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Brahmagupta’s derivation of the area of a
cyclic quadrilateral

Satyanad Kichenassamy1

Abstract. This paper shows that Propositions XII.21–27 of Brahmagupta’s Brāhma-
sphut.asiddhānta (628 a.d.) constitute a coherent mathematical discourse leading to the
expression of the area of a cyclic quadrilateral in terms of its sides. The radius of the
circumcircle is determined by considering two auxiliary quadrilaterals. Observing that a
cyclic quadrilateral is split by a diagonal into two triangles with the same circumcenter
and the same circumradius, the result follows, using the tools available to Brahmagupta.
The expression for the diagonals (XII.28) is a consequence. The shortcomings of earlier
attempts at reconstructing Brahmagupta’s method are overcome by restoring the math-
ematical consistency of the text. This leads to a new interpretation of Brahmagupta’s
terminology for quadrilaterals of different types.

Résumé. On montre que les propositions XII.21–27 du Brāhmasphut.asiddhānta (628
ap. J.-C.) forment un discours cohérent conduisant à l’expression de l’aire d’un quadrilatère
cyclique en termes de ses côtés. Le rayon du cercle circonscrit est déterminé en considérant
deux quadrilatères auxiliaires. Exprimant que le quadrilatère cyclique est partagé par
une diagonale en deux triangles ayant en commun le centre et le rayon de leur cercle
circonscrit, on obtient l’aire du quadrilatère, à l’aide des outils connus de Brahmagupta.
L’expression des diagonales (XII.28) en découle. Les difficultés des tentatives antérieures
en vue de retrouver la démarche de Brahmagupta sont résolues en restituant la cohérence
mathématique du texte. On est ainsi conduit à une nouvelle interprétation des termes
qu’utilise Brahmagupta pour désigner des quadrilatères de différentes classes.

1Université de Reims Champagne-Ardenne, Laboratoire de Mathématiques, CNRS FRE
3111, Moulin de la Housse, B. P. 1039, F-51687 Reims Cedex 2, France. E-mail:
satyanad.kichenassamy@univ-reims.fr
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1. Introduction

Brahmagupta, an Indian mathematician of the seventh century a.d., authored two trea-
tises of astronomy in Sanskrit, Brāhmasphut.asiddhānta (BSS, 628 a.d. [Dvivedin, 1902])
and Khan. d. akhādyaka (665 a.d. [Sengupta, 1934; Chatterjee, 1970]). The mathematical
sections of the former have attracted the attention of historians of mathematics and math-
ematicians alike since Colebrooke’s [1817] translation of Chapters XII and XVIII of BSS.
Recall that Brahmagupta gave—for the first time, as far as we know—rules for handling
negative numbers and zero, described the solution of linear equations of the form ax−by = c
in integers, and initiated the study of the equation Nx2 + k = y2, also in integers.2 Fur-
thermore, he introduced a second-order interpolation method for the computation of sines.
His expression for the area of a quadrilateral bounded by four chords of a circle (a cyclic,
or chord quadrilateral), in Proposition XII.21 of BSS, is the focus of this paper.

The purpose of BSS was to establish a corrected form of an older astronomical system,
and to offer a rebuttal of other systems current in India at the time, including that of
Āryabhat.a I (499 a.d.) [Clark, 1930; Shukla and Sarma, 1976].3 Chapter XII presents
mathematical results under nine sections and a supplement. Proposition XII.21 begins the
fourth section, on closed figures (ks.etra

4). XII.21–385 deal with quadrilaterals and trilat-
erals. Proposition XII.21 gives the following result: if a “triquadrilateral” (tricaturbhuja)
has sides of lengths a, b, c and d, and s = (a+ b+ c+ d)/2 is the half-perimeter, then its
area is given by

(*) Area =
√
(s− a)(s− b)(s− c)(s− d).

The significance of the word tricaturbhuja, apparently introduced by Brahmagupta and
used only once more, in XII.27, will be discussed in due course. The purpose of this paper
is to investigate whether Propositions XII.21–27 form a connected mathematical discourse
suggesting the steps whereby this formula was derived.

2The unknowns are, in both cases, x and y, the other numbers being given integers.
3This work is often referred to by the names of the Sanskrit metres it uses: “the ten ḡıti” and “the

hundred and eight ārya”. BSS was also composed in the ārya metre.
4A ks.etra is commonly an enclosed plot of ground and, by extension, a figure enclosed by lines. See e.g.

Monier-Williams’s Sanskrit-English Dictionary.
5Throughout the paper, a reference such as XII.21 stands for BSS XII.21, and the translations are

from [Colebrooke, 1817] unless indicated otherwise; modifications have been put in italics. Colebrooke’s
translation formed the basis of most of the earlier contributions to this problem; it is generally adequate,
and carefully worded. It would be misleading to indicate the copulae or other words he added for clarity
since this would not reflect other untranslated minor features of the original, such as the use of different
words for the basic operations, or the metre. A more recent translation of the verses we study, and of
surrounding ones, may be found in [Plofker, 2007]. For the issue considered in this paper, there is no
advantage in starting from any of the translations later than Colebrooke’s, since later translations also fail
to provide a rendering that is consistent from a mathematical point of view. The abbreviation Ābh refers
to the Āryabhat.̄ıya. Thus, Ābh II.17 is verse 17 of section II of the Āryabhat.̄ıya. Translations from the
French or German are mine.
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1.1. Basic issues and difficulties. The formula (*) was first brought into the mainstream
of mathematics by Colebrooke [1817], whose translation of chapters XII and XVIII of
BSS was widely read by historians and mathematicians alike. As a result, Brahmagupta’s
formula is to be found in most textbooks on the history of mathematics.6 The contemporary
reaction to Colebrooke’s translation is summarized by Chasles [1837, 429]: “This formula
for the area of the triangle as a function of the sides, has been noticed in Brahmagupta’s
work, by the geometers who reported on it, and has been regarded as the most considerable
proposition in it; and one has never quoted, I think, the formula for the area of the
quadrilateral. The latter however deserved in all respects the preference; for, not only is it
more general, more difficult to prove, presupposes a more advanced Geometry, and, in a
nutshell, is of higher scientific value, it appears, so far to belong specifically to the Hindu
author; for it is not found in any work of the Greeks, and such is not the case for the
formula for the triangle. . . ”7

Colebrooke does not discuss the derivation: the commentary he quotes8 provides clar-
ification and examples, but does not address the issue. Several attempts at finding a
derivation of (*), summarized in Section 2.3, were made. In a nutshell, earlier derivations
differ in the mathematical tools they take for granted, in the weight they give to Indian
sources later than Brahmagupta, and in the interpretation of Brahmagupta’s terminology.

Regarding Brahmagupta’s mathematical tools, his derivation cannot be based on angles,
parallels, or similar triangles, because Indian geometry does not use these tools: rather,
it works with perpendiculars, arcs of a circle, and a restricted form of similarity for right
triangles, or rather, half-oblongs.

It is unfortunately difficult to rely on commentaries or later sources to understand (*), be-
cause Brahmagupta’s results were misunderstood by his immediate successors.9 His result

6Surveys analyzing Brahmagupta’s results in context include [Sarasvati Amma, 1999; Chasles, 1837;
Hankel, 1874; Srinivasaiengar, 1988] and Colebrooke’s work, including his “Dissertation” with its extensive
“Notes” [Colebrooke, 1817, i–lxxxiv]. They all provide background information. We also mention general
surveys dealing specifically with Indian mathematics [Datta and Singh, 1935, 1938, 1980; Bag, 1979;
Joseph, 1991; Plofker, 2009] without aiming at completeness. Most general histories of mathematics
mention Brahmagupta’s results on the cyclic quadrilateral, see e.g. [Cajori, 1991]. The formula was
extended to non-cyclic quadrilaterals, and to polygons with five sides or more, but these developments
belong to modern mathematics. Their methods do not shed light on the problem at hand, and are therefore
not discussed here.

7“Cette formule de l’aire du triangle en fonction des côtés, a été remarquée dans l’ouvrage de Brah-
megupta, par les géomètres qui en ont rendu compte, et a été regardée comme en étant la proposition la
plus considérable; et l’on n’a jamais cité, je crois, la formule de l’aire du quadrilatère. Celle-ci cependant
méritait à tous égards la préférence; car, outre qu’elle est plus générale, plus difficile à démontrer, qu’elle
suppose une Géométrie plus avancée, et, en un mot, qu’elle est d’une plus grande valeur scientifique, elle
parâıt, jusqu’ici appartenir en propre à l’auteur hindou; car on ne la trouve dans aucun ouvrage des Grecs,
et il n’en est pas de même de la formule de l’aire du triangle. . . ”

8It is called Vāsanābhās.ya, and is due to Caturveda Pr.thūdakasvāmi (ca. 860 a.d. [Colebrooke, 1817,
v; Srinivasiengar, 1967, 58]) who, according to Pingree [1983], relied extensively on Balabhadra’s eighth-
century commentary, now lost.

9“More or less complete lack of understanding of Brahmagupta’s theorems about the cyclic quadrilateral,
more and more correct approximate formulae for the volume of a sphere, and various approximation
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(*) was considered to be inexact in the twelfth century by the influential mathematician
Bhāskara II.10 Brahmagupta’s results on the radius of the circumcircle, or circumradius
(hr.dayarajju (XII.26–27)) were even omitted;11 as a result, the nature of his “triquadrilat-
erals” was ignored.12 Therefore, later sources do not necessarily represent Brahmagupta’s
terminology or methods.

