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tests in Monte Carlo experiments without actually computing a bootstrap test
for each replication. These procedures are only about twice as expensive (per
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1. Introduction

The most appealing way to perform a bootstrap test is to calculate a bootstrap
P value. This may be done by seeing where the test statistic falls in the empirical
distribution of a number of bootstrap test statistics. The bootstrap P value is
simply the proportion of the bootstrap statistics that are more extreme than the
actual test statistic. When this P value is sufficiently small, we reject the null
hypothesis.

Theory suggests that bootstrap tests will generally perform better in finite sam-
ples than asymptotic tests, in the sense that they will commit errors that are of
lower order in the sample size n; see, among others, Hall (1992) and Davidson
and MacKinnon (1999b). A growing body of evidence from simulation experi-
ments indicates that bootstrap tests do indeed yield more reliable inferences than
asymptotic tests in a great many cases; see Davidson and MacKinnon (1999a,
2002a), MacKinnon (2002), Park (2003), and Gonçalves and Kilian (2004), among
many others.

Although bootstrap P values are often very reliable, this is certainly not true in
every case. For an asymptotic test, one way to check whether it is reliable is
simply to use the bootstrap. If the asymptotic and bootstrap P values associated
with a given test statistic are similar, we can be fairly confident that the former
is reasonably accurate. Of course, having gone to the trouble of computing the
bootstrap P value, we may well want to use it instead of the asymptotic one.

In a great many cases, however, asymptotic and bootstrap P values are quite
different. When this happens, it is almost certain that the asymptotic P value
is inaccurate, but we cannot be sure that the bootstrap one is accurate. One of
the contributions of this paper is a technique for computing modified bootstrap
P values which will tend to be similar to the ordinary bootstrap P value when
the latter is reliable but more accurate when it is unreliable. This technique is
closely related to the double bootstrap proposed in Beran (1988), but it is far less
expensive to compute. We therefore call it the fast double bootstrap, or FDB.
The amount of computational effort needed to compute an FDB P value, beyond
that needed to obtain an ordinary (single) bootstrap P value, is roughly equal to
the amount needed to compute the latter in the first place.

In the next section, we discuss basic concepts of bootstrap testing. We emphasize
the distinction between symmetric and equal-tail bootstrap tests, which can be
important for tests based on statistics that can take either sign. Then, in Sec-
tion 3, we review some theoretical results on the properties of bootstrap tests. In
Section 4, we propose two computationally efficient ways to estimate the perfor-
mance of bootstrap tests in simulation experiments. In Section 5, we introduce
the fast double bootstrap and show how FDB P values may be computed with
only twice as much effort as single bootstrap P values. In Section 6, we discuss
the relationship between the fast double bootstrap and the double bootstrap itself.
Then, in Sections 7, 8, and 9, we present results from simulation experiments on
three different types of hypothesis test. These provide some evidence on how well
the procedures proposed in this paper work in practice. Section 10 draws some
conclusions.
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2. Bootstrap Tests

Let τ denote a test statistic, and let τ̂ denote the realized value of τ for a particular
sample of size n. The statistic τ is assumed to be asymptotically pivotal, so that
the bootstrap yields asymptotic refinements, as we discuss in the next section. For
a test that rejects when τ̂ is in the upper tail, such as most tests that asymptotically
follow a χ2 distribution, the true P value of τ̂ is 1−F (τ̂), where F is the cumulative
distribution function, or CDF, of τ under the null hypothesis.

If we do not know F , we can often estimate it by using the bootstrap. We generate
B bootstrap samples, each of which is used to calculate a bootstrap test statistic
τ∗j for j = 1, . . . , B. We can then estimate F (τ̂) by F̂ ∗B(τ̂), where F̂ ∗B(τ) is the
empirical distribution function, or EDF, of the τ∗j . This EDF is often referred to
as the bootstrap distribution. Then the bootstrap P value is

p̂∗(τ̂) = 1− F̂ ∗B(τ̂) =
1
B

B∑

j=1

I(τ∗j > τ̂), (1)

that is, the fraction of the bootstrap samples for which τ∗j is larger than τ̂ . For a
test at significance level α, we reject the null hypothesis whenever p̂∗(τ̂) < α.

When τ can take on either positive or negative values, as is the case whenever it
has the form of a t statistic, we often wish to perform a two-tailed test. In this
case, there are two ways to proceed. The first is to assume that the distribution
of τ is symmetric around zero in finite samples, just as it is asymptotically. This
leads to the symmetric bootstrap P value

p̂∗S(τ̂) =
1
B

B∑

j=1

I
(|τ∗j | > |τ̂ |). (2)

As before, we reject the null hypothesis when p̂∗S(τ̂) < α. There is evidently a
close relationship between (1) and (2). Suppose that τ is a t statistic, so that τ2

is asymptotically χ2(1). Then the P value for τ̂ based on (2) is identical to the
P value for τ̂2 based on (1), when both are calculated using the same set of τ∗j .

The symmetry assumption may often be too strong, in which case we can instead
base a test on the equal-tail bootstrap P value

p̂∗ET(τ̂) = 2 min
(

1
B

B∑

j=1

I(τ∗j < τ̂),
1
B

B∑

j=1

I(τ∗j > τ̂)
)

. (3)

Here we calculate P values for one-tailed tests in each tail and reject if either of
these P values is less than α/2. Thus we reject when τ̂ either falls below the
α/2 quantile or above the 1 − α/2 quantile of F̂ ∗B(τ). The leading factor of 2 is
needed because it is twice as likely that τ̂ will be far out in one or other tail of the
bootstrap distribution as that it will be far out in one specified tail.

The power of tests based on symmetric and equal-tail bootstrap P values against
certain alternatives may be quite different, as is shown in Section 8. Moreover,
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these tests may have different finite-sample properties when the distribution of τ
is not symmetric around zero. There is reason to believe that the bootstrap may
perform better in finite samples for tests based on (2) than for tests based on (3),
because the order of the bootstrap refinement is often higher for two-tailed than
for one-tailed tests; see Hall (1992).

3. Inference from Bootstrap Tests

Beran (1988) shows that bootstrap inference is refined when the quantity boot-
strapped is asymptotically pivotal. We formalize the idea of pivotalness by means
of a few formal definitions. A data-generating process, or DGP, is any rule suffi-
ciently specific to allow artificial samples of arbitrary size to be simulated on the
computer. Thus all parameter values and all probability distributions must be
provided in the specification of a DGP. A model is a set of DGPs. Models are
usually generated by allowing parameters and probability distributions to vary
over admissible sets. A test statistic is a random variable that is a deterministic
function of the data generated by a DGP and, possibly, other exogenous variables.

A test statistic τ is a pivot for a modelM if, for each sample size n, its distribution
is independent of the DGP µ ∈ M which generates the data from which τ is
calculated. The asymptotic distribution of a test statistic τ for a DGP µ is the
limit, if it exists, of the distribution of τ under µ as the sample size tends to infinity.
The statistic τ is asymptotically pivotal for M if its asymptotic distribution exists
for all µ ∈ M and is independent of µ. Most test statistics commonly used in
econometric practice are asymptotically pivotal under the null hypotheses they
test, since asymptotically they have distributions, like standard normal or chi-
squared, that do not depend on unknown parameters.

