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Abstract

We propose a new approach for modeling non-linear multivariate
interest rate processes based on time-varying copulas and reducible
stochastic differential equations (SDEs). In the modeling of the marginal
processes, we consider a class of non-linear SDEs that are reducible to
Ornstein-Uhlenbeck (OU) process or Cox, Ingersoll, and Ross (1985)
(CIR) process. The reducibility is achieved via a non-linear transfor-
mation function. The main advantage of this approach is that these
SDEs can account for non-linear features, observed in short-term in-
terest rate series, while at the same time leading to exact discretisation
and closed form likelihood functions. Although a rich set of specifi-
cations may be entertained, our exposition focuses on a couple of non-
linear constant elasticity volatility (CEV) processes, denoted OU-CEV
and CIR-CEV, respectively. These two processes encompass a num-
ber of existing models that have closed form likelihood functions. The
statistical properties of the two processes are investigated. In order to
obtain more flexible functional form over time, we allow the transfor-
mation function to be time-varying. Results from our study of US and
UK short term interest rates suggest that the new models outperform
existing parametric models with closed form likelihood functions. We
also find the time-varying effects in the transformation functions sta-
tistically significant. We study the conditional dependence structure
of the two rates using Patton (2006a) time-varying Symmetrised Joe-
Clayton copula. We find evidence of asymmetric dependence between
the two rates, and that the level of dependence is positively related to
the level of the two rates.
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Abstract

Nous proposons une nouvelle approche pour modéliser de façon
non-linéaire et multivariée les taux d’intérêt de court terme en reliant
au moyen d’un copule à paramètre variable des équations différentielles
stochastiques réductibles (SDEs). Dans la modélisation des proces-
sus marginaux, nous considérons une classe de SDES non-linéaires
réductible, soit à un Ornstein-Uhlenbeck (OU), soit à un processus de
Cox, Ingersoll et Ross (1985) (CIR). La reduction est réalisée via une
fonction de transformation non-linéaire. L’avantage principal de cette
approche consiste en ce que ces SDES peuvent représenter des car-
actéristiques non-linéaires, observées dans les séries de taux d’intérêt
à court terme, tout en conduisant en même temps à une discretisa-
tion exacte et à fonctions de vraisemblance analytique. Bien qu’une
riche palette de spécifications puisse être considérée, nous nous con-
centrons sur deux fonctions de volatilité à élasticité constante non-
linéaire (CEV), dénotées respectivement OU-CEV et CIR-CEV. Ces
deux processus enveloppent un nombre important de modèles existants
qui possèdent des fonctions de vraisemblance analytiques. Nous exam-
inons les propriétés statistiques de ces deux processus. Afin d’obtenir
des formes fonctionnelles flexibles, nous autorisons la fonction de trans-
formation à varier dans le temps. Nos résultats empiriques portant
sur les taux courts américains et britaniques suggèrent que nos nou-
veaux modèles dominent les modèles existants ayant des fonctions de
vraisemblance analytiques. Nous trouvons aussi que les effets vari-
ables dans le temps de la fonction de transformation sont statistique-
ment significatifs. Nous étudions la structure de dépendance condition-
nelle des deux taux au moyen de la copule de Joe-Clayon symétrisée à
paramètres variables proposée par Patton (2006a). Nous montrons que
la dépendance est asymétrique et que son niveau est relié positivement
au niveau des deux taux.

