation of &piori
algorithm (Agrawal, Imieliski, and Swami, 1993) to multidimensional datas klso guided
by user's needs expressed through the meta-rkés tiato account a user selected measure in
the computation of the support and the confideand,provides further evaluation of

extracted association rules by uslify andLoevingercriteria.
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In addition to the mining process, the environnmadgd integrates a visual tool which
aims at representing the mined frequent patterdsteextracted association rules according
to an appropriate graphical encoding based ogiiehic semiologyrinciples of Bertin
(Bertin, 1981). The peculiarity of our visualizatioomponent lies on the fact that association
rules are represented in a multidimensional spaeesimilar way as facts (cells).

This paper is organized as follows. In the secauticn, we define the formal
background and notions that will be used in theised he third section presents the key
concepts of our approach for mining inter-dimenal@ssociation rules: the concept of inter-
dimensional meta-rule; the general computatioruppsrt and confidence based on OLAP
measures; and criteria for the advanced evaluafiomned association rules. The fourth
section deals with the visualization of the minegi-dimensional association rules while the
fifth section provides the implementation of thelme mining environment and describes our
algorithm for mining inter-dimensional associatiifes. In the sixth section, we use a case
study about mammaographies to illustrate our findingpile the seventh section concerns the
experimental analysis of the developed algorithmthé eighth section, we present a state of
the art about mining association rules in multidigienal data. We also provide a
comparative study of existing work and our own jsa. Finally, we conclude this paper

and address future research directions.

FORMAL BACKGROUND AND NOTATIONS

In this section, we define preliminary formal coptseand notations we will use to
describe our mining process. L&t be a data cube with a non empty setioflimensions

D={D,,...,D;,...,D,} and a non empty set of measuMs We consider the following

notations:
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= Each dimensiorD, D has a non empty set of hierarchical lev@ls.

. H‘j is the | (j = 0) level hierarchical level irD, . The coarse level db,,

denotedH ), corresponds to its total aggregation leAtt] For example, in
Figure 1, dimensio&hop(D,) has three levelill, Continent andCountry.
TheAll level is denotedH,, theContinentlevel is denotedH,, and the
Countrylevel is denotedH };

= H, is the set of hierarchical levels of dimensibn where each IevelH} UH;
consists of a non empty set of members dend{ed-or example, in Figure 1,
the set of hierarchical levels &, is H, :{Hj, HZ, H22}={AII, Family,
Article}, and the set of members of tAeticle level of D, is A,, ={iTwin,

iPower, DV-40Q EN-70Q aStar, aDreanj.

Figure 1. Example of Sales data cube

D; (Shop)
Hy  Hi Hy
3 USA
% o<
E Canada
<
5 France
s |
All E Italy
|Spain | _Hls
, 2005 =
= India 2004 .\’&@
z (W 2003 &
apan W02 gt
T R EE L T ®
X & _
Continent 3 E ; ; 3 g H; -
- v S
Country é V \/ \O/ Article
& Desktop Laptop  MP3 H12
) -
) All Hg Family



OLEMAR

10
Definition 1. (Sub-cube)

Let D'00 D be a non empty set pfdimensionétDl,..., Dp} from the data cub€
(p<d). Thep-tuple (©,,...,0,) is called a sub-cube d@ according toD" iff

0i O{1,..., p}, ©, 2@ and there exists a unigjeuch thato, 0 A, .

As defined above, a sub-cube according to a sgineénsionsD’ corresponds to a
portion from the initial data cub€ . It consists in setting for each dimension fr@ha non
empty subset of member values from a single hibreatlevel of that dimension. For
example, consideD':{Dl, Dz} a subset of dimensions from the cube of Figu(e],0,) =
(Europe {EN-70Q aStar, aDreany) is therefore a possible sub-cube Gnaccording toD’,
which is displayed by the grayed portion of theeubthe figure. Note that the same portion

of the cube can be defined differently by consigthe sub-cubed,,0,,0,) = (Europe
{EN-70Q aStar, aDreant, All) according toD ={D,,D,,D.}.
One particular case of the sub-cube definitionhemvit is defined orC according to

D'={D,....,D,} and0i O{1,...,d}, ©, is a single member from the finest hierarchicaéle
of D, . In this case, the sub-cube corresponds to a@eibm C. For example, the black cell

in Figure 1 can be considered as the sub-cidygaf) iTwin, 2002 on C according to

D ={D,,D,,D.}. Each cell from the data cul represents an OLAP fact which is evaluated

in O according to one measure fravh. In our proposal, we evaluate a sub-cube according
to itssum-based aggregate measureich is defined as follows:
Definition 2. (Sum-based aggregate measure)

Let (©,,...,0,) be a sub-cube 0@ according toD'[1 D . The sum-based aggregate
measure of sub-cub&,...,© ) according to a measuid UM , notedM(0,,...,0,), is the

SUM of measuré of all facts in the sub-cube.
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For instance, theales turnovepf the grayed sub-cube in Figure 1 can be evaluaye
its sum-based aggregate measure according to pesskonTurnovefEurope {EN-70Q
aStar, aDreant), which represents the SUM of tisales turnoveralues contained in grayed
cells in theSalescube.
Definition 3. (Dimension predicate)

Let D, be a dimension of a data cube. A dimension prégligain D, is a predicate
of the form<aD A > :

A dimension predicate is a predicate which takdsr@ension member as a value. For
example, one dimension predicateln of Figure 1 can be of the foram, = <aD A > =
(aO{America Europe Asid}) .

Definition 4. (Inter-dimensional predicate)

Let D'0 D be a non empty set i dimensionétDl,..., Dp} from the data cub€

(2= p<d).(a,0...0Oa,) is called an inter-dimensional predicateDh iff Ui D{l..., p}, a,
is a dimension predicate iD, .
For instance, let consid®'={D,,D,} a set of dimensions from the cube of Figure 1.

An inter-dimensional predicate can be of the fo(ta; 0 A,),(a, 0 A,,)) . An inter-

dimensional predicate defines a conjunction of repetitive predicates, i.e., each dimension

has a distinct predicate in the expression.

THE PROPOSED MINING PROCESS

As mentioned earlier, our mining process consis($) iexploiting meta-rule templates
to mine rules from a limited subset of a data cyiperevisiting the definition of support and

confidence based on the measure values, (iii) wmiivgnced criteria to evaluate
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interestingness of mined associations, and (ivp@song arApriori-based algorithm for

mining multidimensional data.

Inter-Dimensional Meta-Rules
We consider two distinct subsets of dimensionfiendata cub& : (i) D, U D is a
subset ofp context dimension®\ sub-cube orC according toD. defines the context of the

mining process; and (iip, [ D is a subset adnalysis dimensionsom which predicates of

an inter-dimensional meta-rule are selected. Aeridimensional meta-rule is an association
rule template of the following form:

In the context @,,...,0,)

(0,0...0a.)=(8,0...08) (1)

where ©,,...,0,) is a sub-cube o according toD,. . It defines the portion of cube
C to be mined. Unlike the meta-rule proposed in (kamHan & Chiang, 1997), our
proposal allows the user to target a mining corlgxtientifying the sub-cubed;,...,0,) to
be explored. Note that in the case wHgn= @&, no particular analysis context is selected.
Therefore, the mining process covers the whole ¢@ibe

We note thatdk {1,..., s} (respectivelyTk O{1,...,r}), a, (respectivelys,) is a
dimension predicate in a distinct dimension fr@m .