If τ is a pivot, then bootstrap inference is exact, even for finite B, provided that
α(B + 1), or (α/2)(B + 1) in the case of an equal-tail test, is an integer. Such a
test is often called a Monte Carlo test; see Dufour and Khalaf (2001). However, if
τ is an asymptotic pivot but not an exact pivot, its distribution depends on which
particular DGP µ generates the data used to compute it. In this case, bootstrap
inference is no longer exact in general. The bootstrap samples used to estimate
the finite-sample distribution of τ are generated by a bootstrap DGP, which is in
general different from the DGP that generated the original data.

Suppose that data are generated by a DGP µ0, which belongs to M, and used to
compute a realization τ̂ of the random variable τ . Then, for a test that rejects for
large values of the statistic, the P value we would ideally like to compute is

p(τ̂) ≡ Prµ0(τ > τ̂). (4)

This P value is by construction a drawing from the U(0, 1) distribution.

In practice, (4) can be neither computed analytically nor estimated by simulation,
because the DGP µ0 that generated the observed data is unknown. If τ is an
exact pivot, this does not matter, since (4) can be computed using any DGP inM.
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However, if τ is only an asymptotic pivot, the theoretical bootstrap P value is
defined by

p∗(τ̂ , µ̂) ≡ Prµ̂(τ > τ̂), (5)

where µ̂ is a (random) bootstrap DGP inM, determined in some suitable way from
the same data as those used to compute τ̂ . We denote by µ∗ the random DGP
of which µ̂ is a realization. Observe that p∗(τ̂ , µ̂) is what the bootstrap P value
p̂∗(τ̂) defined in (1) converges to as B →∞.

Let the asymptotic CDF of the asymptotic pivot τ be denoted by F . Throughout
this paper, we assume that F is continuous and strictly increasing on its support.
At nominal level α, an asymptotic test that rejects for large values of the statistic
does so whenever the asymptotic P value 1−F (τ̂) < α. In order to avoid having to
deal with different asymptotic distributions, or tests which reject in the left-hand
tail or in both tails of the distribution, it is convenient to replace a raw statistic τ
by its asymptotic P value, of which the asymptotic distribution under the null is
always U(0, 1) under our assumption. For the remainder of this section, τ denotes
a test statistic that is asymptotically distributed as U(0, 1).

The rejection probability function, or RPF, provides a measure of the true rejec-
tion probability of an asymptotic test for a finite sample. This function, which
gives the rejection probability under µ of a test at nominal level α, is defined as
follows:

R(α, µ) ≡ Prµ(τ < α). (6)

It is clear that R(·, µ) is the CDF of τ under µ. For ease of the exposition, we
assume that, for all µ ∈ M, R(·, µ) is continuous and strictly increasing on [0, 1],
although this is not true of a bootstrap distribution based on resampling from a
finite number of observations. In most such cases, the assumption is still a very
good approximation.

The information contained in the function R is also provided by the critical value
function, or CVF, defined implicitly by the equation

Prµ

(
τ < Q(α, µ)

)
= α. (7)

Q(α, µ) is just the α quantile of τ under µ. It follows from (6) and (7) that

R
(
Q(α, µ), µ

)
= α, and Q

(
R(α, µ), µ

)
= α, (8)

from which it is clear that, for given µ, R and Q are inverse functions.

The bootstrap test rejects at nominal level α if τ < Q(α, µ∗), that is, if τ is smaller
than the α quantile of τ under the bootstrap DGP. By acting on both sides with
R(·, µ∗), this condition can also be expressed as

R(τ, µ∗) < R
(
Q(α, µ∗), µ∗

)
= α.

This makes it clear that the bootstrap P value is just R(τ, µ∗). It follows that, if
R actually depends on µ∗, that is, if τ is not an exact pivot, the bootstrap test is
not equivalent to the asymptotic test, because the former depends not only on τ ,
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but also on the random DGP µ∗. If the true DGP is µ0, the actual rejection
probability, or RP, of the bootstrap test at nominal level α is

Prµ0

(
τ < Q(α, µ∗)

)
= Prµ0

(
R(τ, µ∗) < α)

)
. (9)

In Davidson and MacKinnon (1999b), it is shown that some bootstrap tests enjoy
a further refinement, over and above that due to the use of an asymptotic pivot,
if τ and µ∗ are asymptotically independent. In addition, such asymptotic inde-
pendence makes it possible to obtain an approximate expression for the RP of a
bootstrap test. If τ and µ∗ are fully independent under the true DGP, the RP (9)
becomes

Eµ0

(
Prµ0

(
τ < Q(α, µ∗)

∣∣ µ∗
))

= Eµ0

(
R

(
Q(α, µ∗), µ0

))
. (10)

Although this is an exact result only if τ and µ∗ are independent, it is approxi-
mately true whenever τ and µ∗ are only asymptotically independent. As we discuss
in the next section, (10) can easily be estimated approximately by simulation.

The asymptotic independence assumption is not very restrictive. A great many
test statistics are asymptotically independent of all parameter estimates under
the null hypothesis. This is generally true for extremum estimators where the
estimates under the null lie in the interior of the parameter space, and for many
statistics including all of the classical test statistics for models estimated by nonlin-
ear least squares and maximum likelihood; see Davidson and MacKinnon (1999b).
However, it is usually not true for inefficient estimators.

4. Approximating Bootstrap Rejection Frequencies

The conventional way to estimate the bootstrap RP (9) for a given sample size n
by simulation is to generate M samples of size n using the DGP µ0, where, for
reasonable accuracy, M must be large. For each replication, indexed by m =
1, . . . ,M, a realization τm of the statistic τ is computed from the simulated sample,
along with a realization µ̂m of the bootstrap DGP µ∗. Then B bootstrap samples
are generated using µ̂m, and bootstrap statistics τ∗mj , j = 1, . . . , B are computed.
The realized bootstrap P value for replication m is then

p̂∗m(τm) ≡ 1
B

B∑

j=1

I(τ∗mj < τm), (11)

where we continue to assume that the τm and the τ∗mj are in asymptotic P value
form. The estimate of (9) is then the proportion of the p̂∗m(τm) that are less
than α. The whole procedure requires the computation of M(B + 1) statistics.
If B is not very large, what is estimated is not really (9), but rather the RP of
a bootstrap test based on just B bootstrap repetitions. The bootstrap statistics
τ∗mj are realizations of a random variable that we denote as τ∗.

If one wishes to compare the RP of the bootstrap test with that of the underlying
asymptotic test, a simulation estimate of the latter can be obtained directly as
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the proportion of the τm less than α. Of course, estimation of the RP of the
asymptotic test by itself requires the computation of only M statistics.

The fundamental idea of this paper is that it is possible to obtain a much less
expensive approximate estimate of the quantity (10), as follows. As before, for
m = 1, . . . , M, the DGP µ0 is used to draw realizations τm and µ̂m. In addition,
µ̂m is used to draw a single bootstrap statistic τ∗m. The τ∗m are therefore IID
realizations of the variable τ∗. We estimate (10) as the proportion of the τm that
are less than Q̂∗(α), the α quantile of the τ∗m. This yields the following estimate
of the RP of the bootstrap test:

R̂PA ≡ 1
M

M∑
m=1

I
(
τm < Q̂∗(α)

)
, (12)

where the “A” stands for “approximate” to remind us that (10) is generally valid
only as an approximation. As a function of α, R̂PA is an estimate of the CDF of
the bootstrap P value (5). Davidson and MacKinnon (1999b) propose a different
procedure for estimating the rejection probability of a bootstrap test. Since its
performance is almost always worse than that of the procedure proposed here, we
do not discuss it.