This state of affairs made Brahmagupta’s terminology difficult to understand. He deals
in XII.21–28 with three types of quadrilaterals: the “triquadrilateral,” the “not-equal”
(vis.ama) and the “not-not-equal” (avis.ama).13 According to Colebrooke, commentaries
assume that they correspond to “a trilateral and quadrilateral,” “an isosceles trapezium,”
and a “scalene quadrilateral” respectively.14 Some authors assume that the last must have
perpendicular diagonals, because this is the case in XII.26. These assumptions lead to
inconsistencies. Thus, if one accepts that Brahmagupta did not specify that his quadrilat-
erals must be cyclic, this would mean that Brahmagupta discovered a result without being
able to state it. If his contribution had been limited to the discovery of (*) for quadrilater-
als with perpendicular diagonals, then he would have realized that a much simpler formula
follows from his results, as was observed by Weissenborn [1879] (see Section 2.3). It is
nowadays generally accepted that Brahmagupta considered only cyclic quadrilaterals. In-
deed, the radius of the circumcircle is determined in XII.27 for the same class of figures as in
XII.21: the “triquadrilaterals.” We suggest that “triquadrilateral” is Brahmagupta’s term
for quadrilaterals obtained by adding to a trilateral a point on its circumcircle, and that
the two occurrences of this term indicate the beginning and conclusion of the derivation of
(*).

1.2. Notation and outline of reconstruction. It appears that Brahmagupta’s text
should be viewed as a set of private notes, such as a modern lecturer might prepare for his
own use, and bring to class as a reminder of the logical structure of his discourse. Such

formulae for the arc and area of a segment mark [the works of the period between Brahmagupta and
Bhāskara II (b. 1114)]” [Sarasvati Amma, 1999, 10].

10L̄ılāvat̄ı 167–170 [Colebrooke, 1817, 72–73].
11To the best of our knowledge, this term does not appear again until much later. On the circumcircle

in later Indian literature, see the texts quoted in [Sarasvati Amma, 1999, 93–94, 108–109, 120–127].
12In fact, “[t]wo sections of Indian mathematicians have approached the study of the quadrilateral from

two different angles. One section viewed it merely as a figure enclosed by four chords of a circle, whereas
the other viewed it as a figure enclosed by any four lines, i. e. the general quadrilateral but, strangely
enough, excluding the cyclic quadrilateral. The former includes the majority of Indian mathematicians,
Brahmagupta, Śr̄ıdhara, Mahāv̄ıra, Śr̄ıpati and the later Āryabhat.a School; the latter Āryabhat.a II and
Bhāskara II. We do not know to which camp Āryabhat.a I belonged, since his extant works accord the
quadrilateral a doubtful passing notice only, but it is likely he belonged to the first camp.” [ibid., 81]. Of
these, all are later than Brahmagupta, except Āryabhat.a I.

13Special quadrilaterals built from half-oblongs put together along their sides are described in XII.33–38.
14According to the Oxford English Dictionary, a trapezium is a quadrilateral in which two opposite

sides are parallel, and the other two are not, and a trapezoid is one in which no two sides are parallel. In
American English, it is the other way around: the trapezoid has parallel sides and the trapezium doesn’t.
The isosceles trapezium has two parallel, unequal sides, and two equal sides. The scalene quadrilateral
has all its sides different, and is not necessarily cyclic.
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notes would merely contain the key steps of the exposition, as well as hints about logical
connections to point out, or results on which to elaborate. Indeed, Brahmagupta states,
in XII.66, the closing verse of the chapter, “this (is) only the (general) direction.”15 This
point of view has made it possible to make sense of another, earlier proposition in ancient
Indian mathematics [Kichenassamy, 2006]. We therefore propose to take into account the
mathematical relations between propositions together with the wording of each proposition,
to reconstruct the steps of Brahmagupta’s derivation of (*).

A C

D

B E

F

H H ′

Figure 1. Cyclic quadrilateral ABCD, its segments, and associated sym-
metric and asymmetric quadrilaterals ABEC and ABCF ; the points E and
F are obtained from B by symmetry with respect to the axes. Notation for
side lengths is given in Section 1.2.

We now fix the notation that will be used in the analysis of all propositions. We consider
a chord quadrilateral ABCD (see Fig. 1), with sides a, b, c and d: AB = a, BC = b,
CD = c and DA = d. Its diagonals are AC = γ and BD = δ. The perpendicular BH = h
dropped from B to AC determines segments AH = α and HC = β on AC; see Fig. 2. We
therefore have α + β = γ. Similarly, the perpendicular DH ′ = h′ dropped from D to AC
determines two segments α′ = H ′C and β′ = AH ′, with α′ + β′ = γ. The circumcircle has
radius r and diameter 2r. All figures are inscribed in a circle having two perpendicular
axes of symmetry: a vertical and a horizontal one.

A general, not necessarily cyclic, quadrilateral is not determined by its sides alone; it is
determined if, in addition, a diagonal is given. The expression “triquadrilateral” suggests

15In Sanskrit: diṅmātrametat. Colebrooke translates as: “This is a portion only of the subject.”
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Figure 2. Triangle and associated symmetric quadrilateral (avis.ama).
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Figure 3. The symmetric and asymmetric quadrilaterals ABCE and
ABCF generated by triangle ABC.
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that Brahmagupta’s quadrilaterals are obtained from a trilateral ABC by adding a fourth
vertex D, chosen arbitrarily on the circumcircle of ABC; the basis AC of the trilateral is
then a diagonal of the quadrilateral. All previous works have rendered “triquadrilateral”
as “trilateral and (unrelated) quadrilateral” (see Section 2.3), leading to insuperable dif-
ficulties. The present paper suggests that “triquadrilateral” is a technical term meaning
“trilateral and (associated) quadrilateral.” It is not necessary to specify that one deals
with cyclic figures because a trilateral is always inscribed in a circle. With this interpre-
tation, Brahmagupta did specify the conditions of applicability of his result. The wording
of XII.26–27 will confirm this interpretation. Brahmagupta gives a special place to two
auxiliary quadrilaterals determined by ABC, ABEC and ABCF , where B and E are
symmetric with respect to the vertical axis, while B and F are symmetric with respect to
the horizontal (see Fig. 3). The points A and C are also symmetric with respect to the
vertical. In this sense, ABEC is symmetric (avis.ama16). Since the pairs (A,C) and (B,F )
are symmetric with respect to different axes, ABCF is asymmetric (vis.ama). The general
cyclic quadrilateral ABCD is also asymmetric, but is not determined by completion of a
specific triangle by symmetry.

We now summarize the content of XII.22–28 and outline the strategy followed in this
paper. We begin with XII.22–25, which deal with a triangle ABC and the symmetric
quadrilateral ABEC; see Fig. 2. XII.22 shows how to compute from the sides a, b, and γ
of ABC the segments α and β, and from them the length h of the perpendicular. XII.23
translates the results in terms of ABEC, and expresses the diagonal b of the latter in terms
of its sides. XII.24 has been interpreted as giving three versions of “Pythagoras’ theorem,”
but this is not consistent, for reasons that will be detailed in Section 4.4. We suggest that
it expresses that a2 + b2 = γ2, provided that AC is a diameter of the circumcircle. This
seems consistent with the text. XII.25 shows how to determine, in ABEC, the portions of
the diagonals and perpendiculars determined by their points of mutual intersection. XII.26
determines a point at equal distance to all the vertices of quadrilateral ABEF or ABCF .
In XII.27, the same is accomplished for a triangle, and twice this distance is identified
as the diameter of the circumcircle of a tricaturbhuja. Observing that ABCD is split by
diagonal AC into two triangles with the same circumcenter and the same circumradius,
and using the previous results, one is led to (*). The expressions for the diagonals in terms
of the sides (XII.28) may then be derived as a consequence of (*).

1.3. Organization of the paper. Section 2.1 reviews the background of (*), and Sec-
tion 2.2, its reception in India. Previous contributions on (*) are discussed in Section 2.3.
Section 3 collects the mathematical tools that may be taken for granted in the reconstruc-
tion of Brahmagupta’s derivation. Propositions XII.21–28 are analyzed in Section 4. Each
of XII.21–27 is treated in a separate section (4.1–4.7), divided into four parts: text and
translation; gloss, clarifying technical terms and drawing attention to the structure of the
text; comments, explicating what comes out if one carries out the indications in the text;

16In this word, both prefixes a- and vi- have a negative meaning, so that avis.ama literally means
“not-not-equal.” Brahmagupta could not avoid the double negative and describe ABEC as an “equal
(quadrilateral)” (sama(caturasra)) because the latter is a classical name for the square.
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and temporary conclusions drawn from the analysis of each verse. The derivation of (*)
follows in Section 4.8. The formula for the diagonals (XII.28) is obtained as a consequence,
in Section 4.9. The conclusion (Section 5) summarizes the results.

2. The cyclic quadrilateral before and after Brahmagupta

After reviewing briefly a few early texts, from which the independence of the area
of a cyclic quadrilateral from the order of its sides may be concluded, the reception of
Brahmagupta’s results in India is discussed. Previous attempts at understanding Brah-
magupta’s text are then analyzed.

2.1. Cyclic quadrilaterals in India before Brahmagupta. The oblong and the isosce-
les trapezium occur as early as the Śulva-sūtras,17 the earliest treatises of geometry extant
in India. The objective of these works is the construction of complex figures of prescribed
area by tiling bricks having elementary shapes, such as squares and oblongs, and their
subdivisions by diagonals.18 Complex areas are computed by expressing them as sums or
differences of other areas. General results on the transformation of figures into one an-
other, without change of area, are given. Besides rectilinear figures, a figure in the shape
of a wheel without spokes is constructed by adding to a solid square four segments of its
circumcircle, called pradhis. Thus, the area of the square is obtained from the area of
the circle by subtracting the area of four segments of a circle (Baudhāyana, III.179–18619

[Thibaut, 1875]). A consequence of the construction of the wheel without spokes that will
be used below is the independence of the area of the cyclic quadrilateral from the order
of the sides. Consider a cyclic quadrilateral ABCD, enclosed by chords of lengths a, b, c,
and d determining a decomposition of the circle into four arcs ã, b̃, c̃ and d̃. The area of
the quadrilateral is obtained from that of the circle by removing four segments of a circle,
each determined by one chord. Forming a cyclic quadrilateral by subtracting segments of
a circle shows that its area does not depend on the order of the chords that enclose it.