Therefore, the conjunctiofe, ... Oa,)0(8, 0... 04, ) is an inter-dimensional
predicate inD ,, where the number of predicatfsst r) in the meta-rule is equal to the
number of dimensions iD , . We also note that our meta-rule defines a noetitye

predicate association rules since each analysisrdiian is associated with a distinct

predicate. For instance, suppose that in additdhe three dimensions displayed in Figure 1,
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the Salescube contains four other dimensioRsofile (D, ), Profession( D), Gender(Dy),
andPromotion(D,). Let consider the following subsets from B&esdata cube:
D.={D,,D,} = {ProfessionGende}, and D ,={D,,D,,D,} = {Shop Product Timg. One

possible inter-dimensional meta-rule scheme is:

In the context$tudentFemalg
(a, OContinen} O(a, OYean = (a, 0 Article) (2)

According to the above inter-dimensional meta-raksociation rules are mined in the
sub-cube $tudentFemalg which covers the population of sales concernergdle students.
The dimension®rofile andPromotiondo not interfere in the mining process. Dimension

predicates inD, and D, are set in the body of the rule whereas the dimarmedicate in
D, is set in the head of the rule. The first dimengicedicate is set to tl@ontinentlevel of
D,, the second one is set to thearlevel of D,, and the third dimension predicate is set to

theArticle level of D,.

Measure-Based Support and Confidence

Traditionally, as it was introduced in (Agrawal,igfinski & Swami, 1993), the
support (PP of an association rulX =Y, in a database of transactions s the
probability that the population of transactionsteams bothX andY . The confidence
(ConF) of X =Y is the conditional probability that a transactamtainsY given that it
already containsX . Rules that do not satisfy user provided minimumpp®rt Minsupp and
minimum confidencenfinconj thresholds are considered uninteresting. A sulsaidarge,
or frequent if its support is no less thaminsupp In addition, a rule is sastrongif it

satisfies bottminsuppandminconf
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In the case of a data culi®, the structure of data facilitates the mining of
multidimensional association rules. The aggregatees needed for discovering association
rules are already computed and store@ inwhich facilitates calculus of the support and the
confidence and therefore reduces the testing anflltéring time. In fact, a data cube stores
the particular COUNT measure which represents prepuited frequencies of OLAP facts.
With this structure, it is straightforward to cdlate support and confidence of associations in
a data cube based on this summary informationirfSteince, suppose that a user needs to
discover association rules according to meta-2jiel§ this case one association rule can be

R : Americall2004=> Laptop. The support and confidence Bf are computed as follows:

COUNT(Americg Laptop2004 All, StudentFemaleg All)

Sup =
AR) COUNT(AII, All, All, All, StudentFemale All)

COUNT(America Laptop2004 All, StudentFemale All)
COUNT(America All,2004 All, StudentFemaleg All)

ConK(R)=

Note that, in the previous expressions, the sugpespectively the confidence) is
computed according to the frequency of units ofsfda@sed on the COUNT measure. In other
words, only the number of facts is taken into actda decide whether a rulelege
(respectivelystrong or not. However, in the OLAP context, users aeally interested to
observe facts according to summarized values osurea more expressive than their simple
number of occurrences. It seems naturally sigmtita compute the support and the
confidence of multidimensional association rulesoading to the sum of these measures. For
example, consider a fragment from the previsakessub-cube $tudentFemalg by taking
once the COUNT measure and then the SUM os#hes turnovemeasure. Table 4 (a) and
Table 4 (b) sum-up views of these sub-cube fragsmémthis example, for a selected
minsupp some itemsets atarge according to the COUNT measure in Table 4 (a),rede

they are not frequent according to the SUM ofdalkes turnovemeasure in Table 4 (b), and
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vice versaFor instance, with minsupp= 0.2, the itemsets (<America>, <MP3>, <2004>)
and (<America >, < MP3>, <2005>) dezge according to the COUNT measure (grayed
cells in Table 4 (a)); whereas, these itemsetsatrkarge in Table 4 (b). Théarge itemsets
according to the SUM of the profit measure areeatkEurope>, <Laptop>, <2004>) and
(<Europe>, <Laptop>, <2005>).
Table 5. Fragment of the Sales cube accordingeqd@) COUNT measure and the (b) SUM

of the sales turnover measure

2004 2005
America Europe America Furope
Desktop 1,200 800 950 500
Laptop 2,500 2,700 2,800 3,200
MP3 10,600 5,900 11,400 9,100
(a)
2004 2005
America Furope America Furope
Desktop $ 60,000 % 33,000 $ 28,000 $ 10,000
Laptop $ 500,000 | & 567,000 $ 420,000 $ 544,000
MP3 $ 116,000 | $ 118,000 $ 57,000 $ 91,000
(b)

In the OLAP context, the rule mining process neéedsandle any measure from the
data cube in order to evaluate its interestingnBsstefore, a rule is not merely evaluated
according to probabilities based on frequencidads, but needs to be evaluated according
to quantity measures of its corresponding factetter words, studied associations do not
concern the population of facts, but they ratherceon the population of units of measures of
these facts. The choice of the measure closelydispen the analysis context according to
which a user needs to discover associations withia. For instance, if a firm manager needs
to see strong associations of sales covered bg\athiprofits, it is more suitable to compute
the support and the confidence of these assocsatiased on units of profits rather than on
units of sales themselves. Therefore, we defineneigl computation of support and

confidence of inter-dimensional association rulesoading to a user defined (sum-based)
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measureM from the mined data cube. Consider a generalRuldich complies with the
defined inter-dimensional meta-rule (1):

In the context @,,...,0,)
(x, O0...0x.)=(y, O...0y,)

The support and the confidence of this rule aresfioee computed according to the

following general expressions:

SupR(R)= MO % Yar 1 Y0 Oy O Al Al -
M(All,...,All,©,,...,0,,Al,...,Al)
CONK(R) = M (X0 X Vi er Y2 O, ©, Al Al @

M(X,.... %, All,...,All,0,,...,0, All,..., All)
where M (X;,..., %, Yis--+, ¥, ©s,..., O, All,..., All) is the sum-based aggregate

measure of a sub-cube. From a statistical poimtent, the collection of facts is not studied
according to frequencies but rather with respetiéounits of mass evaluated by the OLAP
measureM of the given facts. Therefore, an association Xile> Y is consideredhrge if

both X andY are supported by a sufficient number of the unfitheasureM. It is important to
note that we provide a definition of support andfaence which generalizes the traditional
computation of probabilities. In fact, traditiorslpport and confidence are particular cases of
the above expressions which can be obtained b@@éNT measure. In the above
expressions, in order to insure the validity of naw definition of support and confidence,

we suppose that the measies additive and has positive values.