The estimate (12) is only an approximate estimate of the RP of the bootstrap test
not only because it rests on the assumption of the full independence of τ and µ∗,
but also because its limit as B → ∞ is not precisely (10). Instead, its limit is
something that differs from (10) by an amount of a smaller order of magnitude
than the difference between (10) and the nominal level α.

In order to make this statement precise, we begin by obtaining an explicit ex-
pression for the CDF of the random variable τ∗. Conditional on the bootstrap
DGP µ∗, the CDF of τ∗ evaluated at α is R(α, µ∗). Therefore, if µ∗ is generated
by the DGP µ0, the unconditional CDF of τ∗ is

R∗(α, µ0) ≡ Eµ0

(
R(α, µ∗)

)
. (13)

Denote the α quantile of the distribution of τ∗ under µ0 as Q∗(α, µ0). It is defined
implicitly by the equation R∗(Q∗(α, µ0), µ0) = α, that is,

Eµ0

(
R(Q∗(α, µ0), µ∗)

)
= α. (14)

We now make some assumptions about the bootstrap procedure under study. First,
we suppose that τ is an approximate pivot (in approximate P value form) for the
the null-hypothesis model M0. Thus, for any DGP µ ∈ M0, R(α, µ) − α is small
in some appropriate sense. Otherwise, it would not be sensible to use the given
bootstrap procedure. Next, we assume that R is continuously differentiable with
respect to its first argument α for all µ ∈M0. Thus the statistic τ has a continuous
density for all µ ∈M0. Unlike the first assumption, this assumption is restrictive,
but it is made in order to simplify the following discussion, the result of which holds
true under much less restrictive conditions which are, however, harder to specify
precisely. Finally, we assume that R′(α, µ) − 1, where R′ denotes the derivative
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of R with respect to its first argument, is small in the same sense as that in which
R(α, µ)− α is small.

The assumption about the derivative R′ implies that Q(α, µ) − α is small for
µ ∈ M0. The definition (13) implies that R∗(α, µ) − α is small, and so also
Q∗(α, µ)− α. By Taylor’s Theorem, we can see that

R
(
Q(α, µ∗), µ0

)−R
(
Q(α, µ0), µ0

)
= (1 + η1)

(
Q(α, µ∗)−Q(α, µ0)

)
, (15)

where η1 is a small random quantity. Similarly,

R
(
Q∗(α, µ0), µ∗

)−R
(
Q(α, µ∗), µ∗

)
= (1 + η2)

(
Q∗(α, µ0)−Q(α, µ∗)

)
, (16)

and

R
(
Q(α, µ0), µ0

)−R
(
Q∗(α, µ0), µ0

)
= (1 + η3)

(
Q(α, µ0)−Q∗(α, µ0)

)
, (17)

where η2 and η3 are also small random quantities. If we add equations (15), (16),
and (17) together, remembering the identity R(Q(α, µ), µ) = α, we see that

R
(
Q(α, µ∗), µ0

)
+

(
R

(
Q∗(α, µ0), µ∗

)− α
)
−R

(
Q∗(α, µ0), µ0

)

can be expressed as the sum of quantities that are the product of two small quan-
tities. Taking expectations under µ0 and using (14), we find that

Eµ0

(
R(Q(α, µ∗), µ0

))
= R

(
Q∗(α, µ0), µ0

)
(18)

plus the expectation of a sum of products of two small quantities. The left-hand
side of (18) is just the second expression in (10), while the right-hand side is the
limit of (12) as M →∞. Thus the error in using (12) to estimate (10) is of smaller
order than the difference between the RP of the bootstrap test and the nominal
level α. This suggests that the R̂PA procedure will tend to be relatively accurate
when the bootstrap test works well and relatively inaccurate when it works poorly.

In practice, it is not necessary to convert test statistics to approximate P value
form in order to estimate rejection probabilities. Drawings of the statistics may
be obtained in whatever form is most convenient and then sorted in order from
the most extreme values to the least extreme. For each value of α of interest, it
is then straightforward to compute the proportion of realizations of the statistic
more extreme than the realization of the bootstrap statistic in position αM in the
sorted list.

For given M, the R̂PA procedure requires about twice as much computational effort
as performing an experiment for the asymptotic test, since we need only 2M test
statistics, the τm and the τ∗m. However, more replications are required to achieve
a given level of accuracy. The R̂PA procedure results in drawings of τ and τ∗ that
are asymptotically independent if τ and µ∗ are asymptotically independent. Thus
the variance of the estimated RP for a bootstrap test with a given actual RP will
always be larger than the variance of the estimated RP for an asymptotic test
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with the same actual RP. For the asymptotic test, the only source of error is the
randomness of the τm. For R̂PA, there is also the randomness of the τ∗m, which
causes Q̂∗(α) to be random. Thus more replications are needed to achieve a given
level of accuracy.

A modified version of this procedure may be used to obtain positively correlated
drawings of τ and τ∗ and thus reduce the variance of the estimated RP of the
bootstrap test. This modified procedure works as follows. Once µ̂m has been
obtained for replication m, a new set of random numbers, independent of those
used to obtain µ̂m, is drawn. These are then used to compute both τm and τ∗m,
the former using µ0, the latter using µ̂m. The resulting substantial positive corre-
lation between the τm and the τ∗m reduces the variance of the estimated RP. An
additional advantage of this method is that τ and µ∗ are genuinely, and not just
asymptotically, independent. We call this modified procedure R̃PA. It necessarily
involves more computational cost per replication than R̂PA, but it may require
substantially fewer replications; see Section 7.

The R̂PA and R̃PA procedures proposed here can be used to estimate the power
of bootstrap tests as well as their size. The only thing that changes is that the
τm are calculated using data generated by a DGP, say µ1, which does not satisfy
the null hypothesis. These data are used to obtain the realizations µ̂m of the
bootstrap DGP, which in turn are used to generate the data from which the τ∗m
are calculated. See Davidson and MacKinnon (2006) for details.

5. Fast Double Bootstrap P Values

The procedures proposed in the previous section are useful only in the context of
Monte Carlo experiments. But any procedure that gives an estimate of the RP of
a bootstrap test, or, equivalently, of the CDF of the bootstrap P value, allows one
to compute a corrected P value. This is just the estimated RP for a bootstrap test
at nominal level equal to the uncorrected bootstrap P value. The idea behind the
fast double bootstrap is to bootstrap the R̂PA procedure of the previous section,
replacing the unknown true DGP µ0 by the bootstrap DGP µ̂. At least potentially,
this leads to more accurate inference than conventional procedures based on the
bootstrap P values (1), (2), or (3).