Among figures inscribable in a circle, the isosceles trapezium, which figures prominently
in Brahmagupta’s geometry, had been studied earlier in India (see, e.g., [Sarasvati Amma,

1999, Chap. 4; Datta and Singh, 1980]). In the Śulvasūtras, it is called ekato’n. imat,
literally, “shorter on one side.” Ābh II.8 expresses in particular its area as the product of
the half sum of the (unequal) sides by the (perpendicular) distance separating them.

2.2. Reception of Brahmagupta’s results in India. After Brahmagupta, one finds his
formula (*), and many of his other propositions, repeated in later works without proper
interpretation, to the extent that Bhāskara II (b. 1114 a.d.) considered it inexact. He
gives an example of a noncyclic trapezium in which the formula does not give the correct

17“Aphorisms of the Cord,” ca. 800-400 b.c. [Thibaut, 1875, 1882; Bürk, 1901/1902; Baudhāyana, 1979;
Sen and Bag, 1983; van Gelder, 1963; Datta, 1932, Ch. 5; Kichenassamy, 2006].

18Triangular bricks in the Śulva-sūtras are generally obtained by division of oblongs: “The division [of
rectangular bricks] is always to be made following the diagonals in case there is no special direction given”

(in Sanskrit: nityamaks.n. ayāpacchedanamanādeśe, Baudhāyana Śulvasūtra III.65 [Thibaut, 1875]).
19This corresponds to 16.1–16.5 in the numbering of Sen and Bag [1983].
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area, observes that the sides of a quadrilateral do not determine the diagonals, and calls
a fiend (písāca) one who would seek to determine the area by the sides alone without
specifying a diagonal or a perpendicular.20 He does not give Brahmagupta’s formula for
the circumradius; without knowledge that the quadrilateral is made of chords of a circle,
the misunderstanding is perhaps logical. Most of the other results in Chapter XII of BSS
are given by Bhāskara II, but in a different order. Thus, XII.24 appears, rearranged, as
the second proposition of the chapter on closed figures in L̄ılāvat̄ı, and is interpreted as
stating the theorem on the square on the diagonal of an oblong in three equivalent ways,
for the benefit of beginners. Quoting Brahmagupta’s formula XII.28 for the diagonals of
a cyclic quadrilateral, he gives a simpler formula, which, however, applies only in special
cases, and wonders why earlier authors have given a more complicated result.21

A
B′

B

C
D

D′

Figure 4. Quadrilaterals ABCD, AB′CD and ABCD′ all have the same
sides. Interchange of the arcs subtending AD and CD transforms ABCD
into ABCD′. Interchange of arc(AB) and arc(BC) yields AB′CD. The
diagonals of ABCD are AC and BD, and the “third diagonal” is BD′ =
B′D.

The study of the cyclic quadrilateral was taken up in the 14th century. These works,
which led to the recognition that Brahmagupta’s formula is correct for an arbitrary cyclic
quadrilateral, make use of the “third diagonal,” defined as follows (see Fig. 4). The basic
operation is the interchange of two arcs of a circle22 defined by the cyclic quadrilateral

20L̄ılāvat̄ı 168–172 [Colebrooke, 1817, 72–73].
21L̄ılāvat̄ı 190–192 [Colebrooke, 1817, 80–81].
22This operation is called parivartana (interchange) by Nārāyan. a Pan.d. ita. His Gan. ita Kaumud̄ı, 1356

a.d. [Sarasvati Amma, 1999, 96 and 11], uses it to obtain properties of cyclic quadrilaterals. Similar
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ABCD. Let ã = arc(AB), b̃ = arc(BC), c̃ = arc(CD) and d̃ = arc(DA). To interchange c̃

and d̃, define a new point D′ on the circle such that arc(CD) = arc(D′A) and arc(DA) =

arc(CD′). Thus, ABCD′ defines a subdivision of the circle into arcs ã, b̃, d̃, c̃, in this order.
Quadrilaterals ABCD and ABCD′ have the same set of sides, in a different order. They
are obtained from the circle by removing four segments of the circle, determined by the
same four chords. The enclosed area has therefore not been changed by the operation. The
two quadrilaterals have diagonal AC in common. Similarly, to interchange ã and b̃, one
introduces the point B′ such that arc(AB′) = arc(BC). This generates a new quadrilateral
AB′CD, with the same area and the same set of sides, in the order: b, a, c, d. Now, the
lengths of the diagonals of all possible quadrilaterals obtained from ABCD by repeated
interchange of arcs may only take three values: the chords of arcs ã+ b̃, ã+ c̃, and ã+ d̃.23

The chords subtending ã + b̃ = arc(AC) and ã + d̃ = arc(BD) are the diagonals AC and
BD of quadrilateral ABCD. The chord subtending the third arc ã + c̃ = arc(BD′) is a
diagonal of ABCD′; its length is called the “third diagonal” of the quadrilateral ABCD.
The three diagonals of ABCD are AC, BD and the “third diagonal” BD′ = B′D.24

A proof of (*) is outlined in Yuktibhās. ā,
25 and summarized in [Sarasvati Amma, 1999,

Chapter IV]. The Yuktibhās. ā does not refer to Brahmagupta for (*), but quotes Bhāskara
II instead, including his comment that the result is unclear (asphut.a) [Sarma, 2008, 122].
The Yuktibhās. ā also makes use of the third diagonal. Brahmagupta does not mention it,
although its expression in terms of the sides is very similar to his Proposition XII.28. This
suggests he did not follow the rationale described in Yuktibhās. ā.

Thus, (*) was finally recognized as correct, but Brahmagupta’s derivation had been lost,
and the result was rederived along other lines. It was left to the historians of mathematics
to reconstruct Brahmagupta’s derivation.

2.3. Previous contributions to the understanding of XII.21. Even though previous
works have failed to provide a consistent explanation of how Brahmagupta could have
arrived at (*) with the means at his disposal, the contributions discussed next helped
contextualize Brahmagupta’s propositions by bringing out which principles, procedures
and results may be taken for granted, and which may not. Also, some of them have had
an influence on modern mathematics. Contributions containing gross misrepresentations
or factual errors are not reviewed.

results are also given by Parameśvara [Gupta, 1977] and the mathematicians of the later Āryabhat.a school
of South India [Sarma, 2008].

23The chord of c̃+ d̃ for instance, is equal to that of ã+ b̃.
24The diagonal B′D of quadrilateral AB′CD is equal to BD′, because they subtend the same arcs;

indeed, using the definition of B′ and D′, arc(B′D) = arc(B′C) + arc(CD) = arc(D′A) + arc(AB) =
arc(D′B).

25The Gan. ita-yuktibhās. ā by Jyes.t.hadeva, ca. 1530 [Sarma, 2008], or Yuktibhās. ā for short, in Malayāl.am
(a Dravidian language of South India), “purports to give an exposition of the techniques and theories
employed in the computation of planetary motions” in the Tantrasaṁgraha (ca. 1500 a.d.). It often
quotes the L̄ılāvat̄ı, but, according to the index, it cites only two of Brahmagupta’s propositions, on
negative numbers and on the rule of three [Sarma, 2008, 74 and 596].
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Chasles [1837, 420–447] sees in Brahmagupta’s Propositions XII.21–38 an outline of a
general theory of quadrilaterals in which all the lines considered by Brahmagupta are ra-
tional.26 Indeed, XII.33–38 explain how to obtain, in terms of arbitrary quantities (rāśi),
the sides of distinguished quadrilaterals.27 Chasles considers that Brahmagupta’s proposi-
tions constitute steps leading up to the construction of such rational quadrilaterals. This
leads him to modify the order of the propositions.28 He assumes that what Colebrooke
translates by “trapezium” (the vis.ama) must always have perpendicular diagonals. But
since XII.21 does not use this word, he considers that Brahmagupta meant (*) to hold for
all cyclic quadrilaterals. Chasles also points out that a given set of chords, a, b, c, and d
in a circle in general do not determine one but three essentially different cyclic quadrilat-
erals, as explained in the previous section. Now, Chasles continues, if one starts with a
quadrilateral with perpendicular diagonals, interchange leads in general to a quadrilateral
with nonperpendicular diagonals. One should therefore include the consideration of gen-
eral quadrilaterals when interpreting XII.21. He does not investigate a possible derivation
of formula (*) because he considers the formula to be adequately understood in modern
terms, and refers to Legendre’s treatise [1817]. His detailed analysis of the history of (*)
after the late sixteenth century will not be repeated here, since it is not germane to the
question of Brahmagupta’s derivation.29 The modern history of (*), or its generalizations,
are also not discussed.

Hankel [1874] also considers that XII.21 deals with cyclic quadrilaterals, because the
radius of the circumcircle is given in XII.26, and all of XII.21–28 require it for their va-
lidity.30 However, for him, Brahmagupta meant (*) to apply only to quadrilaterals with
perpendicular diagonals, and XII.21–38 could not have constituted “a general theory of the

26This interpretation seems to have initiated the modern study of rational quadrilaterals, starting with
Kummer’s classic work [1848], in which he quotes Colebrooke’s translation of XII.33–38.

27XII.38 uses the word jātya, literally, “(well) generated.” Kusuba [1981] translates it by “well-born,”
and Datta and Singh [1980, 129] by “noble,” “well-born,” “genuine.” Datta and Singh suggest that the
term applies to right triangles only, and that this usage “seems to imply that all other triangles are derived
from it.”

28Chasles lists the propositions in the order: 24, 22, 21, 27; 35, 33, 34; 21, 28, 26, 23, 25, 29–32, 35–38.
Here, XII.21 and XII.35 are repeated because the statements for triangles and quadrilaterals are separate
in his argument.

29According to Chasles, the earliest proofs outside India appear to be by Naudé and Euler in the
eighteenth century. According to Euler [1750, 57], Naudé’s work was very complicated: “. . . non solum
maxime est intricata et multitudine linearum in figura ductarum obruta, ut sine summa attentione ne
capi quidem possit, sed etiam ubique nimis luculenta vestigia analytici calculi offendunt. . . ” (“. . . not only
exceedingly intricate with a multitude of lines covering the figure, so that indeed it cannot be understood
without the greatest attention, but also the clear vestiges of analytical calculus everywhere create too
much of a problem.” Translation by A. Glover, under the supervision of H. White; it is part of the Euler
Archive.) Euler therefore produced a different proof, and stated that a simpler one using “analysis” was
available, but does not give it. He may have had in mind a proof similar to Legendre’s [Legendre, 1817,
Note V, Problème II, 297–298], based on the expression of the diagonals, i.e. Brahmagupta’s XII.28. The
desire to produce a proof along Euclidean lines, without using indeterminate analysis, seems to have been
an important concern in works of this later period.