Advanced Evaluation of Association Rules

Support and confidence are the mostly known meadarehe evaluation of
association rule interestingness. These measurégaedements of alpriori-like

algorithms (Agrawal, Imiefiski & Swami, 1993) which mine association ruleshstiat their
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support and confidence are greater than user defimesholds. However, they usually
produce a large number of rules which may not terésting. Various properties of
interestingness criteria of association rules Hsaen investigated. For a large list of criteria
the reader can refer to (Lallich, Vaillant & Len@®05; Lanca, Vaillant & Lallich, 2006).
Let consider again the association ride X =Y which complies with the inter-
dimensional meta-rule (1), whed¢ = (x, O...0Ox, apdY =(y, U...0y,) are conjunctions
of dimension predicates. We also consider a usignatemeasur®d from data cub€. We

denote byP, (respectively,R,, P,,) the relative measuid of facts matchingC
(respectivelyy, X andY) in the sub-cube defined by the instan€g,(..,© ) in the context
dimensionsD. . We also denote b, =1- P, (respectivelyP, =1-R,) the relative

measureM of facts not matching (respectivelyy), i.e., the probability of not having

(respectivelyy). The support oR is equal toP,, and its confidence is defined by the ratio

By which is a conditional probability, denotdy},, , of matchingyY given thatX is already
X

matched.
_ MO XAl AL, O, Al All
X M(AI,...,All0,,...,0,,Al,...,Al)
_M(AIL...,AllLY,,....Y,,0,,...,0,,Al... Al
YT M(ANLLLAILG,,...,0,,All..., All)
P =SUPH(R) = M (X5 es X6, Yareos Vi s O, O, Al Al
X M(Al,...,All0,,...,0,,All...,All)
M (X, s X Vinee s Ve O, © L AL Al
Py/x :CONF( R) — (Xl Xs yl yr 1 p )

M (X,.... %, All,...,All©y,...,0,, All,..., All)

There are two categories of frequently used eviainafriteria to capture the

interestingness of association ruldescriptivecriteria andstatisticalcriteria. In general, one
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of the most important drawbacks of a statisticakdon is that it depends on the size of the
mined population (Lallich, Vaillant & Lenca, 200%). fact, when the number of examples in
the mined population becomes large, such a critdoses its discriminating power and tends
to take a value close to one. In addition, a stediscriterion requires probabilisticapproach
to model the mined population of examples. Thigaagh is quite heavy to undertake and
assumes advanced statistical knowledge of usershugnot particularly true for OLAP
users.

On the other hand, descriptive criteria are easyséoand express interestingness of
association rules in a more natural manner. Inapgproach, in addition to support and
confidence, we add two descriptive criteria for @valuation of mined association rules: the
Lift criterion (LIFT) (Brin, Motwani & Silverstein, 1997) and the Loeger criterion (IOEV)
(Loevinger, 1947). These two criteria take the petelence of itemse¥andY as a

reference, and are defined on rRlas follows:

P _ SUPAR)

LIFT(R) =
I:)XF)Y I:)XF)Y

LOEV(R) = PWXP— R _ CONF(PR) -R

Y Y

The Lift of a rule can be interpreted as the desiaof the support of the rule from the
expected support under the independence hypotbesigeen the bod} and the headl
(Brin, Motwani & Silverstein, 1997). For the ruR the Lift captures the deviation from the
independence of andY. This also means that the Lift criterion represehe probability
scale coefficient of having Y whefoccurs. For example J#T(R) = 2 means that facts
matching with X have twice more chances to matah Wi As opposed to the confidence,
which considers directional implication, the Liftettly captures correlation between botly

and its head. In general, greater Lift values indicate strongggociations.
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In addition to support and confidence, the Loevingéerion is one of the oldest used
interestingness evaluations for association rules\inger, 1947). It consists in a linear
transformation of the confidence in order to enleahcThis transformation is achieved by

centering the confidence dd and dividing it by the scale coefficieR . In other words, the

Loevinger criterion normalizes the centered confateof a rule according to the probability

of not satisfying its head.

THE VISUALIZATION OF INTER-DIMENSIONAL
ASSOCIATION RULES

In addition to the previous mining process, oudioe-mining environment includes
facilities for a graphic representation of the ndimeter-dimensional association rules. This
representation offers an easier access to the kadgwlexpressed by a huge number of mined
associations. Users can therefore get more inalghit rules and easily focus on interesting
ones. A particular feature of our visualizationui@n consists in representing association
rules in a multidimensional way so that they camXglored like any part of the data cube.

Traditionally, a user observes the measures asedaiath facts (cells) in a data cube
according to a set of dimensions in a multidimensaigpace. In our visualization approach,
we embed in this space representation a graphadang of inter-dimensional association
rules. This encoding refers to the principleg@phic semiologyf Bertin (Bertin, 1981).
Such principles consist to organize the visual pe@deptual components of graphics
according to features and relations between ddu@y mainly use the visual variables of
position size luminosity texture color, orientationandform. The position variable has a
particular impact on human retention since it conselominant visual information from a

perceptual point of view. The other variables hather a retinal property since it is quite
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possible to see their variations independently ftheir positions. The size variable generally
concerns surfaces rather than lengths. Accordimgttin, the variation of surfaces is a
sensible stimulus for the variation of size and em@evant to human cognition than variation
of length.

We note that the position of each cell in the spapeesentation of a data cube is
important since it represents a conjunction of jmage instances. For instance,ddte a cell
in the space representation of the data €libehe position ot corresponds to the
intersection of rowX with columnY. X andY are conjunctions of modalities where each
modality comes from a distinct dimension. In otiverds, X andY are inter-dimensional
instance predicates in the analysis dimensiongegtdor the visualization. Therefore, cell
corresponds to the itemsX,Y}. According to the properties of the item§at, Y}, we
propose to represent the appropriate graphic engad follows (see Figure:2)

= if {X,Y} is not frequent, only the value of the measref it exists, is
represented in cedt

= f {X,Y} is frequent and it does not generate associatil@s,ra white square
is represented in cetl

= if {X,Y} is frequent and generates the association Xute Y, a blue square
and a red triangle are displayed in @ellhe triangle points t¥ according to
the implication of the rule;

= f {X,Y} is frequent and generates the associationYue X , a blue square
and a red triangle are displayed in @ellhe triangle points t& according to
the implication of the rule;

= if {X,Y} is frequent and generates the association niles Y andY = X,

a blue square and two red triangles are displayeellc. The first triangle
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points toY according to the implication of the rub¢ = Y, and the second
triangle points to X according to the implicatiointioe ruleY = X.