The details are as follows. For each of B bootstrap replications, two different
bootstrap statistics are generated. For bootstrap replication j, a bootstrap data
set, denoted by y∗j , is first drawn from the bootstrap DGP µ̂. In the same way
as the original data are used to obtain both the realized test statistic τ̂ and the
realized bootstrap DGP µ̂, the simulated data y∗j are used to compute two things:
a bootstrap statistic, denoted by τ∗j , and a second-level bootstrap DGP, denoted
by µ∗∗j . Next, a further simulated data set, denoted by y∗∗j , is drawn using this
second-level bootstrap DGP, and a second-level bootstrap test statistic, τ∗∗j , is
computed. This is completely analogous to the R̂PA procedure of the previous
section: Here the M drawings τm and τ∗m are replaced by the B drawings τ∗j
and τ∗∗j , respectively.
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Precisely how the fast double bootstrap, or FDB, P value is calculated depends on
how the single bootstrap P value is calculated. For the moment, we maintain the
convention that τ is asymptotically U(0, 1). In this case, the bootstrap P value is

p̂∗ ≡ p̂∗(τ̂) =
1
B

B∑

j=1

I(τ∗j < τ̂), (19)

which is analogous to (1). Except for simulation randomness, a completely correct
P value would be the RP under the true DGP µ0 of the bootstrap test at nominal
level p̂∗. We can estimate this correct P value by use of the R̂PA procedure
based on the bootstrap DGP µ̂ instead of the unknown µ0. In order to do so, we
calculate the p̂∗ quantile of the τ∗∗j , denoted by Q̂∗∗B (p̂∗) and defined implicitly by
the equation

1
B

B∑

j=1

I
(
τ∗∗j < Q̂∗∗B

(
p̂∗(τ̂)

))
= p̂∗(τ̂). (20)

Of course, for finite B, there will be a range of values of Q∗∗B that satisfy (20), and
we must choose one of them somewhat arbitrarily. The FDB P value is now the
bootstrap version of (12), namely,

p̂∗∗F (τ̂) =
1
B

B∑

j=1

I
(
τ∗j < Q̂∗∗

B (p̂∗(τ̂)
))

. (21)

Thus, instead of seeing how often the bootstrap test statistics are more extreme
than the actual test statistic, we see how often they are more extreme than the p̂∗

quantile of the τ∗∗j .

If τ is not asymptotically U(0, 1), and we wish to reject when it is large, then the
single bootstrap P value is calculated by (1), and we need the 1 − p̂∗ quantile of
the τ∗∗j , which is defined implicitly by the equation

1
B

B∑

j=1

I
(
τ∗∗j > Q̂∗∗

B (1− p̂∗)
)

= p̂∗. (22)

The FDB P value is then given by

p̂∗∗F (τ̂) =
1
B

B∑

j=1

I
(
τ∗j > Q̂∗∗

B (1− p̂∗)
)
. (23)

If p̂∗(τ̂) = 0, as may happen quite often when the null hypothesis is false, then it
seems natural to define Q̂∗∗B (1− p̂∗) = Q̂∗∗

B (1) as the largest observed value of the
τ∗∗j , although there are certainly other possibilities. Similarly, when p̂∗(τ̂) = 1, it
seems natural to define Q̂∗∗B (1− p̂∗) = Q̂∗∗

B (0) as the smallest observed value of the
τ∗∗j .
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In order to perform an equal-tail FDB test, we need to compute two FDB P values.
One is given by (23), and the other by

p̂∗∗F (τ̂) =
1
B

B∑

j=1

I
(
τ∗j < Q̂∗∗

B (1− p̂∗)
)
. (24)

The equal-tail FDB P value is then equal to twice the minimum of (23) and (24),
by analogy with (3).

A modified version of our FDB procedure would bootstrap the R̃PA rather than
the R̂PA procedure. The only difference relative to the above formulas is that both
the τ∗j and the τ∗∗j would be generated using the bootstrap DGP according to the
R̃PA recipe instead of the R̂PA one. However, because this would significantly
increase the cost per bootstrap repetition, we have not investigated this modified
FDB procedure.

It is of interest to see how well FDB tests work under ideal conditions, when τ ,
the τ∗j , and the τ∗∗j are all independent drawings from the same distribution. To
investigate this question, we generate all three statistics from a standard normal
distribution for various values of B between 99 and 3999 and then calculate single
and FDB bootstrap P values. Single bootstrap tests always reject just about 5%
of the time at the .05 level and just about 1% of the time at the .01 level. So do
the FDB tests, but only when B is sufficiently large. There is a very noticeable
tendency for the FDB tests to reject too often when B is not large, especially in
the equal-tail case.

To quantify this tendency, the difference between the FDB rejection frequency and
the single bootstrap rejection frequency is regressed on 1/(B + 1) and 1/(B + 1)2,
with no constant term. These regressions fit extremely well. Results for tests at
the .05 and .01 levels are presented in Table 1. There are 54 experiments for the
one-tailed and symmetric tests and 47 experiments for the equal-tail tests. There
are fewer experiments for the latter because values of B for which α(B + 1) is
an integer but (α/2)(B + 1) is not (namely, 99 and 299) cannot be used. Since
each experiment uses 1 million replications, the experimental error should be very
small.

Table 1. Response surface regressions for FDB overrejection as a function of B

Test 1/(B + 1) 1/(B + 1)2 B = 199 B = 999 B = 1999

Symmetric .05 0.3466 (.0102) −6.02 (1.21) 0.001583 0.000341 0.000172

One-tailed .05 0.3489 (.0111) −6.01 (1.32) 0.001595 0.000343 0.000173

Equal-tail .05 1.7654 (.0208) −51.10 (4.77) 0.007550 0.001714 0.000870

Symmetric .01 0.3886 (.0073) −15.84 (0.86) 0.001547 0.000373 0.000190

One-tailed .01 0.3695 (.0073) −13.64 (0.86) 0.001507 0.000356 0.000181

Equal-tail .01 1.6865 (.0174) −140.89 (3.96) 0.004910 0.001546 0.000808

In addition to coefficients and standard errors, Table 1 shows the fitted values
from each of the regressions for B = 199, B = 999, and B = 1999. It can be seen
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that all the FDB tests, especially the equal-tail ones, tend to overreject when B is
small. Precisely why this is happening is not clear, although it is probably related
to the way in which quantiles are estimated. This is a problem for studies of the
finite-sample properties of FDB tests, which must avoid using small values of B.
In practice, however, overrejection should not be a problem, because any sensible
investigator will use a large value of B whenever the bootstrap P value is not well
above, or well below, the level of the test; see Davidson and MacKinnon (2000b)
for a discussion of how to choose B sequentially when it is expensive to calculate
bootstrap test statistics.

6. Relations with the Double Bootstrap

The genuine double bootstrap, as originally laid out in Beran (1988), bootstraps,
not the R̂PA procedure, but rather the much more expensive conventional proce-
dure described at the beginning of Section 4. Again the idea is to estimate the
RP of the single bootstrap test for a nominal level equal to the single bootstrap
P value. Briefly, one proceeds as follows. After having computed the realization τ̂
of the statistic τ and the realization µ̂ of the bootstrap DGP from the real data,
one uses B1 first-level bootstrap samples to compute bootstrap statistics τ∗j for
j = 1, . . . , B1. If we assume as usual that τ is approximately U(0, 1), the next step
is to calculate the first-level bootstrap P value p̂∗(τ̂) according to (19).

Each first-level bootstrap sample is also used to generate a second-level bootstrap
DGP µ∗∗j , which is then used to generate B2 bootstrap samples from which we
compute second-level bootstrap test statistics τ∗∗jl for l = 1, . . . , B2. For the j th

first-level bootstrap sample, the second-level bootstrap P value is

p̂∗∗j =
1

B2

B2∑

l=1

I(τ∗∗jl < τ∗j ); (25)

compare (11). The double-bootstrap P value is the proportion of the p̂∗∗j that are
less than p̂∗(τ̂):

p̂∗∗(τ̂) =
1

B1

B1∑

j=1

I
(
p̂∗∗j ≤ p̂∗(τ̂)

)
. (26)

The inequality in (26) is not strict, because there may well be cases for which
p̂∗∗j = p̂∗(τ̂). For this reason, it is desirable that B2 6= B1.