30See also [Sarasvati Amma, 1999, 92; Kusuba, 1981].
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cyclic quadrilaterals, which would have far exceeded the geometric means at the Indians’
disposal.”31 Those means, in his view, proceed from two principles: a “Principle of con-
gruence,” and a “Principle of similarity;” he takes it for granted that the concept of angle
was known. The first principle expresses that “the same constructions lead to the same
figure”32 He considers that the principle of congruence implies a principle of symmetry.33

About the second principle, he considers that it “finds frequent application in the restricted
form of the proportionality of the sides of triangles that have one common angle and the
sides opposite [the angle] parallel, at times however in a very general framework.”34 He
does not give references for these points, apart from a quote from a commentary of XII.26,
on the circumradius. However, this passage may just as well be taken to be a paraphrase
in terms of proportions, rather than a hint at the reason why the proportion is true. He
does not discuss the content of XII.21–38 in any further detail.

Now Hankel’s insight into the underlying principles at work, if one removes from them
the reference to angles and parallels, will be confirmed in this article in two respects. First,
proportion35 is applied to geometric problems; we shall see in the discussion of XII.25 that
it is possible to derive proportions on right triangles without reference to the equality of
angles. Second, mirror symmetry, or symmetry with respect to an axis, seems to be invoked
in early geometric texts: the Śulva-sūtras begin all their constructions with the definition
of an “East(-West) axis” or prāc̄ı, and the construction of its perpendicular. For figures
symmetric with respect to an axis, only half of the figure is described; it is considered as
clear that the other half is then determined.36 Problems involving reflected light occur in
Chapter XIX of BSS, and lead to proportions between right triangles [Sarasvati Amma,
1999, 254–256].

Zeuthen [1876]37 accepts Hankel’s hypothesis that Brahmagupta only considered quadri-
laterals with perpendicular diagonals, and seeks to derive Brahmagupta’s results without
using the concept of angle. He also points out that the addition theorem for the sine follows
easily from the consideration of trapezia, and suggests this was Brahmagupta’s motivation.
Weissenborn [1879] observes that the area of a cyclic quadrilateral with perpendicular di-
agonals admits a much simpler expression than (*): it is half the sum of the products of

31“Es handelte sich für den indischen Mathematiker hier keineswegs, wie Chasles meint, darum, eine
allgemeine Theorie der Kreisvierecke zu geben, welche die geometrische Hilfsmittel der Inder bei weitem
überstiegen hätte, als vielmehr Vierecke überhaupt berechnen zu können” [Hankel, 1874, 213].

32“. . . gleiche Constructionen zu derselben Figure führen” [Hankel, 1874, 206].
33He illustrates it on the figure obtained by completing a right triangle ABC inscribed in a circle of

center O into a quadrilateral so that it is symmetric with respect to two perpendicular axes. Using this
symmetry, he shows that all its angles are right: the quadrilateral is an oblong.

34“Dasselbe findet in der beschränkten Form der Proportionalität der Seiten von Dreiecken, welche
einen Winkel gemein und die gegenüberliegenden Seiten parallel haben, häufig Anwendung; zuweilen aber
in sehr allgemeiner Fassung.” [Hankel, 1874, 207].

35Proportion is called anupāta in XII.32.
36See e.g. Baudhāyana Śulvasūtra 1.6, 2.8, 8.11 [Sen and Bag, 1983].
37The following account of [Zeuthen, 1876] and [Weissenborn, 1879] is based on the corresponding

reports JFM 08.0001.02 and 11.0040.04 in the Jahrbuch über die Fortschritte der Mathematik.



Brahmagupta’s triquadrilateral 13

opposite sides. Indeed, if we consider the quadrilateral ABCF in Fig. 3, which has per-
pendicular diagonals, its area is 1

2
AC × BF : half the product of the diagonals. It follows

from XII.28 that the product of the diagonals is the sum of the products of opposite sides.
The result follows.38

Pottage [1974] also assumes the validity of XII.21 to be restricted in Brahmagupta’s
mind, and favors an induction based on examples in which the area may be computed by
other means. He shows in detail how the interchange operation leads to the refutation
of any area formula that would not be completely symmetrical in the sides.39 He notes,
following Peet [1923, 94], that the gross formula in XII.21 is an approximation in excess,
found in other traditions. He assumes that terminology and examples found in later texts
are in the continuity of Brahmagupta’s, and that (*) was derived by educated guessing.
He also feels that (*) was first obtained for triangles, identified with quadrilaterals with
one side of zero length, and then generalized to quadrilaterals. This generalization does
not seem to be documented in any ancient or medieval tradition. On the contrary, (*)
was rejected as inexact by Bhāskara II, who was aware that its analogue was correct for
triangles.

Kusuba [1981] analyzes XII.33–38 and discusses the possible generation of distinguished
quadrilaterals on the basis of “such figures that illustrate clearly the figures [Brahmagupta]
has discussed.” Regarding (*), he shows that it is a consequence of the expression of the
diagonals in terms of the sides (XII.28). Kusuba does not discuss the derivation of XII.28.

Many texts on the history of mathematics summarize, or adopt one or the other of the
above points of view, but do not add new elements. Proofs using modern methods, or
generalizations of (*), are not reviewed here.

Thus, the earlier contributions establish that Brahmagupta meant his formula (*) to
apply to a class of cyclic quadrilaterals, and that he was aware that the area depends on
the lengths of the sides, but not on their order. He used two auxiliary types of quadri-
laterals, called vis.ama and avis.ama, the latter being an isosceles trapezium. The place
of quadrilaterals with perpendicular diagonals in Brahmagupta’s propositions remained
problematic. The term tricaturbhuja was not investigated. Regarding mathematical tools
at his disposal, it became gradually clear that he did not use angles, but may have used
restricted symmetry and similarity arguments. We now list the tools that may be allowed
in the analysis of Brahmagupta’s propositions.

3. Mathematical tools known to Brahmagupta

The following tools or notions will be used freely in the reconstruction. They are found
in BSS, or in Indian mathematical texts prior to BSS.

• The square of the diagonal of an oblong is the sum of the squares of the perpendic-
ular sides (cf. Baudhāyana Śulvasūtra (I.48) [Thibaut, 1875] for the first statement

38This point was also made by R.C. Gupta in his review (MR 84d:01010) of [Kusuba, 1981] for the
Mathematical Reviews. He quotes [Gupta, 1974], which was not available to me.

39A function is completely symmetrical if it remains unchanged when its arguments are permuted in
any way whatsoever.
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of this result; see also Ābh II.17). The area of an oblong is the product of its sides,
and the area of a triangle is the product of the half-base and the perpendicular
dropped on the base.

• Mirror symmetry with respect to the vertical or horizontal axis: its properties are
used to solve the problems on mirror images and shadows in Chapters XII and
XIX of BSS [Sarasvati Amma, 1999, Chap. X]. They involve the similarity of right
triangles, see the discussion of XII.22 and XII.25 below.

• Identities: the difference of squares is the product of sum and difference (x2 − y2 =
(x+y)(x−y)); the square of a sum is the sum of squares to which the double product
is added; the square of a difference is computed similarly ((x±y)2 = x2+y2±2xy);
two quantities x and y can be computed from their sum and difference.

The mathematical portions of BSS (including Chapters XII, XVIII, XIX and XXI) docu-
ment the conceptual advances that Brahmagupta or his predecessors had achieved. Thus,
the type of computation that could be expected of Brahmagupta may be illustrated by
“Brahmagupta’s identity,” XVIII.65–66: if Na2 + k = b2 and Nc2 + l = d2, then

N(ad+ bc)2 + kl = (Nac+ bd)2.

This identity, and its application to the solution of quadratic equations in integers, are
among his most celebrated contributions to mathematics; see, e.g., [Varadarajan, 17–31].

4. Analysis of XII.21–28

Brahmagupta’s XII.21–28 is a list of propositions, without illustrations. All figures are
described in words, using different names for lines in different positions. The mathematical
operations on their lengths are formulated in such as way as to apply to several figures in
one blow, an example being XII.23, which applies to a symmetric quadrilateral ABEC,
whether its lower side is longer than its upper side or not. Thus, a single proposition may
encompass what the modern reader might see as several closely related statements. The
perpendiculars in the text are vertical.

4.1. Proposition XII.21.

4.1.1. Text and translation.

sthūlaphalaṁ tricaturbhujabāhupratibāhuyogadalaghātah.
bhujayogārdhacatus. t.ayabhujonaghātāt padaṁ sūks.mam (XII.21)

The product of half the sides and countersides is the gross area of a tri-
quadrilateral.40 Half the sum of the sides set down four times, and severally
lessened by the sides, being multiplied together, the square-root of the prod-
uct is the exact area.

40Colebrooke has “triangle and tetragon.”
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4.1.2. Gloss. The first part of XII.21 states that the area enclosed by ABCD is approxi-
mately

(1)
a+ c

2
× b+ d

2
.

This gross area (1) gives the correct result for oblongs (and squares). The practice of giving
results at different levels of accuracy side by side is widespread in Indian mathematics. It
has two advantages. First, there is no point in giving a minutely accurate result in one
part of a computation if other parts are affected by approximations. Second, the hierarchy
of better and better results may reflect the gradual development of the subject. For an
example that has been analyzed recently, see Kichenassamy [2006].

The commentary, equating “triquadrilateral” with “triangle and quadrilateral,” consid-
ers that (*) is also meant to apply to triangles, and suggests the last term should then be
s rather than s− d.