Figure 2. Examples of association rule represeatet in a cube cell

I 2 s A I S R I e R
A A
O o < B <[]
X % 28000 X %28 000 X %28 000 X|| % 28000 X % 28000

(a) (b) (c) (d) (e)
For a given association rule, we use two diffeferhs and colors to distinguish

between the itemset of the rule and its implicatlarfact, the itemse{tX,Y} is graphically

represented by a blue square and the implicaXios Y is represented by a red equilateral
triangle. We also use the surface of the previous$ in order to encode the importance of

the support and the confidence. The support oitmeset{x,Y} is represented by the surface

of the square and the confidence of the réle> Y is represented by the surface of the
triangle. Since the surface is one of the moswveglevariables to human perception, we use it
to encode most used criteria to evaluate the irapog of an association rule. For high values
of the support (respectively, the confidence),lthee square (respectively, the red triangle)
has a large surface, while low values corresporuirall surfaces of the form. Therefore, the
surfaces are proportionally equal to the valughefsupport and the confidence.

The Lift and the Loevinger criteria are highlightedh the luminosity of their
respective forms. We represent high values of thi€respectively, the Loevinger criterion)
by a low luminosity of the blue square (respectivéie red triangle). We note that a high
luminosity of a form corresponds to a pale coldneveas, a low luminosity of a form

corresponds to a dark color.
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IMPLEMENTATION AND ALGORITHMS

We have developeLEMARas a module of on a Client/Server analysis platfor
calledMiningCubeswhich already includes our previous proposaldidigavith coupling
OLAP and data mining (Ben Messaoud, Boussaid & kbhed, 2006a; Ben Messaoud,
Boussaid & Loudcher, 2006HYliningCubess equipped with data loader componeiat
enables connection to multidimensional data cutmeed inAnalysis Servicesf MS SQL
Server 2000TheOLEMAR modul@llows the definition of required parameters to am
association rule mining process. In fact, as shismthe interface of Figure 3, a user is able to

define analysis dimensiori3,, context dimension®. , a meta-rule with its context sub-
cube @,....,0,) and its inter-dimensional predicates schémel... Oa,)= (8, 0...08,),

the measur& used to compute quality criteria of associatidesuand the thresholds

minsuppandminconf
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Figure 3. Interface of the OLEMAR module in Mirhudpes
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The generation of association rules from a dat cldisely depends on the search for
large (frequent) itemsets. Traditionally, frequent it@tsscan be mined according to two
different approaches:

» thetop-downapproach which starts withitemsets and steps down to 1-itemsets. The
decision whether an itemset is frequent or notrisctly based on theminsuppvalue. In
addition, it assumes that ifkatemset is frequent, then all sub-itemsets argueat too;

» thebottom-upapproach which goes from 1-itemsets to largerstim It complies with
the Apriori property ofanti-monotonyAgrawal, Imieliiski & Swami, 1993) which states
thatfor each non frequent itemset, all its super-iteinsee definitely not frequent

The previous property enables the reduction okt#ach space, especially when it
deals with large and sparse data sets, which iplarly the case of OLAP data cubes. We

implemented the mining process by defining an dllgwr based on thApriori property



OLEMAR

24

according to dottom-upapproach for searching large itemsets. As summiiz Algorithm
1, we proceed by an increasing level wise seanclafgei-itemsets, whereis the number of

items in the itemset. We denote 6Yi) the sets of-candidatesi.e.,i-itemsets that are
potentially frequent, an& i ( dhe sets of-frequentsi.e., frequent-itemsets.
At the initialization step, our algorithm captures the 1-candidates from deéned

analysis dimension® , over the data cub@. These 1-candidates correspond to members of
D,, where each member complies with one dimensiodigagea, or £, in the meta-rul®k.
In other words, for each dimensidh of D,, we capture 1-candidates frof), which is the

set of members of thj& hierarchical level oD, selected in its corresponding dimensional

predicate in the meta-rule scheme. For exampleplesider the data cube of Figure 4. We
assume that, according to a user meta-rule, missacation rules need to comply with the

meta-rule scheme:
(a 0{L,L}) O(a, DT T} = (&, O{R. ) -
Therefore, the set of 1-candidates@1) ={{L }.{L,}.{T}{T.}{R}{R}}.

Figure 4. Example of a bottom-up generation obaggion rules from a data cube
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For each level, if the setC(i) is not empty andis less thars +r , the first step of
the algorithm derives frequent itemsé&ts ffgm C (i) according to two conditions: (i) an
itemset ALC {)should be an instance of an inter-dimensionalipagels inD,, i.e.,A must
be a conjunction of members frandistinct dimensions fronD,,; and (ii) in addition to the
previous condition, to be included i (an itemsetAIC i( )must have a support greater

than the minimum support threshafdnsupp As shown in Figure 4,RA) is a measure-
based support computed according to a user selewaduréV from the cube.

Algorithm 1. The algorithm for mining inter-dimémsal association rules from data cubes

input : C,Pc, D4, Du, R, M, minsupp, minconf
output: X = Y, 3upp, Conr, LIFT, LOEV
CQ) 0
fori— 1to (s+v)do
| C(1) « C(1) U Ay
end
i1
while C(¢) £ 0 end i < (s +r) do
By — B
foreach A € C(i) do
if A is an inter-dimensional predicotes then
SUPP «— CoMPUTESUPPORT(A, M);
if SuPP > minsupp then F(i) — F (i) U {4};
end
end
foreach A € F'(4) do
foreach non empty B € A do
if A\B = B complies with R then
Conp « CoMpuTECONFIDENCE(ANB, B, M);
if Conr > minconf then
X «— A\B;
Y « B;
LirT « CompuTELIFT(X, Y, M),
Loev « CoMmpUTELOEVINGER(X, Y, M);
return (X =Y, Surp, Conr, LIFT, LOBV);
and
end

end

end

Cli4 1) — B

foreach A € F (i) do

foreach B € F'(i) thot shores i — 1 dtems with A do
if All Z C {AU B} of ¢ ttems are
inter-dimensional predicates and freguent then

| CE+1)—~CE+1HLU{ALBY,;

end

end

end
=i+ 1;

end

From eachAIF i( )the second stextracts association rules based on two

conditions: (i) an association rubké =Y must comply with the user defined meta-migje

l.e., items oiX (respectively, items of) must be instances of dimension predicates defimed
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the body (respectively, in the head) of the meta-saheme oR. For example, in Figure 4,

P, = L, can not be derived frork (2) because, according to the previous meta-rule sehem
instances ofa, O{L,,L,}) must be in the body of mined rules and not inrtheiad; and (ii) an

association rule must have a confidence greaterttteminimum confidence threshold
minconf The computation of confidence is also based erutier defined measuvk When
an association rule satisfies the two previous itmms, the algorithm computes its Lift and
Loevinger criteria according to the formulae wegaarlier. Finally, the rule, its support,
confidence, Lift and Loevinger criteria are retudrimy the algorithm.