If τ̂ , the τ∗j , and the τ∗∗jl all come from the same distribution, then it follows
that, for B1 = B2 = ∞, the double bootstrap yields exactly the same inferences
as the single bootstrap. Suppose, instead, that the bootstrapping process causes
the distribution of the τ∗j to contain fewer extreme values than the distribution
of τ itself. Therefore, the P values associated with moderately extreme values of
τ̂ are too small. But it is reasonable to expect that the distributions of the τ∗∗jl

contain even fewer extreme values than the distribution of the τ∗j . Therefore, the
p̂∗∗j should tend to be too small, at least for small values of p̂∗(τ̂). This implies that
the double-bootstrap P value p̂∗∗(τ̂) will be larger than p̂∗(τ̂), which is exactly
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what we want. By a similar argument, p̂∗∗(τ̂) will tend to be smaller than p̂∗(τ̂)
when the distribution of the τ∗j contains more extreme values than the distribution
of τ itself. The same intuition applies as well to the FDB.

Of course, even the double bootstrap cannot be expected to work perfectly. Just as
the first-level bootstrap distribution may provide an inadequate approximation to
the distribution of τ under µ0, so may the distribution of the second-level bootstrap
P values provide an inadequate approximation to that of the first-level P values.
In principle, any bootstrap procedure, including the double bootstrap, may or may
not provide an acceptable approximation to the true P value associated with τ̂ .

The advantage of the double bootstrap, relative to the new FDB procedure, is
that it does not require any sort of independence between the bootstrap DGP and
the test statistic. But this comes at an enormous computational cost. For each
of B1 bootstrap samples, we need to compute B2 + 1 test statistics. Thus the
total number of test statistics that must be computed is 1 + B1 + B1B2. Even
if B2 is somewhat smaller than B1, as is often recommended, this will be vastly
more expensive than computing 1 + 2B test statistics, for reasonable values of
B ≈ B1 and B2 ≤ B1. For example, if B = B1 = 999 and B2 = 399, the
FDB procedure involves computing 1999 test statistics, while the genuine double
bootstrap involves computing no fewer than 399,601 of them.

7. Tests for Omitted Variables in Probit Models

In this section and the next two, we present results from a number of simulation
experiments designed to see whether the procedures proposed in this paper can
work well enough to be useful in practice. In this section, we focus on whether
R̂PA and R̃PA provide good approximations to the actual rejection probabilities
for single bootstrap tests based on p̂∗, and on whether the FDB procedure can yield
bootstrap tests with smaller errors in rejection probability than single bootstrap
tests.

We begin by studying the OPG version of the LM test for omitted variables in the
probit model. This test has noticeably worse finite-sample properties than other
tests of the same hypothesis, such as the LR test and the efficient score version
of the LM test; see Davidson and MacKinnon (1984). Therefore, it should rarely
be used in practice. However, its poor finite-sample performance makes it a good
example for the study of alternative bootstrap procedures.

The probit model we study can be written as

E(yt |Xt) = Φ(X1tβ1 + X2tβ2), (27)

where yt is a binary dependent variable that can equal 0 or 1, Φ(·) is the cumu-
lative standard normal distribution function, Xt = [X1t X2t] is a 1× k vector of
exogenous variables, with k = k1 + k2, β1 is a k1--vector, and β2 is a k2--vector.
The null hypothesis is that β2 = 0. The OPG test statistic is the explained sum
of squares from a regression of an n--vector of 1s on the derivatives of the contri-
butions to the loglikelihood with respect to each of the parameters, evaluated at
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the ML estimates under the null hypothesis. See Davidson and MacKinnon (1984)
for more details.

We report experimental results for two different cases. In Case 1, k1 = 2, k2 = 6,
and β1

> = [0 1]. The number of restrictions, k2, is relatively large because the
finite-sample performance of the test becomes worse as k2 increases, and pre-
liminary experiments revealed that the finite-sample performance of the single
bootstrap test does likewise. In Case 2, k1 = 2, k2 = 8, and β1

> = [1 2]. With
these parameter values, the bootstrap test performs worse because there are more
restrictions, the probit model fits better, and the proportion of 0s in the sample
is much less than one-half.

For each of the two cases, we perform 161 experiments, with 100,000 replications
each, for all sample sizes between 40 and 200. The exogenous variables, other
than the constant, are redrawn from the standard normal distribution for each
replication, so as to avoid undue dependence on the design matrix. In these
experiments, rejection frequencies of the asymptotic test and approximate rejection
probabilities of the bootstrap test (both R̂PA and R̃PA) are estimated. In addition,
we perform 17 much more expensive experiments, for n = 40, 50, 60, . . . , 200, also
with 100,000 replications, in which we estimate the actual performance of the
bootstrap test and the FDB test using B = 999. The results of these experiments
are presented graphically in Figures 1 through 3.

Figure 1 shows the rejection frequencies for the asymptotic tests, which always
overreject severely, much more so for Case 2 than for Case 1. As expected, the
overrejection gradually diminishes as the sample size increases, after an initial
increase for Case 2, but it remains quite substantial even at n = 200.
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Figure 1. Asymptotic rejection frequencies at .05 level for probit OPG test
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Figure 2. Bootstrap rejection frequencies at .05 level for probit OPG test, Case 1

Figures 2 and 3 pertain to Cases 1 and 2, respectively. Each of these figures
shows the rejection frequencies for the (single) bootstrap and FDB tests, along
with the approximate rejection probabilities given by R̂PA and R̃PA. Compared
with the asymptotic tests, the bootstrap tests always perform remarkably well.
However, they may either underreject or overreject for small sample sizes and
then underreject for a range of somewhat larger sample sizes. The reason for the
initial overrejection in Case 2 is explained below. Moreover, as can be seen from
the figures, the approximations R̂PA and R̃PA are almost always very good indeed,
except for the very smallest sample size.

In Section 4, we discussed the relationship between the variances of R̂PA, R̃PA, and
the estimated rejection probability for the asymptotic test. In order to investigate
this matter, we regress both estimates of bootstrap rejection probability errors on
a number of powers of n−1/2 (with no constant, since asymptotically there is no
error) for each of the two cases. The standard errors of the preferred regressions
are estimates of the magnitude of experimental error. For R̂PA, these standard
errors are 0.000869 and 0.001004 for Cases 1 and 2, respectively. For R̃PA, the
corresponding standard errors are 0.000650 and 0.000765. Thus it appears that,
as expected, R̃PA can produce results with noticeably less experimental error than
R̂PA.

In almost all cases, the FDB test outperforms the single bootstrap test. This is
most noticeable for the smallest sample sizes and, in Case 2, for the larger sample
sizes where the single bootstrap test systematically underrejects. The few cases in
which FDB does not perform better seem to occur when both methods perform
very well, and some of them can probably be attributed to experimental error.
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Figure 3. Bootstrap rejection frequencies at .05 level for probit OPG test, Case 2

The tendency of the single bootstrap test to overreject in very small samples for
Case 2 has a simple explanation. In these cases, ML estimation of the null model
not infrequently achieves a perfect fit. When this happens, the test statistic is
equal to zero. As is well known, probit models tend to fit too well in small samples.
Therefore, the slope coefficients used to generate the bootstrap samples tend to
be larger than the ones used to generate the original samples; see MacKinnon
and Smith (1998). This means that perfect fits are achieved more often for the
bootstrap samples than they are for the original samples. In consequence, there are
fewer large values of the τ∗j than there are of the τj , and the bootstrap P values are
therefore biased downwards. This problem tends to go away rapidly as n increases.