4.1.3. Comment. The gross formula refers to opposite sides. In contrast, the exact formula
does not specify the order in which the four sides should be taken; this is consistent with
the independence of the area on the order of the sides.

We may transform (*) using the identities (x + y)(x − y) = x2 − y2 and (x ± y)2 =
x2 + y2 ± 2xy. Since

s− d =
1

2
(a+ b+ c+ d)− d =

a+ c

2
+

b− d

2
,

and

s− b =
1

2
(a+ b+ c+ d)− b =

a+ c

2
− b− d

2
,

we have

(2) (s− b)(s− d) =

[
a+ c

2

]2
−
[
b− d

2

]2
.

In particular, unless b = d, √
(s− b)(s− d) <

a+ c

2
.

Arguing similarly with s− a and s− c, we obtain√
(s− a)(s− c) <

b+ d

2

unless a = c. Combining the two inequalities,√
(s− a)(s− b)(s− c)(s− d) <

a+ c

2
× b+ d

2

unless a = c and b = d. In particular, the gross area can never be less than the exact area
given by (*).
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4.1.4. Conclusion. The square of the exact area may be written{[
a+ c

2

]2
−

[
b− d

2

]2}
×

{[
b+ d

2

]2
−

[
a− c

2

]2}

This enables a comparison with the gross area. The expression in XII.21, however, shows
that the sides play a symmetric rôle in the formula. For later reference, we note that, by
exchanging b and c, and multiplying by 16, we obtain

16(Area)2 = [(a+ b)2 − (c− d)2]× [(c+ d)2 − (a− b)2].

4.2. Proposition XII.22.

4.2.1. Text and translation.

bhujakr. tyantarabhūhr. tah̄ınayutā bhūrdvibhājitā’’vādhe
svāvādhāvargonād bhujavargān mūlam avalambah. (XII.22)

The difference of the squares of the sides being divided by the base, the quo-
tient is added to and subtracted from the base: the sum and the remainder,
divided by two, are the segments. The square-root, extracted from the dif-
ference of the square of the side and the square of its corresponding segment
of the base, is the perpendicular.

4.2.2. Gloss. We are dealing with a figure with a base γ and two other sides a and b,
called arms;41 there are only two of these arms since Brahmagupta speaks of the difference
of their squares. He therefore suggests a triangle ABC with its base, perpendicular and
segments. These lines are represented in Fig. 2, in the case when the perpendicular falls
between A and C. Brahmagupta’s formulae are also valid in the other case; see below.
The sum of the segments is the base:

(3) α+ β = γ.

The proposition states that

α =
1

2

[
γ +

a2 − b2

γ

]
, β =

1

2

[
γ − a2 − b2

γ

]
,

and

h =
√
a2 − α2 =

√
b2 − β2.

41Compare with the “legs” of a triangle in English.
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4.2.3. Comment. Since BH is a perpendicular, a2 = α2+h2 and b2 = β2+h2. Subtracting,
we obtain

a2 − b2 = α2 − β2 = (α+ β)(α− β).

Let us call f the difference β − α; it is represented by line BE = HK in Fig. 2, and will
be used again in XII.23. We then have

f =
b2 − a2

γ
.

Since we know the sum and difference of α and β, we may recover their values. The
expressions for α, β and h follow.

Instead of subtracting, we could have added a2 and b2. This yields

a2 + b2 = α2 + β2 + 2h2.

Since (α± β)2 = α2 + β2 ± 2αβ, α + β = γ and β − α = f , we obtain relations we record
for later reference:

(4) a2 + b2 = γ2 + 2(h2 − αβ) = f2 + 2(h2 + αβ).

If the foot H of the perpendicular falls outside segment AC, we have γ = β − α and
f = α+β; the difference β2−α2 is equal to γf as before. As a consequence, Brahmagupta’s
statement, as he worded it, is valid in both cases.

The results take a simpler form if ABC is a half-oblong. We then have a2 + b2 = γ2,
and equation (4) yields

(5) αβ = h2

This result also follows from Ābh II.17. As a consequence, h/α = β/h: the two perpen-
dicular sides of AHB and BHC are in the same ratio; their hypotenuses a and b are then
also in the same ratio. We express this by saying that AHB and BHC are similar. On
the other hand, the formulae for α and β give

α =
a2

γ
, β =

b2

γ
,

hence the relations α/a = a/γ and β/b = b/γ. The relations a/γ = h/b and b/γ = h/a
follow from the equality of the two expressions for the area of ABC: 1

2
ab = 1

2
γh. Therefore,

AHB and BHC are also similar to ABC.

4.2.4. Conclusion. Brahmagupta uses here the theorem on the square of the diagonal of
an oblong (“Pythagoras’s theorem”) to determine, in terms of the sides of a triangle, the
perpendicular and its segments on the base. In the special case of a half-oblong, this result
implies that such a triangle is divided by a perpendicular into two triangles similar to itself.

4.3. Proposition XII.23.



18 S. Kichenassamy, Historia Mathematica (2010)

4.3.1. Text and translation.

avis.amacaturasrabhujapratibhujavadhayor yuteh. padaṁ karn. ah.
karn. akr. tir bhūmukhayutidalavargonā padaṁ lambah. (XII.23)

In a symmetric quadrilateral,42 the square-root of the sum of the products
of the sides and countersides, is the diagonal. Subtracting from the square
of the diagonal the square of half the sum of the base and face,43 the square-
root of the remainder is the perpendicular.

4.3.2. Gloss. This proposition refers to quadrilateral ABEC. Only one diagonal and one
perpendicular are computed: ABEC has equal diagonals and equal perpendiculars. The
“face” f = BE is the side opposite the base AC. The side BC of ABC is now the diagonal
of ABEC; see Fig. 2. The proposition expresses that

(6) b =
√

a2 + γf

and

(7) h =

√
b2 −

[
1

2
(γ + f)

]2
.

4.3.3. Comment. That it is preferable not to translate avis.ama by “isosceles trapezium”
is confirmed by Propositions XII.36 and XII.37. The former gives the sides of a spe-
cial isosceles trapezium, called “two-equal-quadrilateral” (dvisamacaturasra). This term
would be the analogue of “isosceles quadrilateral.” Similarly, XII.37 describes an isosceles
trapezium with three equal sides (trisama, “three-equal”). XII.38 calls caturvis.ama (“four-
un-equal”) a cyclic quadrilateral made by fitting two right triangles along their common
hypotenuse. The terms avis.ama or tricaturbhuja are not used in these propositions. It
might be wondered whether the phrase “two-equal” could refer to the equality of two di-
agonals rather than two sides. But if this were the case, the expression “four-un-equal”
would not make sense. We conclude that the technical term avis.ama here specifically refers
to the quadrilateral obtained by adding to ABC the point E symmetric to B with respect
to the vertical, as in Fig. 2. Brahmagupta expresses in XII.23 that it has equal diagonals
and perpendiculars. The symmetric quadrilateral ABEC may also be obtained from ABE
by adding the symmetric of A, namely C. From this perspective, f is the base of ABE,
but its perpendicular is the same. However, Brahmagupta’s formulae (6) and (7) remain
unchanged because γ and f play symmetric rôles in them.

We saw in XII.22 that b2 − β2 = a2 − α2 = h2. If, as in Fig. 2, γ is larger than f ,
γ = α+β. Since the perpendiculars BH and EK are equal and symmetrically placed with

42Colebrooke has “In any tetragon but a trapezium.”
43Colebrooke translatesmukha (literally, “face”) by “summit.” Chasles observes that “summit” suggests

a point rather than a line, and proposes to translate mukha by “coraustus.” All authors agree that the
mukha is the side facing the base.
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respect to the vertical, BEKH is an oblong, and f = BE = HK = β − α. Therefore, the
sum and difference of β and α are γ and f respectively, and

b2 = a2 + (β2 − α2) = a2 + (β + α)(β − α) = a2 + γf,

hence (6). Since β = 1
2
(γ + f), and h2 = b2 − β2, (7) follows. If γ is shorter than f , we

have f = α+ β and γ = β − α, and (6–7) follow as before.
Note that (4) should be replaced by

(8) a2 + b2 = γ2 + 2(h2 + αβ) = f 2 + 2(h2 − αβ)

if f > γ. The signs of the product αβ in these formulae are due to our taking α and β
positive.

4.3.4. Conclusion. Brahmagupta associates with any triangle a symmetric trapezium called
avis.ama. The symmetry enables him to translate XII.22 in terms of the sides of this trapez-
ium, and to obtain its diagonal and perpendicular in terms of them.

4.4. Proposition XII.24.

4.4.1. Text and translation.

karn. akr. teh. kot.ikr. tiṁ vísodhya mūlam bhujah. bhujasya kr. tim
prohya padaṁ kot.ih. kot.ibāhukr. tiyutipadaṁ karn. ah. (XII.24)

Subtracting the square of the upright from the square of the diagonal, the
square-root of the remainder is the side; subtracting44 the square of the side,
the root of the remainder is the upright: the root of the sum of the squares
of the upright and side is the diagonal.

4.4.2. Gloss. Colebrooke does not comment on the proposition, but his translation has a
colon before the last sentence. He may therefore have felt that XII.24 was an argument
in three parts, the third part being the conclusion. The terms bhuja, kot.i refer to two
perpendicular lines; the karn. a is the diagonal of the oblong they define. The three sentences
in XII.24 therefore refer to right triangles—but not necessarily to the same one. For it is
difficult to interpret them as giving three obviously equivalent forms of the theorem on the
square of the diagonal of an oblong. Given what has been omitted in the rest of the text,
such redundant expressions would be odd on Brahmagupta’s part. If his intention had
been to present three different forms of the same result for teaching purposes, he would
have put the last part of XII.24, on the sum of squares, in the first position, since this is
the classical form of the result in earlier literature. In fact, this is what Bhāskara II did.45

Also, this result has already been used several times in the preceding propositions.

44Colebrooke has “or subtracting.”
45L̄ılāvat̄ı 133–134 [Colebrooke, 1817, 58–59].
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Figure 5. XII.24: Oblong ABCL inscribed in a circle. Triangle ABC and
its perpendicular BH are as in XII.22–23.