Based on thépriori property,the third step uses the seff i (9f largei-itemsets to
derive anew set€(i + ®f (i +1) -candidates. A givelli + 31randidate is the union of twe
itemsetsA andB from F (i) that verifies three conditions: @ andB must have -1
common items; (ii) all non empty sub-itemsets fréml B must be instances of inter-
dimensional predicates iB,; and (iii) all non empty sub-itemsets froAl! B must be
frequent itemsets. For example in Figure 4, item@ed;{Lz,Tz} and B ={L2,P2} from F (2)
have{L,} as a common 1-itemset, all non empty sub-itenfemts AJ B={L,,T,,R,} are
frequents and represent instances of inter-dimaasjredicates. Therefor{aLz,Tz, Pz} is a
3-candidate included i€ (3)

Note that the computation of support, confidenc#, &nd Loevinger criteria are
performed respectively by the functionsoPUTESUPPORT COMPUTECONFIDENCE,
CoMPUTELIFT and ®MPUTELOEVINGER. These functions take the meashténto account
and are implemented using MDX (Multi-Dimensionalg&ssion language MS SQL Server
2000 that provides required pre-computed aggregates the data cube. For instance,

reconsider th&alesdata cube of Figure 1, the meta-rule (2), anduleR :



OLEMAR

27
Americal_ 2004= Laptop. According to formula (3) and considering $hé&s turnover
measure, the support & is written as follows:

Sales _turnover{ Americg Laptop2004 All, StudentFemale All)
Sales_turnover(All, All, All, All, StudentFemale All)

SUPHR) =

The numerator value of A R)) is therefore returned by the following MDX query:

SELECT
NON EMPTY {[ Shop].[Continent].[America]} ON AXI S(0),
NON EMPTY {[Tine].[Year].[2004]} ON AXlI S(1),
NON EMPTY {[ Product].[Fam ly].[Laptop]} ON AXI S(2)
FROM Sal es
VWHERE ([ Measures].[ Sal es_turnover],
[ Profession].[Profession category].[Student],
[ Gender].[ Gender].[ Fenal e])

A CASE STUDY

In order to validate our approach, this sectiors@nés the results of a case study
conducted on clinical data dealing with the breasicer research domain. More precisely,
data refer to suspicious regions extracted fronDiiggal Database for Screening
MammographyDDSM). In the following, we present the DDSM ahé generated data

cube.

The Digital Database for Screening Mammography (DDR)

The DDSM is basically a resource used by the mamapbyy image analysis research
community in order to facilitate sound researcthm development of analysis and learning
algorithms (Heath, Bowyer, Kopans, Moore & Jr, 200he database contains

approximately 2 600 studies, where each study spomds to a patient case.
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Figure 5. An example of a patient case study tdik@n the DDSM

ICS file LJPEG files

ics_version 1.0
filename C-0455-1 RHLD
DATE_OF_STUDY 13 10 1995 2
PATIENT_AGE 39

FILM

FILM_TYPE REGULAR

DENSTTY 2

DATE_DIGITIZED 21 12 1998

DIGITIZER LUMISYS LASER

SEQUENCE

LEFT_CC LINES 4648 PIXELS_PER_LINE 3000 BITS_PER_PIXEL 12 RESOLUTION 50 NON_OVERLAY
LEFT_MLO LINES 4592 PIXELS_PER_LINE 2984 BITS_PER_PIXEL 12 RESOLUTION 50 NON_OVERLAY
RIGHT CC LINES 4624 PIXELS PER LINE 2920 BITS_PER PIXEL 12 RESOLUTION 50 OVERLAY
RIGHT MLO LINES 4608 PIXELS PER LINE 2944 BITS PER PIXEL 12 RESCLUTION 50 OVERLAY

OVERLAY files

FILE: C_0455_1.RIGHT_ MLO.OVERLAY

TOTAL_ABNORMALITIES 1

ABNORMALITY 1

LESION TYPE MASS SHAPE IRREGULAR MARGINS ILL DEFINED
ASSESSMENT 3

SUBTLETY 5

DATHOLOGY BENIGN WITHOUT CALLBACK

TOTAL_OUTLINES 1

BOUNDARY

FILE: C_0455_1.RIGHT_CC.QOVERLAY

TOTAL_ABNORMALITIES 1

ABNORMALITY 1

LESTON TYPE MASS SHAPE ASYMMETRIC BREAST TISSUE MARGINS ILL_DEFINED
ASSESSMENT 3

SUBTLETY 5

PATHOLOGY BENIGN WITHOUT CALLBACK

TOTAL_OUTLINES 1

BOUNDARY

As shown in Figure 5, a patient case is a colleatibimages and text files containing
medical information collected along exams of sciegmammography. The DDSM contains
four types of patient casddormal Benign without callbackBenign Cancer Normaltype
covers mammograms from screening exams that wadeag normal and had a normal
screening exanBenign without callbackases are exams that had an abnormality that was
noteworthy but did not require the patient to beated for any additional checkup. Benign
cases, something suspicious was found and thenpatés recalled for some additional
checkup that resulted in a benign findi@@ncertype corresponds to cases in which a proven

cancer was found.

The Suspicious Regions Data Cube

A patient file refers to different data formats amtloses several subjects that may be
studied according to various points of view. In oase study, we focus on studying the
screening mammography data by considering sus@cEgions (abnormalities) detected by

an expert as an OLAP fact.
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Figure 6. (a) the physical structure, and (b) ttmaceptual model of the suspicious regions

data cube
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Lesion type Assessment
Lesion_type_id Suspicious regions Assessment_id D1
Lesion_category_id -|_ Assessment_code
Lesion_type_name Lesion_type_id =
Lesion_category_name assessment _id
Patology_id
Patient Patient_id Lol D
_I_ Date_of_study Pathology id 6
Patient_id Digitizer_id Pathology_name
Patient_age Total_number
Patient_age_class Total_boundary_length
Total_surface Digitizer
Date D
: Digitizer_id 3
Date_id Digitizer_name
D 2 Month_id
Day name
Month_name
Year_name

(b)

UnderAnalysis Servicesf MS SQL Server 200Qie have constructed tlseispicious

regions data cub&om the DDSM data. Our data cube contains 4 6BARfacts.

Figure 6 (a) and Figure 6 (b) illustrate, respesiivthe physical structure and the conceptual

model of the constructed cube as they are presamtbd cube editor ohnalysis Services

According to this data cube, a set of suspiciogsre can be analyzed according to several

axes: thdesion theassessmenthesubtlety the pathology thedate of studythedigitizer, the

patient etc. The fact is measured by th&al numberof regions, theéotal boundary length

and thetotal surfaceof the suspicious regions. We note that, in thises the set of concerned

facts deals only witlBenign Benign without callbackandCancerpatient casedNormal

cases are not concerned since they do not contgpicsous regions.
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Application on the Suspicious Regions Data Cube
We have applied our on-line mining environment lo@ $uspicious regions data cube
C. To illustrate this mining process, we suppose¢ dneexpert radiologist looks for
associations that could explain the reasons ofaranmors. We assume that the expert
restricts his study to suspicious regions found@mners of mammograms digitized thanks

to aLumisis Lasemachine. This means that the subset of contextminonsD . contains the
dimensiornDigitizer (D,) and the selected context corresponds to the sbhb-€umisis
Lasel) according toD.. We also suppose that the expert needs to explaidifferent types
of pathologies in these mammograms. In order teadde chooses to explain the modalities
of thePathology naméevel (H.), included in the dimensidPathology( D, ), by both those
of theAssessment codevel (H,), from dimensiorAssessmerftD, ), and those of theesion
type categoryevel (H,"), from dimensiorLesion(D,). In other words, the subset of analysis
dimensionsD , consists of the dimensioAssessmer{D, ), Lesion(D,) andPathology
(Dg). Thus, according to our formalization:

= the subset of context dimensionsds ={D,} ={Digitizer};

= the subset of analysis dimensiorDs ={D,,D,,D,} ={ Assessmertesion,

Pathology.
Therefore, with respect to the previous subseirokdsions, to guide the mining
process of association rules, the expert needgai@ss the following inter-dimensional meta-
rule:

In the contextl(umisis Laser
(a, O Assessmentodé O(a, O Lesiontypecategory = (a, 0 Pathology name
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Note that, in order to explain the pathologiesusiscious regions, the dimension

predicate inDy (<a6 (0 Pathology namé) is set to the head of the meta-rule (conclusion)
whereas the other dimension predica(eg @ Lesiontypecategory and

<a1 O Assessmeruode}) are rather set to its body (consequence).