JEL Classification: C13, C32, G12
Keywords: Interest Rate Models; Reducible Stochastic Differential Equations;

Maximum Likelihood Estimation; Constant Elasticity Models; Copula;
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1 Introduction

Continuous-time models have proved to be an enormously useful tool in mod-
eling financial and more generally economic variables. They are widely used
to study issues that include the decision to optimally consume, save, and in-
vest, portfolio choice under a variety of constraints, contingent claim pricing,
capital accumulation, resource extraction, game theory, and recently con-
tract theory. The short term risk-free interest rate is one of the key variable
in economics and finance. More models have been put forward to explain its
behaviour than for any other issue in finance. Although many refinements
and extensions are possible, the basic dynamic model for an interest rate
process {rt, t ≥ 0} is described by a stochastic differential equation

drt = µ (rt, φ) dt + σ (rt, φ) dWt, (1)

where {Wt, t ≥ 0} is a standard Brownian motion. Both parametric and
non-parametric methods of estimation have been developed in the litera-
ture. Parametric approaches, which form the majority, assume that the drift
µ (rt, φ) and diffusion σ2 (rt,φ) are known functions except for an unknown
parameter vector φ in a bounded set φ ⊂ RK . Examples include Merton
(1973), Brennan and Schwartz (1979), Vasicek (1977), Cox (1975), Dothan
(1978), Cox, Ingersoll, and Ross (1980, 1985), Courtadon (1982), Constan-
tinides and Ingersoll (1984), Constantinides (1992), Duffie and Kan (1996)
and Aı̈t-Sahalia (1996b). Non-parametric and semi-parametric approaches,
which do not constrain the functional form of the drift and diffusion func-
tions to be within a parametric class, have been developed by for example
Aı̈t-Sahalia (1996a,b) and Stanton (1997). In the paper, we also allow for φ
to be time-varying obtaining hence more flexible functional forms.

Parametric SDEs often provide a convenient way to describe the dy-
namics of economic and financial data, and a great deal of effort has been
expended searching for efficient ways to estimate models based on them.
Maximum likelihood is typically the estimator of choice. Although the pro-
cess specified by a SDE is defined in continuous time, the data which are
available are typically sampled at discrete time intervals. Little can be said
about the implications of the dynamics in equation (1) for longer time inter-
vals except for only a few rare cases. In finance, the well-known exceptions
include Black and Scholes (1973), Vasicek (1977), and Cox, Ingersoll, and
Ross (1985) which rely on existing closed form expressions. Since the major-
ity of the SDEs do not lead to closed form likelihood functions, the resulting
estimation problem turns out to be non-trivial. Considerable energy has
been employed in developing computationally and statistically efficient ap-
proximation schemes. Examples include Lo (1988), Pedersen (1995), Brandt
and Santa-Clara (2002), Shoji and Ozaki (1998), Kessler (1997), Elerian et al
(2001). Durham and Gallant (2002) provides a survey on existing numerical
techniques. More recently, Aı̈t-Sahalia in several of his papers, Aı̈t-Sahalia
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(1999, 2002, 2008) developed methods for generating closed form approxi-
mation of likelihood functions for univariate and multivariate diffusions.

Following the recent trend in continuous-time models in finance, we de-
velop a multivariate model. Multivariate models can deal, for instance,
with multiple explanatory factors in asset pricing or with multiple yields
or factors in term structure models. Their use permit the analysis of the
movement and co-movement of these state variables over-time, across states
and markets. To account for the possibility of changing financial and eco-
nomic regime during the period of observation we permit the parameters
to be time-varying. There is a substantial evidence of non-linearity in the
drift and the diffusion components in diffusion processes representing the
stochastic dynamics of short-term interest-rates. Therefore, in an attempt
to broaden the scope of the class of non-linear diffusion processes that could
lead to closed form likelihood functions and therefore avoid to resort to gen-
erally computationally intensive approximation methods. A new approach
for modeling non-linear multivariate time-varying processes is considered.
We first construct univariate non-linear processes of interest rates leading
to closed form likelihood functions based on reducible SDEs. As far as we
are aware this is the first time this technique is used. Although, Ait-Sahalia
(1999, 2008) already employs the concept of reducibility but in a very dif-
ferent way than here. For Ait-Sahalia a diffusion r is said to be reducible
to unit diffusion if there exists a one to one transformation of the diffusion
r into a diffusion x, where x = U(r) and U(r) is an invertible function
(see Ait-Sahalia (1999, 2008) for more details). This concept is then used
as a condition for finding closed-form expansion for the likelihood function.
In this paper, the concept of reducibility is defined in a slightly different
way and is employed directly to find a non-linear SDE with a closed form
likelihood function as explained further down.