4.4.3. Comment. XII.22 led to the equation h2 = αβ (Eq. (5)) if ABC is half of oblong
ABCL; see Fig. 5. This suggests the following question: What if we do not know that
ABC is a half-oblong (i.e., a right triangle), but merely that A, B and C lie on the circle of
radius r, centered at the midpoint O of AC? The first sentence of XII.24 suggests writing,
using XII.22,

α2 = a2 − h2 and β2 = b2 − h2.

Now, apply the second sentence of XII.24 to triangle BHO: subtract in it the square of the
arm from the square of the diagonal r2. This yields a new expression for the perpendicular
squared, namely

h2 = r2 −OH2 = (r −OH)(r +OH) = αβ.

Combining with the previous equalities, we obtain

γ2 = (α+ β)2

= α2 + β2 + 2αβ

= (a2 − h2) + (b2 − h2) + 2h2

= a2 + b2.

Therefore, the sum of the two arms squared equals the base squared. Thus, the last part of
XII.24 is obtained. A confirmation of this interpretation is provided by Ābh II.17 [Clark,
1930]:

Ābh II.17: The square of the bhujā plus the square of the kot.ı̄ is the square
of the karn. a. In a circle the product of the two śaras [arrows] is the square
of the half-chord of the two arcs.
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With reference to Fig. 5, the arrows are AH and HC, and AC is the diameter through H.
The second sentence is therefore the equation h2 = αβ. This proposition suggests that the
statement of the sum of squares was accompanied by the consideration of a half-oblong
inscribed in a semicircle.

4.4.4. Conclusion. It is not cogent to assume that XII.24 states three times the theorem
on the square of the diagonal. It is possible to interpret it as expressing that a triangle of
which one side is a diameter of its circumcircle is a half-oblong.

4.5. Proposition XII.25.

4.5.1. Text and translation.

karn. ayutāvūrdhvādharakhan. d. e karn. āvalambayoge vā
svāvādhe svayutihr. te dvidhā pr. thak karn. alambagun. e (XII.25)

At the intersection of the diagonals, or the junction of diagonal and a per-
pendicular, the upper and lower portions of diagonal, or of the perpendicular
and diagonal, are the quotients of these lines taken into the corresponding
segment of the base and divided by the corresponding connection.46

a
P Q

J

M

ℓ p

f

αA H K C

B E

Figure 6. Symmetric quadrilateral with the intersections of diagonals and
perpendiculars. Notation of Figure 2 applies.

46Colebrooke has “by the complement of the segments.”
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P Q

ℓ p

α fA H K

B E

Figure 7. The proportions ℓ = bα/β and p = hα/β. Here, b = AE,
h = KE and β = α+ f .

4.5.2. Gloss. Consider again the symmetric quadrilateral ABEC and its diagonals and
perpendiculars; see Fig. 6. The diagonals meet at J ; the diagonal AE and perpendicular
BH meet at P ; similarly, BC and EK meet at Q. The problem is to determine the
segments of diagonals and perpendiculars thus defined, such as AP , PE or BP , PH.
Brahmagupta gives a common method for all these problems: First, the segments of a
diagonal are in the same proportion as the corresponding segments of the base, called
here “own segment” and “own connection” (svāvādhā and svayuti). Second, the same
proportion gives the segments of the perpendicular. For instance, regarding the lower
segment AP = ℓ of the diagonal, and the lower segment PH = p of the perpendicular, the
proposition states that

ℓ = b× α

β
and p = h× α

β
.

The “own segment” is here the segment AH of AC determined by the foot H of the per-
pendicular dropped from the point of intersection, here P . The “own connection” is the
length of the line AK connecting or joining A to the foot K of the perpendicular dropped
from the end E of the diagonal. Colebrooke gives this interpretation, but translates svayuti
by “complement of the segments,” explaining that it is “the line which joins the extremities
of the perpendicular and diagonal. It is the greater segment of the base or complement of
the less.” Since Brahmagupta introduces a new term, svayuti, rather than referring to the
“greater segment,” it may be that he had in mind a more general situation. Indeed, the
formula for ℓ—unlike the result for the perpendicular—remains valid even if the quadrilat-
eral is not symmetric, because ℓ does not depend on the position of B on the perpendicular



Brahmagupta’s triquadrilateral 23

BH. We therefore suggested a more literal translation which would give a correct result
in non-isosceles figures.47

4.5.3. Comment. The results reflect the similarity of half-oblongs AHP , AKE and EBP ;
see Fig. 7.48 A possible derivation is as follows. With the notation of Fig. 7, the area
AKE = 1

2
βh is the sum of APK and KPE. The bases of the latter are respectively

β = AK and h = KE. Their perpendiculars are PH = p and PQ = f . Therefore,
1
2
βh = 1

2
(βp+ fh). It follows that βp = (β − f)h = αh, or

p = hα/β,

as given in XII.25. Therefore, AHP and AKE are similar, and their hypotenuses ℓ and b
are in the same relation as the other sides:

ℓ = bα/β.

By a similar argument, PQE and AKE are also similar. Since the oblong BEQP is
divided into equal parts PQE and EBP by its diagonal PE, EBP is also similar to
AKE. Therefore, BP/KE = BE/AK, or BP = h× f/β. This recovers the statement in
XII.25 about the upper segment of the perpendicular. The upper segment of the diagonal
may be computed similarly.

4.5.4. Conclusion. We saw in XII.22 that half-oblongs were divided by a perpendicular into
similar triangles. Proposition XII.25 shows that a second form of similarity, the similarity
of right triangles in the configuration of Fig. 7, may also be derived with the tools at hand.
Part of the proposition also applies without assuming that the quadrilateral is symmetric,
as suggested by the use of the word svayuti.

4.6. Proposition XII.26.

4.6.1. Text and translation.

avis.amapārśvabhujagun. ah. karn. o dvigun. āvalambakavibhaktah.
hr.dayaṁ vis.amasya bhujapratibhujakr. tiyogamūlārdham (XII.26)

The diagonal of a symmetric quadrilateral,49 being multiplied by the flank,
and divided by twice the perpendicular, is the central line; and so is, in the
(corresponding) asymmetric quadrilateral,50 half the square-root of the sum
of the squares of opposite sides.

47Plofker [2009, 146] also observes that XII.25 partially applies to scalene quadrilaterals.
48Related results are given in the treatment of shadows (XII.53–54) and of problems combining shadows

and mirror symmetry (XIX.17–20, analyzed in [Sarasvati Amma, 1999, 253–256]). The perpendicular JM ,
in the notation of Fig. 6, is also determined in Ābh II.8. Similarity relations involved in shadow problems
are also found in Ābh II.15–16.

49Colebrooke has “a tetragon other than a trapezium.”
50Colebrooke has “in a trapezium.”
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4.6.2. Gloss. This proposition locates the “heart” (hr.dayaṁ): a point O at equal distances
from all vertices of a symmetric or asymmetric quadrilateral. We must determine which
two quadrilaterals are meant. Propositions XII.26 contains two statements, but the word
hr.dayaṁ is given only once, and is common to both sentences. Therefore, both quadri-
laterals in XII.26 are inscribed in the same circle, the circumcircle of ABC, and O is its
center. The first sentence refers to the symmetric quadrilateral ABEC; it states that

r =
ab

2h
,

where r is the circumradius of ABEC, and a, b, and h have the same meaning as before,
see Fig. 2. The second part of XII.26 refers to an asymmetric quadrilateral, which, like
ABEC, should also be determined by ABC. Just as B and E were placed symmetrically
with respect to the vertical, it is natural to introduce F , symmetric of B with respect to the
horizontal axis of symmetry, see Fig. 3. The axes of symmetry are represented by dashed
lines on the figure. Letting c′ = CF and d′ = FA, the second part of XII.26 expresses that

r =
1

2

√
a2 + c′2 =

1

2

√
b2 + d′2.

Since the text refers to opposite sides, without specifying which pair is meant, we conclude
that the relation a2 + c′2 = b2 + d′2 is part of the proposition.

4.6.3. Comment. To derive the first line of XII.26, we have to locate the “heart” O of
quadrilateral ABEC, see Figure 8. It is natural to consider the footM of the perpendicular
dropped from O to the base AC, and the foot N of the perpendicular dropped to the
face BE. Let h1 = MO, h2 = ON , and recall the relations γ = α + β, f = β − α,
AM = 1

2
AC = γ/2 and BN = 1

2
BE = f/2. We now express that the distances OA and

OB are equal. We shall then have automatically OA = OB = OE = OC by symmetry;
the common value of these distances is r.

We distinguish three cases, depending on the position of O: in Case I (see Fig. 8), it lies
between the base and face; in Cases II and III, it does not. In Case II, it is closer to the
base than to the face; see Fig. 9. In Case III, it is closer to the face (see Fig. 10); this case
may only occur if the face is longer than the base. The relations r2 = OA2 = OB2 yield
that

(9) r2 = h2
1 + (

1

2
γ)2 = (

1

2
f)2 + h2

2

hold in all cases. They imply that

(10) h2
2 − h2

1 = (γ/2)2 − (f/2)2.

One could reduce Case III to Case II by exchanging the rôles of base and face; however,
the formulae in Case III will be useful in the derivation of (*).

Case I. Here, O lies between M and N (Fig. 8), and

h = h1 + h2.
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If γ > f , (γ/2)2− (f/2)2 = αβ, and (10) yields h2
2−h2

1 = αβ. Since the sum and difference
of h1 and h2 are known, we obtain

h1 =
1

2

(
h− αβ

h

)
, h2 =

1

2

(
h+

αβ

h

)
.

In particular,

2hh1 = h2 − αβ.

so that

(11) (2hh1)
2 = (h2 − αβ)2.

Since r2 = h2
1 + (γ/2)2 and γ = α+ β,

4r2h2 = (2hh1)
2 + (hγ)2

= (h2 − αβ)2 + (hα+ hβ)2

= (h2 + α2)(h2 + β2) = a2b2.

Therefore,

r =
ab

2h
.