Assume thaminsuppandminconfare set to 5%, arflurfaceof suspicious regions is
the measure on which the computation of the supfi@tconfidence, the Lift, and the
Loevinger criteria will be based. The guided minprgcess provides the association rules

that we summarize as follows:

Association ruleR SupP | CONF | LIFT | LOEV
1 | {All, Calcification type pleomorphjc= {Benigr} 5.03% | 24.42% 0.73 | -0.14
2 | {8, All} = {Cancer} 5.15% | 8.50%| 0.60, -0.62
3 | {0, Alll = {Benigr} 5.60% | 66.72% 1.99 | 0.50
4 | {4, Calcification type pleomorphic= {Cancer} 6.10% | 61.05% 1.01 | 0.01
5 | {All, Mass shape lobulatéd= {Cance} 6.14% | 48.54% 0.80 | -0.31
6 | {All, Mass shape lobulatéd= {Benigr} 6.21% | 49.03% 1.47 | 0.23
7 | {3, Alll = {Benign} 7.09% | 49.99% 1.99 | 0.09
8 | {All, Mass shape ovhl= {Benigr} 8.59% | 65.82% 1.97 | 0.49
9 | {5, Calcification type pleomorphic= {Cancer} 8.60% | 98.92% 1.63 | 0.97
10 | {5, Mass shape irregular= {Cancer} 14.01%| 96.64%| 1.60 | 0.91
11 | {All, Calcification type pleomorphjc= {Cance} 15.43%| 74.97%| 1.24 | 0.36
12 | {4, All} = {Cancer} 16.43%)| 46.06%| 0.76 -0.37
13 | {4, Al = {Benign 18.64%| 52.29%| 1.56 | 0.28
14 | {All, Mass shape irregular= {Cancei 20.38%| 87.09%| 1.44 | 0.67
15 | {5, All} = {Cancer} 36.18%| 98.25%| 1.62 | 0.96

Note that the above association rules comply viiéhdesigned inter-dimensional
meta-rule, which aims at explaining pathologiesoading to assessments and lesions. From
these associations, an expert radiologist canyeasié that cancer cases of suspicious regions

are mainly caused by high values of assessmenscbde example, rul® . :{5,

All} = {Cance} is supported by 36.18% of surface units of susp&i@gions. In addition,
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its confidence is equal to 98.25%. In other wokig®wing that a suspicious region has an
assessment code of 5, the region has 98.25% chtanlbesa cancer tumor. Rulg, has also
a Lift equal to 1.62, which means that the totafesze of cancer suspicious regions having an
assessment code equal to 5 is 1.62 times greaiethl expected total surface under the
independence situation between the assessmerapdthology type.

The lesion type can also explain pathologies. Ritwgrprevious results, we note that
themass shape irregulaand thecalcification type pleomorphiare the major lesions leading
to cancers. In fact, ruleR,,:{ All, Calcification type pleomorphjc= {Cancet and
R, :{All, Mass shape irreguldar= {Cance# confirm this observation with supports
respectively equal to 15.43% and 20.38%, and centids respectively equal to 74.97% and

87.09%.
Recall that our on-line mining environment is addxe to provide an interactive

visualization of its extracted inter-dimensiona@sation rules. Figure 7 shows a part of the

data cube where association ruRs R,, and R, are displayed in the visualization interface.



Figure 7. Visualization of extracted associatiaes in MiningCubes

OLEMAR

33

¥isualization of association rules
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PERFORMANCE EVALUATION

We have evaluated the performance of our mininggsse algorithm for the

suspicious regions data cube. We conducted a safpeiiments to measure time processing

for different situations of input data and parametd theOLEMAR modulsupported by

MiningCubes These experiments are achieved under WindowsnX@ -o60GHz PC with



OLEMAR
34
480MB of main memory, and an Intel Pentium 4 preoesWe also useflnalysis Servicesf
MS SQL Server 20085 docal-hostOLAP server.
Figure 8. The running times of the mining procassording to support with different

confidences
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Figure 8 shows the relationship between the runtfreur mining process and the
support of mined association rules according t@sd\confidence thresholds. In general, the
mining of association rules needs less time wheeals with increasing values of the

support.
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Figure 9. The running times of the mining procassording to support with different

numbers of facts

0.07 T T T T T T T T T

Support in percent

0.06 - .
1,000 facts ——

50,000 facts
100,000 facts —=— -
200,000 facts —=—

0.05 -

0.04 -

Runtime in seconds

0.03

0.02

0.01

0 10 20 30 40 50 60 70 80 90 100

Figure 9 presents a test of our algorithm for sgivenmbers of facts. For small
support values, the running time considerably iases with the number of mined facts.
However, for large supports, the algorithm hasaalyeequal response times independently
from the number of mined facts. Another point adwiof this phenomenon can be illustrated
by Figure 10 which indicates that for a support armbnfidence threshold equal to 5%, the
efficiency of the algorithm closely depends oniikenber of extracted frequent itemsets and
association rules. The running time obviously iases according to the number of extracted
frequent itemsets and association rules. Nevedhgtbe generation of association rules from
frequent itemsets is more time consuming than xtraetion of frequent itemsets themselves.

An Apriori-based algorithm is efficient for searching frequtemsets and has a low
complexity level especially in the case of spams@dNevertheless, tigriori property does
not reduce the running time of extracting assammatules from a frequent itemset. For each
frequent itemset, the algorithm must generateadbjble association rules that comply with

the meta-rule scheme and search those having elenoé greater thaminconf
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Figure 10. The running times the mining processoating to the number of frequent

itemsets and the number of association rules
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In general, these experiments highlight acceptalsieme processing. The efficiency

of our algorithm is due to: (i) the use of interadinsional meta-rules which reduce the search
space of association rules and therefore, condijed@creases the runtime of the mining
process; (ii) the use of pre-computed aggregatéseomultidimensional cube which helps
compute the support and the confidence via MDX iggeand (iii) the use of the anti-
monotony property ofApriori which is definitely suited to sparse data cubes@msiderably

reduces the complexity of large itemsets search.