Table 2. Rejection frequencies at .05 level, 10,000 replications

n B1 B2 Bootstrap FDB Double Bootstrap
Case 1 40 399 199 0.0402 0.0447 0.0462
Case 1 80 399 199 0.0447 0.0502 0.0511
Case 1 160 399 199 0.0514 0.0543 0.0531
Case 2 40 399 199 0.0685 0.0564 0.0330
Case 2 80 399 199 0.0503 0.0496 0.0500
Case 2 160 399 199 0.0488 0.0519 0.0527

– 15 –



We calculate genuine double bootstrap P values in a few experiments. Despite
having only 10,000 replications, with B1 = 399 and B2 = 199, these experiments
are far more expensive than any of the others. Table 2, in which these results
are reported, provides no evidence to suggest that double bootstrap P values are
any more accurate than FDB P values. In Case 2 with 40 observations, where
perfect fits occur with some frequency, the double bootstrap actually performs
substantially less well. In the other five cases, bearing in mind that the standard
errors of the estimated rejection frequencies are roughly 0.0022, there is little to
choose between them.

8. Tests for Serial Correlation

The simulation experiments of the second set concern tests for serial correlation.
They are designed in part to shed light on the choice between symmetric and
equal-tail tests, which can have quite different power properties.

Commonly-used tests for serial correlation are not exact in models with lagged
dependent variables or nonnormal disturbances. Consider the linear regression
model

yt = Xtβ + γyt−1 + ut, ut = ρut−1 + εt, εt ∼ IID(0, σ2
ε ), (28)

where there are n observations, and Xt is a 1× k vector of observations on exoge-
nous variables. The null hypothesis is that ρ = 0. A simple and widely-used test
statistic for serial correlation in this model is the t statistic on ût−1 in a regression
of yt on Xt, yt−1, and ût−1. This procedure is proposed in Durbin (1970) and
Godfrey (1978). The test statistic is asymptotically distributed as N(0, 1) under
the null hypothesis. Since this test can either overreject or underreject in finite
samples, it is natural to use the bootstrap in an effort to improve its finite-sample
properties.

In order to bootstrap the Durbin-Godfrey test under weak assumptions about
the εt, we first estimate the regression in (28) by ordinary least squares. This
yields β̂, γ̂, and a vector of residuals with typical element ût. It is then natural to
generate the bootstrap data using the semiparametric bootstrap DGP

y∗t = Xtβ̂ + γ̂y∗t−1 + u∗t , (29)

where the u∗t are obtained by resampling the vector of rescaled residuals with
typical element (n/(n−k−1))1/2ût. The initial value y∗0 is set equal to the actual
pre-sample value y0. The bootstrap DGP (29) imposes the IID assumption on the
disturbances without imposing any additional distributional assumptions.

In all the reported experiments, the disturbances are normally distributed, the first
column of the X matrix is a constant, and the remaining columns are generated by
independent, stationary AR(1) processes with normal innovations and parameter
ρx. A new X matrix is drawn for each replication. Both asymptotic and bootstrap
rejection frequencies are found to depend strongly on k, ρx, σε, and γ, as well as on
the sample size n. Since the performance of the asymptotic test improves rapidly
as n increases, n = 20 is used for most of the experiments.
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Asymptotic results are based on 200,000 replications for values of γ between −0.99
and 0.99 at intervals of 0.01. Bootstrap results are based on 100,000 replications
for values of γ between −0.9 and 0.9 at intervals of 0.1 using 1999 bootstrap
samples. This is an unusually large number to use in a Monte Carlo experiment.
It is used because the results in Table 1 suggest that the equal-tail FDB tests will
tend to overreject noticeably if B is not quite large.

Results under the null

Figure 4 shows three sets of rejection frequencies for the performance of asymptotic
and bootstrap tests under the null hypothesis when n = 20. These are represen-
tative of the results for a much larger number of similar experiments. Rejection
frequencies for tests at the .05 level are shown on the vertical axis, and γ is shown
on the horizontal axis. Each row concerns the same set of experiments. Results
for the asymptotic test are shown in both panels. The left-hand panel shows re-
jection frequencies for symmetric bootstrap and FDB tests, and the right-hand
panel shows rejection frequencies for equal-tail bootstrap and FDB tests.

The first row of the figure contains results for a case in which all the bootstrap tests
work very well. In the left-hand panel, we see that there is very little difference
between the rejection frequencies for the symmetric bootstrap test, based on (2),
and for its FDB variant. This is not merely true on average, but also for every
replication: The correlation between the two P values is 0.999 for every value
of γ. Thus an investigator who performs both tests would obtain extremely similar
results and would probably conclude, correctly, that the bootstrap P value is very
reliable.

In the right-hand panel of the first row of the figure, we see that the equal-tail boot-
strap test is generally not quite as reliable as the symmetric bootstrap test. More-
over, the FDB procedure yields noticeably different rejection frequencies which
are, in most cases, closer to the nominal level of .05. However, the correlation
between the two P values is still very high at approximately 0.996 for all values
of γ.

The second and third rows of the figure show results for cases in which, on average,
the bootstrap tests do not work as well. In both cases, σ = 10, which is ten times
larger than for the case in the first row, and k = 6, which is twice as large. Thus
the bootstrap DGP depends on more parameters, and they are estimated less
precisely. The only difference between the two cases is that ρx = 0.8 in the second
row, and ρx = −0.8 in the third row.

Several interesting results are evident in the second and third rows of the figure.
All four bootstrap tests generally work much better than the asymptotic test on
which they are based. It is apparent that a symmetric bootstrap test can overreject
when an equal-tail test underrejects, and vice versa. However, the equal-tail tests
seem to be a bit more prone to overreject than the symmetric tests. The FDB tests
generally work better than the single bootstrap tests, especially when the latter
are least reliable. Nevertheless, the correlations between the single bootstrap and
FDB tests remain quite high. They are never less than 0.976 for the equal-tail
tests and 0.998 for the symmetric ones.
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Figure 4. Durbin-Godfrey test rejection frequencies at .05 level under the null, n = 20

It is of interest to see how fast the performances of the single bootstrap and FDB
tests improve as the sample size increases. Figure 5 contains six panels, comparable
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Figure 5. Durbin-Godfrey test rejection frequencies at .05 level under the null

to those in Figure 4. In each of these experiments, γ is fixed at a value associated
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with relatively poor performance of at least one of the tests for n = 20, and n
takes on the values 10, 14, 20, 28, 40, 56, 80, 113, 160, 226, and 320. Each of these
sample sizes is larger than the previous one by a factor of approximately

√
2. As

before, there are 100,000 replications, and B = 1999.

The left-hand panel of the first row shows that the symmetric bootstrap and FDB
tests work extremely well for all sample sizes when k = 3 and σε = 1. There is
essentially nothing to choose between them. However, as can be seen from the
right-hand panel, the equal-tail tests tend to underreject for very small values
of n in this case, with the FDB tests underrejecting less severely than the single
bootstrap tests.

The next two rows of the figure, in which k = 6 and σε = 10, are more interesting.
We see both noticeable overrejection and noticeable underrejection by the single
bootstrap tests. With a few exceptions, the FDB tests perform substantially better
than the single bootstrap tests when the latter perform badly. The results in the
right-hand panel of the second row and the left-hand panel of the third row are
particularly dramatic. In these cases, the gain from using the FDB procedure is
quite substantial.

It appears that the equal-tail FDB tests overreject slightly for large values of n.
This appears to be a manifestation of the phenomenon seen in Table 1. Since
the magnitude of the overrejection is just about what we would expect from the
results in Table 1, allowing for a certain amount of experimental error, it would
surely be even smaller if B were larger than 1999.