The derived univariate marginal distributions are then welded together
by an appropriate copula function to obtain a non-linear joint distribution
of interest rates which accounts for the likely possibility of correlation (co-
movement) across short-term interest rates. Evidently, our method can
be used to estimate other multivariate financial models like asset pricing
models, term structure models ect.

Reducible SDEs are typically non-linear SDEs which by definition can be
reduced via a non-linear transformation to SDEs that are solvable analyti-
cally. These SDEs usually have closed form likelihood functions. Therefore,
the likelihood function for the original non-linear SDEs can be expressed also
in closed form via a distribution transformation, provided that the trans-
formation function satisfies weak regularity conditions. Kloeden and Platen
(1992) provide a detailed discussion of the techniques. In the context of
financial modeling, we consider the type of non-linear SDEs that are re-
ducible either to Ornstein-Uhlenbeck (OU) process or to Cox, Ingersoll, and
Ross (1985) (CIR) process. A process that is reducible to OU is hence-
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forth named ”OU-reducible” in this paper, and similarly a process that is
reducible to CIR is termed ”CIR-reducible”. The OU and CIR processes
are therefore called the ”basic processes” . We derive the specifications for
general OU-reducible and CIR-reducible processes, as well as the transfor-
mation functions that lead to the reduction.

Although a rich set of specifications for the desired non-linear SDEs
(based on alternative transformation functions) may be entertained under
the general framework, our exposition of this approach focuses on mod-
els that have constant elasticity volatility (CEV), also known as the CEV
models. Depending on whether the specifications are OU-reducible or CIR-
reducible, they are denoted as OU-CEV and CIR-CEV, respectively. It
should be noted that the two CEV models considered here (relatively sim-
ple choice of the diffusion function) already nest, as special cases, a number
of well-documented continuous-time models that are known to have closed
form likelihood functions. These models include not only the OU and CIR,
the two basic processes, but also the process of Ahn and Gao (1999), hence-
forth denoted as AG process. The sufficient conditions for the stationarity
of the CIR-CEV process are provided and the same issue for the OU-CEV
process is discussed.

In an attempt to generate more flexible dynamics of the process which
allows for time-variation in the transformation applied to the basic pro-
cesses, we extended our theory to allow for conditioning variables in the
transformation function. This has been done in the spirit of an Autoregres-
sive Conditional specification. This modification of the original OU-CEV
and CIR-CEV processes lead to time-varying (TV) version of the processes,
denoted as TV-OU-CEV and TV-CIR-CEV, respectively.

As an illustration of the approach developed in this paper, we apply
our framework to analyse the dynamic co-movements between US and UK
short term interest rates data. We measure the US and UK short rates by
1-Month Eurodollar Rate (EDR) and 1-Month London Interbank Offered
Rate (LIBOR) in British Sterling, respectively. Two different frequencies
(monthly and weekly) of the two rates are considered in this study. We found
that simple models like OU and CIR are strongly rejected by the data against
the more general CEV model. The AG model is also rejected by most data
series with the only exception happening for monthly LIBOR series. When
we extend our model to allow for time-varying transformation, we found
that for all four data series the time-varying effect of the transformation
parameter is significant.

The dependence of the US and UK short rates are studied on the basis of
a fitted conditional copula. We found that the best fitting copula model in
terms of information criteria is the Patton (2006a) conditional Symmetrised
Joe-Clayton copula (SJC). We found that the time-varying effects in the
conditional SJC copula are significant. Also significant is the asymmetry in
the tail dependence implied by the copula. From the fitted tail dependence
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coefficients, we found that the tail dependencies tend to be higher when the
level of the two rates are relatively high. When the level of the two rates are
relatively low, the tail dependencies tend to be lower. Similar relationship
is also found in the conditional linear correlation coefficients implied by the
conditional SJC copula.