This is the first line of XII.26. If γ < f , the expressions for h1 and h2 should be exchanged,

(12) 2hh1 = h2 + αβ,

and 2hh2 = h2 − αβ. Since r2 = h2
2 + (f/2)2 by Eq. (9), and f = α + β, the argument

proceeds as before.
Case II. M lies between O and N (see Fig. 9), and

h = h2 − h1.

Since γ > f , (γ/2)2 − (f/2)2 = αβ, and h2
2 − h2

1 = αβ as before. This leads to

h1 =
1

2

(
αβ

h
− h

)
;

the expression for h2 is unchanged, and

2hh1 = αβ − h2.

Thus, Eq. (11) is still valid. The determination of r is therefore completed as in Case I.
Case III. N lies between O and M (see Fig. 10), and

h = h1 − h2.

Since now γ < f , (f/2)2 − (γ/2)2 = αβ, and h2
1 − h2

2 = αβ. This leads to

h1 =
1

2

(
αβ

h
+ h

)
, h2 =

1

2

(
αβ

h
− h

)
.

Thus,

2hh1 = h2 + αβ.
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r

r

M

h1

h2

O

N

A C

B E

Figure 8. Proposition XII.26. Derivation of the circumradius of ABCE
using the circumcenter: Case I. The perpendicular h = h1 + h2, where h1 =
OM and h2 = ON .

Since γ is now β − α, we obtain

4r2h2 = (2hh1)
2 + (hγ)2

= (h2 + αβ)2 + (hβ − hα)2

= (h2 + α2)(h2 + β2) = a2b2;

hence r = ab/(2h) as before. This completes the derivation of the first line of XII.26. The
values of 2hh1 in each of the three cases are summarized in Table 1 for later reference.

h = h1 + h2, h2
2 − h2

1 = αβ, 2hh1 = h2 − αβ;(I)

h = h2 − h1, h2
2 − h2

1 = αβ, 2hh1 = αβ − h2;(II)

h = h1 − h2, h2
1 − h2

2 = αβ, 2hh1 = h2 + αβ.(III)

Table 1. XII.26: Basic results in each of the three cases: O between base
and face, and the base is longer than the face (I); O below the base (II); O
above the face, which is then larger than the base (III).

We now turn to the derivation of the second line of XII.26. Consider Fig. 11. Introducing
G symmetric to F with respect to the vertical axis, we obtain a quadrilateral BEGF ,
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Figure 9. Proposition XII.26. Derivation of the circumradius of ABCE
using the circumcenter. Case II: h = h2 − h1. The base is larger than the
face.

symmetric with respect to both axes. It is therefore an oblong, and its diagonals are
diameters: EF and BG are diameters of the circumcircle. We may therefore apply XII.24
to any triangle having a diameter as a side, and any one of the other points on the circle
as third vertex. Applying XII.24 to BAG, we obtain

(2r)2 = AB2 + AG2.

By symmetry with respect to the vertical axis, AG = FC = c′. On the other hand,
AB = a. Therefore,

(2r)2 = a2 + c′2.

Similarly, applying XII.24 to EAF , we obtain

(2r)2 = AE2 + AF 2.

By symmetry again, AE = BC = b. On the other hand, AF = d′. Therefore,

(2r)2 = b2 + d′2.

This establishes the second part of XII.26.

4.6.4. Conclusion. The circumradius of ABEC is obtained first, by the most direct ar-
gument, using the center. Next, the circumradius of ABCF is obtained using XII.24, by
observing that EF—the line joining the two points that have been obtained from B by
symmetry—is a diameter of the circumcircle.
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Figure 10. Proposition XII.26. Derivation of the circumradius of ABCE
using the circumcenter. Case III: the face is now longer than the base, and
h = h1 − h2.

4.7. Proposition XII.27.

4.7.1. Text and translation.

tribhujasya vadho bhujayor dvigun. italamboddhr. to hr.dayarajjuh.
sā dvigun. ā tricaturbhujakon. aspr.gvr. ttavis.kambhah. (XII.27)

The product of the two sides of a triangle, divided by twice the perpendicu-
lar, is the central line: and the double of this is the diameter of the exterior
circle51 of a triquadrilateral.52

4.7.2. Gloss. This proposition is in two parts. The first line states that for a trilateral
ABC, the central line (hr.dayarajju, literally, “heart-cord”), in other words, the radius r of
the circumcircle is given by

r =
ab

2h
,

in the notation of the derivation of XII.26. The association of a cord to a length could
be a reference to the Śulvas, where lengths are prescribed by means of prepared cords;
see Kichenassamy [2006]. The second line of XII.27 states that 2r is the diameter of the

51A literal translation would be “the corner-touching-circle.”
52Colebrooke omits the last three words, which translate tricaturbhuja.
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A C

B E

F G

H

Figure 11. Proposition XII.26. Derivation of the formula for the circumra-
dius of ABCF . Lines BG and EF are diameters of the circumcircle; h = BH
and k = FH.

circumcircle of a triquadrilateral. This is the first explicit mention of a circle in this chapter,
and the only reference to the triquadrilateral since XII.21.

As in XII.24, we meet with an apparent redundancy: since the circumcircle of ABC is
also the circumcircle of the symmetric quadrilateral ABEC, it would appear that the first
line of XII.27 does not bring anything new compared to the first line of XII.26. Moreover,
if “triquadrilateral” really meant “triangle and (unrelated) quadrilateral,” this would mean
that Brahmagupta stated the result regarding the triangle twice in the same proposition.
We suggest below that the first line indicates a different way to determine r. Also, since
the same length gives the circumradius of a trilateral and a triquadrilateral, it appears
that the trilateral is not a special case of the triquadrilateral, and that the vertices of the
triquadrilateral all lie on the circumcircle of a triangle. Thus, the triquadrilateral is deter-
mined by adding a vertex on the circumcircle of a triangle. Conversely, the circumcircle of
a triquadrilateral is determined as the circumcircle of any of the associated triangles. Such
a triangle is determined by the choice of two adjacent sides of the quadrilateral.

4.7.3. Comment. It is possible to derive the circumradius of triangle ABC from the second
part of XII.26, using similarity of half-oblongs. This may be what Brahmagupta suggests
in the first line of XII.27. Assume first that AC lies between BE and FG, see Fig. 11.
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Applying XII.24 to EBF , we obtain

(2r)2 = EB2 +BF 2

= f 2 + (h+ k)2

= (β − α)2 + (h+ k)2

= (h2 + α2) + (k2 + β2) + 2(hk − αβ)

= a2 + c′2 + 2(hk − αβ).

Since (2r)2 = a2 + c′2 (by XII.26), we obtain

hk = αβ.

Therefore, triangles AHB and FHC are similar: α/k = h/β = a/c′, hence c′h = aβ, and

(2rh)2 = (a2 + c′2)h2

= (ah)2 + (c′h)2

= (ah)2 + (aβ)2

= a2(h2 + β2) = (ab)2.

This gives the first line of XII.27 in this case. If, on the contrary, AC does not lie between
BE and FG, one has (2r)2 = (α + β)2 + (h − k)2, and the argument is completed along
the same lines.

Up to now, no point on the circumcircle of ABC other than those that may be obtained
by symmetry with respect to the axes has been used. Once the “heart” O of ABC has
been determined, it is clear that any point D at distance r from O will have the property
that O is the “heart” of ABCD. Since a circle is usually determined by its diameter, we
conclude that Brahmagupta states, in the second line of XII.27, that 2r is the diameter of
the circumcircle of any quadrilateral ABCD with D on the circumcircle of ABC.

4.7.4. Conclusion. The circumradius of a triangle is obtained by a new application of
XII.24. The second line of XII.27 applies the result to the triquadrilateral. Thus, triangles
and triquadrilaterals form distinct classes of figures. This confirms that the generic term
for a cyclic quadrilateral is tricaturbhuja, a quadrilateral defined by a trilateral and a point
on its circumcircle.

4.8. Derivation of formula (*). XII.27 refers to the “triquadrilateral” (tricaturbhuja).
This word was used in XII.21, and not in any of the intervening propositions. This suggests
that the derivation of XII.21 may be completed on the basis of the information given
so far. We therefore consider a general triquadrilateral ABCD (see Fig. 12), obtained
by completion of a triangle ABC. The base AC = γ of the triangle is a diagonal of
ABCD; it divides the quadrilateral into two triangles, with sides (a, b, γ) and (γ, c, d), and
perpendiculars and segments h, α, β and h′, α′, β′ respectively.
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R

A C

D

B E

E ′

H H ′

KK ′

Figure 12. Derivation of (*) and XII.28. The perpendicular dropped from
B is BH = h; that from D is DH ′ = h′; also, AH = α, H ′C = α′, HH ′ =
β′ − α = β − α′. The diagonals are AC = γ and BD = δ.

Since ABC and ACD have areas γh/2 and γh′/2 respectively, the area of ABCD is
1
2
γ(h+h′). Because triangles ABC and ACD have the same circumradius r, XII.27 yields

2r =
ab

h
=

cd

h′ .

Therefore,

h+ h′ = (ab+ cd)/(2r),

and

(13) Area =
1

2
γ(h+ h′) =

γ

4r
(ab+ cd).

On the other hand, the diagonal AC is the common base of the two symmetric quadri-
laterals ABEC and ACDE ′ associated with ABC and ACD respectively. There are two
possibilities:53 (a) AC larger than BE and E ′D; (b) BE > AC > E ′D. In terms of the
discussion of XII.26, (a) means that one of the two quadrilaterals is in Case I, the other in
Case II; (b) means that ACDE ′ is in Case II, and ABEC is in Case I or III.

53One may perform a symmetry with respect to the horizontal to reduce the problem to one of these
cases if need be. An exceptional case such as γ = BE may only occur if ABEC is an oblong. The
discussion is unchanged, with now α = 0.
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Consider the situation (a) (see Fig. 12). Both symmetric quadrilaterals have their base
larger than their face: AC > BE and E ′D. ABEC is in Case I, and ACDE ′ in Case
II. Since both quadrilaterals have the same circumcenter, h1 = OM is common to them.
Therefore, by Table 1,

2hh1 = h2 − αβ; 2h′h1 = α′beta′ − h′2.