RELATED WORK

Association Rule Mining in Multidimensional Data

Association rule mining was first introduced by Agal, Imieliski, and Swami
(1993) who were motivated byarket basket analysand designed a framework for
extracting rules from a set of transactions relédeitems bought by customers. They also

proposed thdpriori algorithm that discovelarge (frequenj itemsets satisfying given
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minimal support and confidence. Since then, mawgld@ments have been performed in
order to handle various types and data structures.

To the best of our knowledge, Kamber, Han and @h{a897) were the first
researchers who addressed the issue of masagciation rules from multidimensional data
They introduced the concept wieta-rule-guided miningrhich consists in using rule
templates defined by users in order to guide th@ngiprocess.They provide two kinds of
algorithms for extracting association rules frontadaubes: (1) algorithms for materialized
MOLAP (Multidimensional OLAPdata cubes; and (2) algorithms for non-mateealiz
ROLAP (Relational OLAP data cubes. These algorithms can niier-dimensional
association rules, with distinct predicates, frongke levels of dimensions. Ainter-
dimensionakssociation rule is mined from multiple dimensianhout repetition of
predicates in each dimension, whileiaima-dimensionakssociation rule cover repetitive
predicates from a single dimension. The supporttheaonfidence of mined associations are
computed according to the COUNT measure.

Zhu considers the problem of mining three typeassociationsnter-dimensional
intra-dimensionaglandhybrid rules (Zhu, 1998). The latter type consists in lsimimg intra
and inter-dimensional association rules. Unlike KkamHan and Chiang (1997) - where
associations are directly mined from multidimensiatata — Zhu (1998) generatetask-
relevant working cubwith desired dimensions, flattens it into a tabfiteim, extracts
frequent itemsets, and finally mines associatidesturherefore, this approach does not profit
from hierarchical levels of dimensions since ittdhas data cubes in a pre-processing step. In
other words, it adapts multidimensional data argpares them to be handled by classical
iterative association mining process. Further pitoposal uses the COUNT measure and does
not take into account further aggregate measuregdiate discovered rules. We also note

the lack of a general formalization for the progbapproach.
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Cubegradesproposed in (Imiefiski, Khachiyan & Abdulghani, 2002), are a
generalization of association rules. They focusignificant changes that affect measures
when a cube is modified through specializatidrlltdown), generalizationrpll-up) or
mutation éwitch). The authors argue that traditional associatibesrare restricted to the
COUNT aggregate and can only express relative d@safigm body of the rule to body and
head. In a similar way, Dong, Han, Lam, Pei and §@901) proposed an interesting and
efficient version of theubegradeproblem, calleanultidimensional constrained gradients
which also seeks significant changes in measures walls are modified through
generalization, specialization or mutation. To oapisignificant changes only and prune the
search space, three types of constraints are @esidThe concept aibegradesand
constrained gradients quite different from classical mining of assdmn rules. It discovers
modifications on OLAP aggregates when moving frosoarce-cubéo atarget-cube but it
is not capable of searching patterns and assagiatles included in the cube itself. We
consider a&ubegradeas an inter-dimensional association rule with tipe predicates which
implicitly takes into account hierarchical levelsdimensions.

Chen, Dayal and Hsu (2000) proposdisaributed OLAP based infrastructuvehich
combines data warehousing, data mining, and OLAgedangine for Web access analysis.
In the data mining engine, the authors mine intraethsional association rules from a single
level of a dimension, calldohse dimensigrby addingeaturesfrom other dimensions. They
also propose to consider the used features atpteulévels of granularity. In addition, the
generated association rules can also be mateddbg@articular cubes, calleslume cubes
However, in this approach, the use of associatitesrclosely depends on the specific domain
of Web access analysis fosaleapplication. Furthermore, it lacks a formal dgstion that

enables its generalization to other application @os
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Extended association rulegere proposed by Nestorov and #ui@003) as an output
of a cube mining process. Aaxtended association ruige a repetitive predicate rule which
involves attributes afion-itemdimensions (i.e., dimensions not related to itpnasfucts).
Their proposal deals with an extension of classasabciation rules since it provides
additional information about the precise contextaéh rule. However, the authors focus on
mining associations from transaction databaseslambt take dimension hierarchy and data
cube measures into account when computing suppdrt@nfidence.

Tjioe and Taniar (2005) propose a method for mir@sgociation rules in data
warehouses. Based on the multidimensional datanaaj#on, their method is able to extract
associations from multiple dimensions at multigledls of abstraction by focusing on
summarized data according to the COUNT measurerder to do so, they prepare
multidimensional data for the mining process acecwydo four algorithms: VAvg, HAvg,
WMAvg, and ModuskFilter. These algorithms pruneradis in the fact table which have less
than the average quantity and provideratialized table This table is next used for mining

both non-repetitive predicate and repetitive prai@ssociation rules.

Discussion and the Position of our Proposal

The previous work on mining association rules iftmdunensional data can be

studied and compared according to various aspects.
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Table 1. Comparison of association rule mininggorsals from multidimensional data

across application domain, data representation, arehsure

Application Mined  data ||Measure
domain structure
%
5
— e - 2
(a1
s | = || 2|, || 3|E
@] =
Proposal v m i = O <
Kamber, Han and Chiang (1997) | o | o |
Zhu (1998) ® °
Imielifiski, Khachiyan and Abdulghani (2002)]] e | o |
Dong, Han, Lam, Pei and Wang (2001) ° ®
Chen, Dayal and Hsu (2000) J . J ° J
Nestorov and Jukié (2003) ® 3
Tjioe and Taniar (2005) | e | e I
Our proposal ° ® .

As shown in Table 1, most of the proposals aregiesi and validated for sales data
cubes. Their applications are therefore inspirethieywell-knowrbasket market analysis
problem BMA) driven on transactional databases. Nevertheles$gelieve that most of the
proposals (except for the proposals of Chen, DagdlHsu (2000) and Nestorov and guki
(2003)) can easily be extended to other applicatmmains. Our approach covers a wide
spectrum of application domains. It depends neitimea specific domain nor on a special
context of data.

Almost all the previous proposals are based orirdzgiency of data, by using the
COUNT measure, in order to compute the supportl@donfidence of the discovered
association rules. As indicated earlier, Infiski, Khachiyan and Abdulghani (2002) can
exploit any measure to detextbegradesNevertheless, the authors do not compute the
support and the confidence of the produceblegradesTjioe and Taniar (2005) use the
average (AVG) of measures in order to prune un@starg itemsets in a pre-processing step.