Results under the alternative

Figure 6 shows power functions for six sets of experiments. The value of ρ is on
the horizontal axis, and the rejection frequency is on the vertical axis. Asymptotic
results are based on 200,000 replications for 199 values of ρ between −0.99 and
0.99, and bootstrap results are based on 100,000 replications for 19 values of ρ
between −0.9 and 0.9. Every panel shows results for both symmetric and equal-
tail tests. Because the single bootstrap and FDB tests always have essentially
the same power, their symbols always overlap. Thus it may not be immediately
apparent that the same symbols are used as in Figures 4 and 5.

In the first two rows of the figure, n = 20. In the four panels in these rows, the
shapes of the asymptotic power functions differ dramatically from the inverted bell
shape that they must have asymptotically. The power functions for the symmetric
bootstrap tests always have essentially the same shape as those for the asymptotic
tests, although with a vertical displacement that is quite large in the case of
the left-hand panel in the second row. This vertical displacement arises because
the asymptotic test overrejects quite severely under the null hypothesis. The
symmetric bootstrap test, which does not overreject, inevitably has noticeably
less power against all alternatives.

In contrast, the shapes of the power functions for the equal-tail bootstrap tests
are dramatically different from the ones for the symmetric bootstrap tests. The
former have somewhat less power in whichever direction the asymptotic tests have
high power, but they have much more power in the other direction. Specifically,
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Figure 6. Power of Durbin-Godfrey tests at .05 level

when ρx and γ are both positive, the equal-tail tests always have more power
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against positive values of ρ than the symmetric tests, and the differences are often
dramatic. Since this is a case that we might expect to encounter quite frequently,
this is an important result.

In the third row of Figure 6, n = 40. Increasing the value of n brings the shape
of the asymptotic power functions much closer to the inverted bell shape that
they should have, as can be seen by comparing the left-hand panel in the top row
with the left-hand panel in the bottom row and the left-hand panel in the middle
row with the right-hand panel in the bottom row. However, it does not change
the results about the power of the symmetric and equal-tail bootstrap tests. The
equal-tail tests have somewhat less power against negative values of ρ and a great
deal more power against positive values than do the symmetric tests, because the
power functions of the former are much closer to being symmetric about ρ = 0.

In several panels of Figure 6, the asymptotic tests are reasonably reliable under
the null. Nevertheless, there are substantial gains in power to be had from using
equal-tail bootstrap tests instead of asymptotic tests. This suggests that equal-tail
bootstrap tests for serial correlation should be used routinely, even when (indeed,
perhaps especially when) there is no reason to believe that asymptotic tests are
unreliable.

9. Tests for ARCH

Since the seminal work of Engle (1982), it has been recognized that serial depen-
dence in the variance of the disturbances of regression models using time-series
data is a very common phenomenon. In the case of financial data at high or mod-
erate frequencies, there is not much point simply testing for ARCH disturbances,
because we know that we will find strong evidence of them, whether or not ARCH
is actually the best way to model the properties of the disturbances. However, in
the case of low-frequency financial data, or non-financial macroeconomic data, the
hypothesis of serial independence is not unreasonable, and it may therefore make
sense to test for ARCH.

Consider the linear regression model

yt = Xtβ + ut, ut = σtεt, σ2
t = α0 + α1u

2
t−1 + δ1σ

2
t−1, εt ∼ IID(0, 1). (30)

The disturbances of this model follow the GARCH(1,1) process introduced by
Bollerslev (1986). It is easy to generalize this process to have more lags of u2

t ,
more lags of σ2

t , or both. In this paper, however, attention is restricted to the
GARCH(1,1) process, partly for simplicity, and partly because this process gener-
ally works extraordinarily well in practice.

The easiest way to test the null hypothesis that the ut are IID in the model (30)
is to run the regression

û2
t = b0 + b1û

2
t−1 + residual, (31)

where ût is the tth residual from an OLS regression of yt on Xt. The null hypothesis
that α1 = δ1 = 0 can be tested by testing the hypothesis that b1 = 0. For a
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simple derivation of the test regression (31), and an explanation of why it has just
two coefficients even though the GARCH(1,1) model has three, see Davidson and
MacKinnon (2004, Section 13.6).

There are several valid test statistics based on regression (31). These include the
ordinary t statistic for b1 = 0, which is asymptotically distributed under the null as
N(0, 1), and n times the centered R2, which is asymptotically distributed as χ2(1).
Results are reported only for the second of these statistics, partly because it seems
to be the most widely used test for ARCH, and partly because it generalizes easily
to tests for higher-order ARCH and GARCH processes, in which there are more
lags of û2

t in the test regression. It would be interesting to compare the finite-
sample performance of alternative tests, but that would require another paper.
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Figure 7. ARCH test rejection frequencies at .05 level under the null

Figures 7 through 10 report results from a number of simulation experiments
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which focus on the effects of the sample size and the distribution of the εt. In
all the reported experiments, Xt consists of a constant and two independent,
standard normal random variates, since changing the number of regressors has
only a modest effect on the finite-sample behavior of the tests. The sample size
takes on the values 10, 14, 20, 28, 40, 56, 80, 113, 160, 226, and 320. The εt are
either standard normal, Student’s t with 4 degrees of freedom, or χ2(2) rescaled
and recentered to have mean 0 and variance 1. The first of these distributions
is in some sense the base case, the second involves severe leptokurtosis, and the
third involves severe skewness. As is easily shown, the test statistics are invariant
to the variance of the disturbances under the null hypothesis.

The top left-hand panel of Figure 7 shows rejection frequencies for the asymptotic
test as a function of the sample size for the three different distributions of the εt.
These results are based on 100,000 replications for each value of n. The test un-
derrejects severely in all cases, especially when the εt are nonnormal. As we would
expect, performance improves with the sample size, but the rate of improvement
is fairly slow, especially when the εt are t(4).

There are several ways to bootstrap this test. One possibility is to use a parametric
bootstrap, drawing the simulated disturbances from the normal distribution. It
is easy to see that this leads to an exact test when the disturbances actually are
normally distributed. The test statistic depends solely on the X matrix and the
vector of innovations ε. The former is known. If the distribution of the latter
is also known, then that of the test statistic does not depend on any unknown
features of the DGP. It then follows by standard arguments for Monte Carlo tests
that, if B is chosen so that α(B + 1) is an integer, the parametric bootstrap test
is exact; see Dufour et al. (2004).

The top right-hand panel of Figure 7 shows rejection frequencies for parametric
bootstrap tests with B = 1999. As expected, these tests work perfectly when the εt

are actually normally distributed. The very small deviations from a frequency of
0.05 are well within the margins of experimental error. However, the tests are
evidently not exact when the disturbances are not normally distributed. For the
largest sample sizes, they are no better than the corresponding asymptotic tests.
Since the FDB tests performed almost identically to the parametric bootstrap
tests on which they are based, results for parametric FDB tests are not shown.

Of course, we would not expect parametric bootstrap tests to perform well when
they are based on an incorrect distributional assumption, and we would not expect
the FDB procedure to help. It therefore seems natural to use a semiparametric
bootstrap DGP, like the one in equation (29). Results for this procedure are
shown in the bottom left-hand panel of Figure 7 and in the two left-hand panels
of Figure 8. For the normal distribution, the semiparametric bootstrap test un-
derrejects, quite noticeably so for the smaller sample sizes. Interestingly, except
for the very smallest sample sizes, the FDB version performs considerably better.
It appears to be essentially exact for n ≥ 80, whereas the single semiparametric
bootstrap test always underrejects.