Using (4) and its analogue for ACD,

a2 + b2 = γ2 + 2(h2 − αβ) = γ2 + 4hh1,

c2 + d2 = γ2 + 2(h′2 − α′β′) = γ2 − 4h′h1.

Subtracting, we obtain

(14) 4h1(h+ h′) = a2 + b2 − c2 − d2.

Squaring (14), adding to it 16 times the square of (13), and using h2
1+(1

2
γ)2 = r2 (Eq. (9)),

we obtain

(a2 + b2 − c2 − d2)2 + 16(Area)2 = 16[h2
1 + (

1

2
γ)2](h+ h′)2

= 16r2(h+ h′)2

= 4(ab+ cd)2.

Thus, the square of the area is a difference of squares involving only the sides of ABCD:

16(Area)2 = 4(ab+ cd)2 − (a2 + b2 − c2 − d2)2(15)

= [2ab+ 2cd+ a2 + b2 − c2 − d2]× [2ab+ 2cd− a2 − b2 + c2 + d2]

=
[
(a+ b)2 − (c− d)2

]
×

[
(c+ d)2 − (a− b)2

]
.

From the conclusion of XII.21, (*) follows in this case.
The situation (b) is treated similarly. If ABEC is in Case I, but, unlike the above,

BE > γ, we need to use (8) for ACD rather than (4). Also, (12) gives h2 + αβ = 2hh1.
The formulae for quadrilateral ACDE ′ are unchanged. Therefore,

a2 + b2 = γ2 + 2(h2 + αβ) = γ2 + 4hh1,

c2 + d2 = γ2 + 2(h′2 − α′β′) = γ2 − 4h′h1.

The rest of the derivation of (*) is as before. Finally, if quadrilateral ABEC is in Case III,
and ACDE ′ in Case II, Table 1 now gives

2hh1 = h2 + αβ = α′β′ − h′2.

Using (8) for ABC, and (4) for ADC, we obtain

a2 + b2 = γ2 + 2(h2 + αβ) = γ2 + 4hh1,

c2 + d2 = γ2 + 2(h′2 − α′β′) = γ2 − 4h′h1.

Subtracting, we recover (14), and the derivation proceeds as before.
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Since the area does not depend on the order of the sides, we have, taking them in the
order a, c, b, d,

(16) 16(Area)2 = 4(ac+ bd)2 − [a2 + c2 − b2 − d2]2.

Thus, (15) and (16) give two expressions for the area: one involves the sum of products of
adjacent sides (ab+ cd); the other the sum of products of opposite sides (ac+ bd).

4.9. Proposition XII.28.

4.9.1. Text and translation.

karn. āśritabhujaghātaikyam ubhayathā’nyonyabhājitaṁ gun. ayet
yogena bhujapratibhujavadhayoh. karn. au pade vis.ame (XII.28)

The sums of the products of the sides about both the diagonals being divided
by each other, multiply the quotients by the sum of the products of opposite
sides; the square-roots of the results are the diagonals in an asymmetric
quadrilateral.54

4.9.2. Gloss. The equal diagonals of the symmetric quadrilateral (avis.ama) ABCE have
been determined in XII.23. Brahmagupta now determines the diagonals of the general,
asymmetric (vis.ama) quadrilateral ABCD. The proposition says that the diagonals are

γ =

√
ad+ bc

ab+ cd
(ac+ bd) and δ =

√
ab+ cd

ad+ bc
(ac+ bd).

Multiplying the two equalities, it follows that γδ = ac+bd. This expression for the product
of the diagonals is usually known as “Ptolemy’s theorem.”

It might be wondered whether the term vis.ama (asymmetric) in this proposition could
not refer to the special quadrilateral ABCF , with perpendicular diagonals, considered in
XII.26 (see Fig. 11), rather than the general triquadrilateral mentioned in the immediately
preceding proposition (XII.27). However, if Brahmagupta had only meant to refer to
ABCF , he would have stated a much simpler formula. Indeed, the diagonals of ABCF
are h+ k and α+ β. Calling a, b, c′, d′ the sides of ABCF as before, and applying the first
line of XII.26, we obtain

h =
ab

2r
and k =

c′d′

2r
.

By the second line of XII.26, 2r =
√
a2 + c′2 =

√
b2 + d′2. Therefore,

δ = h+ k =
ab+ c′d′√
a2 + c′2

.

A similar result holds for the other diagonal γ.

54Colebrooke has “in a trapezium.”
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4.9.3. Comment. From (13), we have

Area =
1

4r
γ(ab+ cd).

Arguing similarly with the other diagonal,

Area =
1

4r
δ(ad+ bc).

Therefore,

(17)
δ

γ
=

ab+ cd

ad+ bc
.

Now, recall Eqs. (15) and (16),

16(Area)2 = 4(ab+ cd)2 − (a2 + b2 − c2 − d2)2

= 4(ac+ bd)2 − (a2 + c2 − b2 − d2)2.

Let us compute a2 + c2 − b2 − d2 in terms of the segments of the perpendiculars on AC
(see Fig. 12, where b > a, d > c, and HK > H ′K ′). Now, as in the comment on XII.23,
we have

β − α = BE = HK.

Similarly, considering ACDE ′,

β′ − α′ = DE ′ = H ′K ′.

Also, HK +H ′K ′ = 2HH ′. Using XII.22, we obtain

b2 − a2 = β2 − α2 = γBE = γHK,

d2 − c2 = β′2 − α′2 = γDE ′ = γH ′K ′.

Adding and squaring, we obtain

(a2 + c2 − b2 − d2)2 = 4γ2HH ′2.

Now, considering half-oblong BRD (see Fig. 12), we have

δ2 = HH ′2 + (h+ h′)2.

Since 1
2
γ(h+ h′) = Area, we obtain

16(Area)2 + (a2 + c2 − b2 − d2)2 = 4γ2(HH ′2 + (h+ h′)2) = (2γδ)2.

Comparing with (16), we obtain

(2γδ)2 = 4(ac+ bd)2.

Taking into account (17), on the quotient of diagonals, XII.28 follows.
A similar argument applies in the other possible configurations. For instance, if a > b and

d > c, one should write a2−b2 = γHK, d2−c2 = γH ′K ′ and 4γ2HH ′2 = γ2(HK−H ′K ′)2 =
(a2 + c2 − b2 − d2)2. The argument is completed as before.
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4.9.4. Conclusion. The expression for the diagonals is a consequence of the determina-
tion of the area. Its counterpart for symmetric quadrilaterals has already been given in
Proposition XII.23.

5. Conclusion

Our analysis of BSS XII.21–28, taking into account the structure of the propositions,
their wording, and their mathematical consistency, establishes the following conclusions.

• The previous interpretations of XII.21–28, either following later Indian sources, or
assuming that Brahmagupta referred only to a restricted class of quadrilaterals,
lead to insuperable difficulties.

• The quadrilateral to which the area formula (*) applies is defined by a technical
term, tricaturbhuja (“triquadrilateral”), that has been overlooked in previous works.
It is formed by adding to a triangle ABC a fourth vertex D on the circumcircle of
the triangle; see Fig. 1. Two special choices of the fourth vertex are determined by
symmetry with respect to the vertical and horizontal axes of the circle, where the
vertical is the diameter perpendicular to AC. One obtains in this way ABEC and
ABCF , where E and F are the mirror images of B with respect to the vertical
and horizontal respectively. Of all these triquadrilaterals, only ABEC is symmetric
(avis.ama) with respect to the vertical; the others are asymmetric (vis.ama).

• Proposition XII.24 need not be interpreted, as is generally done, as stating three
times the same result. The analysis of XII.24, and its comparison with Ābh II.17
suggest that it expresses that a triangle in which one side is a diameter of its
circumcircle is a half-oblong.

• A restricted form of similarity, for right triangles, underlies Brahmagupta’s deter-
mination, in XII.25, of all the segments of the sides, perpendiculars and diagonals
of ABEC, determined by their points of intersection. The analysis of the term
svayuti shows that he was aware of more general situations than those involving a
symmetric quadrilateral.

• The first two lines of XII.26 give two different methods for the determination of the
circumradius of ABEC: one locating the center, the other involving the auxiliary
quadrilateral ABCF .

• The first line of XII.27 derives the circumradius of a trilateral from the second
line of XII.26. The second line of XII.27 applies the result to the triquadrilateral
ABCD.

• The area formula (*) is obtained by expressing the area of ABCD as the sum of
the areas of ABC and ACD, and by eliminating from the result all quantities other
than the sides, with the help of XII.22–27.

• The expressions for the diagonals of the triquadrilateral given in XII.28 are derived
from the area formula, using the independence of the area on the order of the
side-lengths.



36 S. Kichenassamy, Historia Mathematica (2010)

Thus, we have established that Brahmagupta’s text describes the conditions of applicability
of his area formula, together with the elements needed for its derivation, using a precise
and consistent terminology.
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Dvivedin, S. (Ed.), 1902. Brāhmasphut.a Siddhānta and Dhyānagrahopadeśādhyāya
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American Oriental Society 103, 353–360.
Plofker, K., 2007. Mathematics in India. In: Katz, V.J. (Ed.), Mathematics of Egypt,

Mesopotamia, China, India and Islam: A Sourcebook. Princeton University Press,
Princeton, pp. 385–514.

Plofker, K., 2009. Mathematics in India. Princeton University Press, Princeton.
Pottage, J., 1974. The mensuration of quadrilaterals and the generation of Pythagorean

triads: a mathematical, heuristical and historical study with special reference to
Brahmagupta’s rules. Archive for History of Exact Sciences 12, 299–354.

Sarasvati Amma, T., 1999. Geometry in Ancient and Medieval India. First edition.
Motilal Banarsidass, Delhi. Second revised ed.: 1999.

Sarma, K.V. (Ed./Tr.), 2008. Gan. ita-Yukti-Bhās.ā of Jyes.t.hadeva. With explanatory
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