The remainder of the paper is organised as follows. In Section 2, we
propose a copula-based approach for modeling non-linear multivariate in-
terest rate processes. For modeling the marginal processes, we derive a gen-
eral specification of a class of univariate non-linear SDEs that are reducible
to either an OU or a CIR process. We also discuss how copula functions
can be used to construct flexible non-linear multivariate models. Section 3
gives a detailed exposition of the CEV specification for the marginal process
and analyses the characteristics of the implied interest rate distributions. A
time-varying transformations, which can be very useful in empirical dynamic
applications, is also proposed. In Section 4, we present an application of our
approach dealing with the study of the dynamic co-movements between US
and UK short term interest rates via a time-varying copula. Some conclud-
ing remarks are given in Section 5. All theoretical proofs are provided in
the Appendices.

2 Non-linear Multivariate Modeling

In this section we propose a copula-based approach for modeling multivariate
interest rates. We start first by deriving the marginal processes employing
the reduction technique then we weld the univariate processes obtained in
the first step via copulas to obtain a multivariate distribution. In both cases
we allow for time-varying parameters to make our models more flexible and
dynamic.

2.1 Modeling Marginal Processes using Reducible SDEs

We assume that the dynamics of a stochastic process of interest {rt, t ≥ 0},
can be described by the SDE in (1). The functions µ (rt, φ) and σ2 (rt, φ),
typically non-linear in rt, are respectively the drift and the diffusion func-
tions of the process, and φ ⊂ RK is a vector of unknown parameters. The
only assumption we impose at this stage of the analysis is that (1) belongs
to the class of the so called reducible SDEs as defined in Kloeden and
Platen (1992). These reducible SDEs can be changed via appropriate trans-
formation functions, into SDEs that have closed form likelihood functions.
Provided that the transformation function satisfies weak regularity condi-
tions, which are explained below, the likelihood function for non-linear SDE
in (1) may also be expressed in closed form by employing this technique.

The class of SDEs that have closed form transition probability density
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functions can be represented by

dxt = (a1xt + a2) dt + bxα
t dWt. (2)

Special cases of interest that arise in the finance literature include: (i)
the Ornstein-Uhlenbeck (OU) process (α = 0) which has both the tran-
sition probability density and the marginal density normally distributed;
(ii) the Cox, Ingersoll and Ross (1985) (CIR) process (α = 1/2) which has
a non-central χ2 transition density with fractional degrees of freedom and
its marginal density follows a Gamma distribution; and (iii) the Geometric
Brownian motion (α = 1) and (a2 = 0) which leads to a log-normal transi-
tion density function.

If there exists an appropriate transformation function U (·, φ) such that
the process {xt = U (rt, φ) , t ≥ 0} follows a SDE that is solvable analytically,
then the process {rt, t ≥ 0} governed by (1) is said to be reducible. A process
that is reducible to OU is called ”OU-reducible” and a process that can
be reduced to CIR is called ”CIR-reducible”1. It can be shown that under
minor conditions such processes would possess an explicit analytic likelihood
function via a trivial transformation of the distribution. If ∂U (rt, φ) /∂rt 6=
0, the Inverse Function Theorem ensures the existence of a local inverse
rt = U−1 (xt, φ).

2.1.1 The Transformation Function

For ease of exposition, we re-write (1), with no loss of generality, in the
following way:

drt = µ (rt,φ) dt + σ0σ (rt, θ) dWt, (3)

where φ = (θ, σ0)
′ and σ0 is a normalizing scalar.