It is more interesting to see what happens when the disturbances are nonnormal.
When they are t(4), the semiparametric bootstrap test underrejects quite severely
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Figure 8. ARCH test rejection frequencies at .05 level under the null

for small sample sizes. However, its performance gradually improves as n increases,
and there is a noticeable gain from using the FDB procedure, except when n is
very small. When the disturbances are recentered χ2(2), the underrejection is even
more severe for small sample sizes, but the rate of improvement as n increases is
much more rapid. Once again, there is generally a noticeable gain from using the
FDB procedure.

The errors committed by the semiparametric bootstrap test must arise from the
fact that the empirical distribution of the residuals provides an inadequate ap-
proximation to the distribution of the disturbances. One way to improve this
approximation is to smooth the bootstrap disturbances. This can be done by us-
ing a kernel estimator. The kernel estimator of the CDF of u at the point u′, using
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a sample of n residuals ût, is given by

F̂h(u′) = 1−
n

n∑
t=1

K(ût, u
′, h), (32)

where K(ût, u
′, h) is a cumulative kernel, such as the standard normal CDF, called

the Gaussian kernel, and h is the bandwidth; see Azzalini (1981) and Reiss (1981).
A reasonable choice for h is 1.587σ̂n−1/3, where σ̂ is the standard deviation of the
(possibly rescaled) residuals.

To draw bootstrap disturbances from (32), we simply resample from the residuals
ût and then add independent normal random variables with variance h2. The
resulting bootstrap disturbances have expectation zero because both the residuals
and the normal random variates do. They also have too much variance, but they
can easily be rescaled. However, in the context of tests for ARCH errors, this
rescaling is not needed, because the test statistics are invariant to the variance of
the disturbances.

The bottom right-hand panel of Figure 7 and the two right-hand panels of Figure 8
show the effects of using bootstrap disturbances that are smoothed in this way,
where the Gaussian kernel with the bandwidth given above is used. When the dis-
turbances are actually normal, resampling smoothed residuals works substantially
better than resampling ordinary residuals for small sample sizes. This presumably
occurs because smoothing brings the distribution of the disturbances closer to nor-
mality. However, there appears to be no appreciable gain from smoothing when
the disturbances are t(4) or recentered χ2(2). As in the case where smoothing is
not used, the FDB rejection frequencies are always noticeably closer to 0.05 than
those of the single bootstrap, except when the sample size is very small.

Because Figures 7 and 8 deal only with tests at the 0.05 level, they do not tell
the whole story. To show the effect of the level of the test, Figure 9 plots the
difference between the rejection frequency and the level of the test for all levels
between 0.005 and 0.25, at intervals of 0.005, for two sample sizes, 40 and 160. The
nominal level is on the horizontal axis, and the “rejection frequency discrepancy”
is on the vertical axis. Several interesting facts emerge from this figure. First, the
asymptotic test can actually overreject for small levels. Second, for nonnormal
disturbances, the distortion of the asymptotic test becomes steadily worse as the
level increases. Finally, and of most interest for this paper, the improvement from
using the FDB rather than the single bootstrap becomes larger as the level of the
test increases. Moreover, the extent of the improvement is greater for n = 160
than for n = 40, especially in relative terms. To see this, compare the left-hand
and right-hand panels in the second and third rows of the figure.

It is natural to ask whether the FDB procedure works as well as the full double
bootstrap. Figure 10 provides some evidence on this point. The experiments are
similar to those in the left-hand panels of Figure 8, except that values of n greater
than 160 are omitted. They involve semiparametric bootstrap DGPs that use
resampled residuals, with disturbances that are either t(4) or recentered χ2(2).
There are 100,000 replications. However, because computational cost is an issue,
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Figure 9. Rejection frequency discrepancy plots for ARCH tests

B1 and B2 are just 399 and 199, respectively. Even with such a small value of
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Figure 10. ARCH test rejection frequencies at .05 level under the null (resampled residuals)

B2, the double bootstrap is about 100 times more expensive to compute than the
FDB in this case.

In both panels of Figure 10, it is evident that all the bootstrap procedures work
much better than the asymptotic test. Moreover, there is a clear ordering, with
the FDB performing noticeably better than the single bootstrap, and the double
bootstrap performing a little better than the FDB. The advantage of the double
bootstrap over the FDB is a bit greater for the experiments with χ2(2) disturbances
than for the ones with t(4) disturbances, but it is never striking. Thus, at least
in this case, the failure of the FDB to work perfectly appears to be attributable
mainly to the limitations of the double bootstrap itself rather than to a failure of
the independence assumption.

10. Conclusions

In this paper, we have proposed two closely related techniques to solve two dif-
ferent problems. The first problem is the high cost of Monte Carlo experiments
that involve bootstrap tests. Our R̂PA and R̃PA procedures make it possible to
study the finite-sample performance of bootstrap tests for only about three or four
times the computational cost of studying asymptotic tests. In contrast, with the
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standard approach, the cost is generally hundreds of times as great. Of course, be-
cause our procedures are valid only under an independence assumption that may
not hold in finite samples, it will always be essential to simulate actual bootstrap
tests for at least a few cases to verify that they are yielding accurate results.

The second problem is the errors in rejection probability that sometimes occur for
bootstrap tests. Our FDB procedure seems to reduce these errors quite substan-
tially in some cases. In fact, for the probit model example we looked at, it does
so just as effectively as a genuine double bootstrap procedure, but at very much
less computational expense. For the ARCH errors example, it performs almost as
well as a genuine double bootstrap.

We do not claim that the FDB procedure will always be useful. In some cases, if
an investigator chooses the right test statistic to bootstrap and the right bootstrap
DGP, single bootstrap tests may work so well that there is nothing to be gained by
using the FDB. In such a case, the single bootstrap and FDB P values are likely
to be very similar, and this fact may be taken as evidence that both procedures
are reliable. In other cases, neither the double bootstrap nor the FDB may help
very much.

Since the FDB was originally proposed in Davidson and MacKinnon (2000a), we
and others have performed a number of additional simulations. In particular,
Davidson and MacKinnon (2002b) show that the FDB works very well when ap-
plied to the J test for nonnested linear regression models. In most cases, the single
bootstrap based on resampling residuals works adequately for the J test. How-
ever, there are extreme cases in which single bootstrap tests overreject noticeably,
and, in these cases, FDB tests work very much better. For a number of other
tests, however, using the FDB apparently leads to more modest improvements;
see Omtzigt and Fachin (2002), Lamarche (2004), and Davidson (2006).

One interesting result of this paper is not specifically related to the FDB procedure.
For the experiments discussed in Section 7, equal-tail bootstrap tests can be much
more powerful than either asymptotic tests or symmetric bootstrap tests, even
when the asymptotic tests are well-behaved under the null. This suggests that
equal-tail bootstrap tests deserve closer investigation for a variety of problems
where two-tailed tests are commonly used.

Based on all the experimental results, it is tempting to draw the following con-
clusions, which are admittedly somewhat speculative. When the single bootstrap
works almost perfectly, the FDB procedure will produce extremely similar results,
provided B is reasonably large. When the single bootstrap improves matters sub-
stantially, the FDB procedure will lead to a significant further improvement if
there is still much room for improvement. But when the single bootstrap leads to
only modest improvement, the FDB procedure will not help matters very much.
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