However, in the mining step, they only exploit ®®UNT measure to compute the support
and the confidence of association rules. Our amproavisits the support and the confidence

of association rules when SUM-based aggregatessaa
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Table 2. Comparison of association rule mininggorsals from multidimensional data

across dimension, level, and predicate

Dimension Hierarchy Predicate

2

2 2 g

| sl 8| 2| &8¢

& ] = o c

Proposal k= E % § b =

Kamber, Han and Chiang (1997) | e | ®

Zhu (1998) ° ® ° ®
Imielifisld, Khachivan and Abdulghani (QOOQ)J . J . J ®
Dong, Han, Lam, Pei and Wang {2001) ° . ®
Chen, Dayal and Hsu (2000) J J . J .
Nestorov and Juki¢ (2003) ® ®
Tjioe and Taniar (2005) J J J °

Qur proposal

According to Table 2, some of the proposals miteridimensional association rules,
whereas others deal with intra-dimensional rulegidneral, an inter-dimensional association
rule relies on more than one dimension from theethidata cube and consists of non-
repetitive predicates, where the instance of eaetligate comes from a distinct dimension.
An intra-dimensional rule relies rather on a simgjl@ension. It is constructed within
repetitive predicates where their instances reptesedalities from the considered
dimension. Neverthelesscabegraddimielinski, Khachiyan & Abdulghani, 2002), or a
constrained gradienfDong, Han, Lam, Pei & Wang, 2001), can be viewedrainter-
dimensional association rule which has repetitinezljzates. The instances of these predicates
can be redundant in both the head and the bodeafplication. Furthermore, the proposal
of Tjioe and Taniar (2005) is mostly the only onleietr allows the mining of inter-
dimensional association rules with either repegitiv non-repetitive predicates. In our
proposal, we focus on the mining of inter-dimenaiassociation rules with non-repetitive
predicates.

We note that, except for (Kamber, Han and Chia@§71Zhu, 1998), most of the

previous proposals try to exploit the hierarchessppect of multidimensional data by
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expressing associations according to multiple Eeélbstractions. For example, a
cubegradds an association which can be expressed withiltipfeilevels of granularity.
Association rules in (Chen, Dayal & Hsu, 2000) agploit dimension hierarchies. In our
case, the definition of the context in the met&tdn be set to a given level of granularity.
Table 3. Comparison of association rule mininggorsals from multidimensional data

across user interaction, formalization, and asstommexploitation

User interac- ||Formalization | /Associaticn

tion exploitation
Proposal Yes | No Yes | No Yes | No
Kamber, Han and Chiang (1997) B ‘ e | .
Zhu (1998) ® ° ®
Imielinski, Khachiyan and Abdulghani (2002)|] e B ‘ .
Dong, Han, Lam, Pei and Wang (2001) ° 3
Chen, Dayal and Hsu (2000) I e || e | .
Nestorov and Jukié (2003) . ® @
Tjioe and Taniar (2005) J ® J ® J *
Qur proposal . . °

According to Table 3, we note that the proposdGtfen, Dayal & Hsu, 2000) does
not consider any interaction between users andhthiang process. In fact, in the proposed
Web infrastructurganalysis objectives are already predefined aassactional data and
therefore users can not interfere with these olvestIn (Kamber, Han and Chiang, 1997)
user’s needs are expressed through the definifiameeta-rule.

Except forcubegradegimielinski, Khachiyan & Abdulghani, 2002) amdnstrained
gradients(Dong, Han, Lam, Pei & Wang, 2001), almost all pregds miss a theoretical
framework which establishes a general formalizatibthe mining process of association
rules in multidimensional data.

In addition, in all these proposals, Zhu (1997nisstly the only one who proposes
association rule visualization. Nevertheless, tfoppsed graphical representation is similar to
the ones commonly used in traditional associatibesrmining, and hence does not take into

account multidimensionality.
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OLEMAR:Is entirely driven by user’s needs. It uses matasrto meet the analysis
objectives. It is also based on a general form@tinaof the mining process of inter-
dimensional association rules. Moreover, we incladesual representation of rules based on

the graphic semiology principles.

CONCLUSION, DISCUSSION AND PERSPECTIVES

In this paper, we design an on-line environmentiioring inter-dimensional
association rules from data cubes as a part ddtéopin calledCubeMining We use a guided
rule mining facility which allows users to limitehmining process to a specific context
defined by a particular portion in the mined dathec We also provide a computation of the
support and the confidence of association ruleswveh8UM-based measure is used. This
issue is quite interesting since it expresses &smts which do not restrict users’ analysis to
associations driven only by the traditional COUN@&asure. The support and the confidence
may lead to the generation of large number of aagon rules. Therefore, we propose to
evaluate interestingness of mined rules accordiriggd additional descriptive criteria (Lift
and Loevinger). These criteria can express th@aalse of rules in a more precise way than
what is offered by the support and the confidef@. association rule mining procedure is an
adaptation of the traditional level-wiggriori algorithm to multidimensional data. In order to
make extracted knowledge easier to interpret aptbéxwe provide a graphical
representation for the visualization of inter-dirsi@mal association rules in the
multidimensional space of the mined data cube. Eogbianalysis showed the efficiency of
our proposal and the acceptable runtime of ourrdhgo.

In the current development of our mining solutioe, integrate SUM-based measures
in the computation of interestingness criteriaxifacted association rules. However, this

choice assumes that the selected measure is additd/has only positive values. In the
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suspicious regions data cube, sheface of regiongs an appropriate measure for the
computation of the revisited criteria. Nevertheleékstotal boundary lengtlof regions can
not be used for that computation since the SUManindlary lengths does not make concrete
sense. In some cases, an OLAP context may be egprey facts with non-additive or
negative measures. For instance, in the traditiexaimple of a sales data cube, dherage of
salesis typically a non-additive measure. Furthermdne profit of saless also an OLAP
measure that can have negative values. In suditisitis, we obviously need a more
appropriate interestingness estimation of associatile to handle a wider spectrum of
measure types and aggregate functions (e.g., AVAXM

Our proposal provides inter-dimensional associatibes with non-repetitive
predicates. Such rules consist of a set of preglicatances where each one represents a
modality coming from a distinct dimension. This &iaf association rules helps explain a
value of a dimension by other values drawn froneothimensions. Nevertheless, an inter-
dimensional association rule does not explain aatiycdoy other ones from the same
dimension. For instance, the latter type of ruteisat able to explain the sales giraductby
those of otheproductsor even otheproduct categoriesin order to cope with this issue, we
also need to extend our proposal in order to ctheemining of inter-dimensional association
ruleswith repetitive predicateas well agntra-dimensionakssociation rules. In addition,
these new kinds of associations should profit ftdmension hierarchies and allow modalities
from multiple granularity levels.

The association rule mining process in our envirenhis based on an adaptation of
the traditional level-wis@priori algorithm to multidimensional data. Thati-monotony
property (Agrawal, Imiefiski & Swami, 1993) allows a fast search of frequtarmsets, and
the guided mining of association rules we express meta-rule limits the search space

according to the analysis objectives of users. Hanesome recent studies have shown the
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limitations of Apriori and privileged the notion of frequent closed itetm$ige inClose
(Pasquier, Bastide, Taouil & Lakhal, 199Pgscal(Bastide, Taouil, Pasquier, Stumme &
Lakhal, 2000)Closet(Pei, Han & Mao, 2000;harm(Zaki & Hsiao, 2002), analicia
(Valtchev, Missaoui & Godin, 2004).
Finally, measures are used in our environmentdanguting interestingness criteria.
We plan to study the semantics of association mlesn measures appear in the expression

of rules.
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