Define an analytic transformation function U (·, φ), where typically U (·, φ)
only depends on a subset of φ, and let xt = U (rt, φ). Then according to
Itô’s lemma, we obtain the following dynamics for {xt, t ≥ 0}:

dxt =
[
µ (rt, φ)

∂U (rt, φ)
∂rt

+
σ2

0σ
2 (rt, θ)
2

∂2U (rt, φ)
∂r2

t

]
dt (4)

+ σ0σ (rt, θ)
∂U (rt, φ)

∂rt
dWt.

It follows that the non-linear SDEs in (3) that are reducible to (2) via
transformation function xt = U (rt, φ) must satisfy the following two equa-

1The Geometric Brownian Motion is not mean reverting, neither is the SDE that is
reducible to GBM in general. This lack of mean-reversion generally makes the GBM-
reducible SDEs not attractive for modeling financial variables that may be interpreted as
a return. Therefore, it is not pursued further in this study. However, non-linear SDEs
that are reducible to non-stationary processes is a topic for future research.
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tions:

σ0σ (rt,θ)
∂U (rt, φ)

∂rt
= bUα (rt, φ) (5)

µ (rt,φ)
∂U (rt,φ)

∂rt
+

1
2
σ2

0σ
2 (rt,θ)

∂2U (rt, φ)
∂r2

t

= a1U (rt, φ) + a2. (6)

It should be noted that the three unknown functional forms µ (rt, φ),
σ (rt, θ) and U (rt, φ) cannot be uniquely identified from only two equations
(5) and (6) unless an additional assumption is imposed on them. There
are three approaches for dealing with this identification problem. The first
approach is to start with a desired drift function µ (rt, φ). This is the most
difficult route as it involves solving a higher-order differential equation for
either σ (rt,θ) or U (rt, φ). An analytic solution is hardly obtained except
in very rare cases. The most general approach is to make assumptions di-
rectly on U (rt, φ). Then the specification of (3) or equivalently (1) can be
uniquely determined under minor identification conditions. However, it is
not always straightforward to formulate such a specification without prior
knowledge on the desired features that the resulting SDEs should possess.
A slightly less ambitious but substantially simplified approach is to start
with a desired specification of the volatility function σ (rt,θ). Then, finding
U (rt,φ) will only involve solving the first-order differential equation in (5).
The drift function µ (rt, φ) can then be trivially inferred from equation (6).
Given the significance of the volatility properties in financial applications,
this approach appears to be fairly reasonable. Moreover, knowledge about
the U (rt, φ) for some particular σ (rt, θ) provides useful insights into how
to construct a transformation function that gives a non-linear SDEs with
wanted properties. It also helps to understand the restrictions required on a
general transformation function specification so that the resulting SDEs sat-
isfy regularity conditions regarding, for instance stationarity and boundary
behaviours.

For a chosen standardised volatility function σ (rt,θ) and letting b = σ0,
the transformation function U (·, φ) can be found by solving the following
ordinary differential equation:

∂U (rt, φ)
∂rt

= Uα (rt,φ)
1

σ (rt, θ)
,

which yields for α 6= 1

U (rt, φ) = U (rt, θ) =
{

(1− α)
[∫

1
σ (rt, θ)

drt + c

]} 1
1−α

,

where c is the constant of integration. Note here that the transformation
function only depends on θ. When α = 0, the original process is reducible

8



to the OU process and the required transformation is given by

U (rt, θ) =
∫

1
σ (rt, θ)

drt + c. (7)

When α = 1/2, the original process is reducible to CIR and the correspond-
ing transformation is2

U (rt, θ) =
{

1
2

[∫
1

σ (rt, θ)
drt + c

]}2

. (8)

Replacing the transformation function and its first and second derivatives
reveals the non-linear drift function µ (rt,φ). The complete specification of
the process can then be written as

drt =
1

∂U(rt,θ)
∂rt

[
a1U (rt, θ) + a2 − 1

2
b2σ2 (rt,θ)

∂2U (rt, θ)
∂r2

t

]
dt+bσ (rt,θ) dWt,

(9)
where U (rt, θ) is given by either (7) or (8). Note that the unknown param-
eter vector φ is in fact identified as φ =

(
θ′,a1, a2, b

)′.

2.1.2 Exact Discretisation and Closed Form Transition Densities

Using reducible SDEs as a modeling tool has the following advantages.
Firstly, since the non-linear diffusion process in (9) is a transformed pro-
cess of a basic process, either OU or CIR, via a transformation function
(7) or (8), many useful mathematical and statistical properties of the basic
processes are preserved after the transformation. For instance, since both
OU and CIR processes have exact discretisation, the process in (9) also
has exact discretisation as a result of straight forward mapping by function
rt = U−1 (xt, φ).

For OU-reducible and CIR-reducible processes, the Jacobians of the
transformations are given by

JOU = |∂U (rt)/ ∂rt| = 1/ σ (rt, θ) ,

and

JCIR = |∂U (rt)/ ∂rt| = [1/ 2σ (rt, θ)]
∣∣∣∣
∫

1/σ (rt, θ) drt

∣∣∣∣ ,

2The transformation function in (7) suggests that the integration constant c only causes
a shift in the level (unconditional mean) of the basic process xt, which is already accounted
for by the value of a2. It is therefore irrelevant and can be set equal zero for OU-reducible
processes. However, a quick inspection of (8) reveals a clear non-linear effect of c in the
transformation. The effect on the transformed process xt is clearly more complicated
than just a level shift. Some preliminary experiments suggest that to include c as a free
parameter does not improve the goodness of fit significantly and it is likely to cause some
identification problems. We therefore chose to set c = 0 in the subsequent analysis.

9



respectively. The transition density for the proposed model can be eas-
ily obtained by the standard transformation method of the distribution.
Monotonicity in U (rt, θ) ensures that the transformation is unique. The
corresponding marginal density function can be obtained by taking the step
length ∆ to the limit providing that the process is stationary and therefore
the limit exists.

2.2 Copulas

Flexible non-linear multivariate models can be constructed by joining uni-
variate non-linear processes via appropriate copulas. The concept of copula
was made operational by Sklar (1959) who showed that if an n-dimensional
joint distribution exits then it can be recovered by joining the n marginal
distributions by a suitable copula which embodies the dependence between
the n variables. Recent methodological reviews are given for example by Joe
(1997) and Nelson (1999). A review of applications of copulas to finance can
be found in Embrechts et al. (2003) and Cherubini et al. (2004).

A more useful implication of Sklar’s theorem is that we may link to-
gether any two univariate distributions, of any type (not necessarily from
the same family), using any copula and we will have defined a valid bivari-
ate distribution. This flexibility of copulas makes it an extremely useful tool
for modeling jointly distributed interest rates. The usefulness of this result
stems from the fact that although in economics and statistics literatures
we have a vast selection of flexible parametric univariate distributions, the
set of parametric multivariate distributions available is much smaller. With
Sklar’s theorem, the set of possible parametric multivariate distributions is
increased substantially, some of which may be empirically attractive.

Focusing on the bivariate case, we denote FX (x) and FY (y) as the con-
tinuous marginal distribution functions of X and Y , and FXY (x, y) the
joint distribution function. Also let fx (x) and fy (y) be the marginal den-
sity functions, and fxy (x, y) the joint probability density function. The
Sklar’s Theorem states:

FXY (x, y) = C (FX (x) , FY (y))
fxy (x, y) = fx (x) · fy (y) · c (FX (x) , FY (y)) ,

where C : [0, 1]2 → [0, 1] is the copula function for the bivariate random
vector (X, Y ), and c is the corresponding copula density.

The procedure employed to construct the joint distribution is a two-step
method of estimation. In the first stage we estimate the two marginal dis-
tribution models separately, and in the second stage we estimate the copula
model. Although estimating all of the coefficients simultaneously yields the
most efficient estimates, a larger number of parameters can make numerical
optimisation of the loglikelihood function difficult. Under standard condi-
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tions, the estimates obtained in two-steps are consistent and asymptotically
normal ( see Patton (2006b) for more details).

3 The CEV Specification for the Marginals

The constant elasticity volatility model was introduced by Chan et al. (1992).
They claim that it was their best fitting model in the study carried out in
their paper. This model was further studied by Aı̈t-Sahalia (1996b) who
promoted the use of a non-linear drift function to provide a better mean-
reversion effect. The same type of specification was also estimated by Conley
et al. (1997) and Gallant and Tauchen (1998).

3.1 Transformation Functions and SDEs

The CEV specification of the diffusion is given by σ (rt, γ) = rγ
t , where

γ ∈ (0, 1) ∪ (1,∞). It follows from (7) that for a non-linear CEV process
that is reducible to OU, henceforth denoted as OU-CEV, the transformation
is given by

xt = U (rt, γ) = r1−γ
t /(1− γ) . (10)

Aı̈t-Sahalia (1999) suggests to define

xt = U (rt, γ) = r1−γ
t /(γ − 1) , (11)

for γ > 1. Since rt ∈ R+, such treatment ensures that xt and rt covers
the same domain. Nevertheless, to cover the same domain is not essential
because it only affects the sign of the parameter a2 in the estimated model.
Such a treatment is a matter of convenience. We therefore stick to (10)
and (11) according to the range of γ for the rest of the paper. It is easily
verified that ∂U (rt, γ) /∂rt = r−γ

t . Since rt ∈ R+, the above transformation
is always strictly monotonic, which ensures identification of all parameters.
It follows from (9) that the dynamics of OU-CEV process is governed by
the following diffusion.

drt =
(

1
2
b2γr2γ−1

t − a2r
γ
t sgn (γ − 1) +

a1

1− γ
rt

)
dt + brγ

t dWt, (12)

where sgn(·) is the sign function.
For a non-linear CEV model that is reducible to CIR, henceforth denoted

by CIR-CEV, we have

xt = U (rt) = (1 /4)
[
r1−γ
t /(1− γ)

]2
. (13)

It is easily verified that ∂U (rt) /∂rt = r1−2γ
t /(2− 2γ) . For rt ∈ R+, the

above transformation is also strictly monotonic. The dynamics of the CIR-
CEV process is therefore given by

drt =
{[

2a2 (1− γ) +
1
2
b2 (2γ − 1)

]
r2γ−1
t +

a1rt

(2− 2γ)

}
dt + brγ

t dW. (14)
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The SDEs defined in (12) and (14) encompasses a number of interest rate
processes that are known to have closed form likelihood functions. These
models can be obtained from (12) and (14) by simply placing the appropriate
restrictions on the four parameters, a1, a2, b, and γ. Table 1 provides the
specifications of nested models and the corresponding restrictions.

Table 1: Models Nested in OU-CEV and CIR-CEV Specifications

Models Nested in OU-CEV
Model Specification Restriction(s)

1. Merton drt = a2dt + bdWt γ = 0, a1 = 0
2. OU (Vasicek) drt = (a1rt + a2) dt + bdWt γ = 0

Models Nested in CIR-CEV
Model Specification Restriction(s)

3. CIR (SR) drt = (a1rt + a2) dt + b
√

rtdWt γ = 1/2

4. CIR (VR) drt = br
3/2
t dWt γ = 3/2, a1 = 0, a2 = b2

5. CEV drt = a1rtdt + brγ
t dWt a2 = b2 (2γ − 1)

/
4 (γ − 1)

6. AG drt =
[(

b2 − a2

)
r2

t − a1rt

]
dt + br

3/2
t dW γ = 3/2

Model 1 and 2 are nested in the OU-CEV specification. Model 1 is used
in Merton (1973) to derive a model of discount bond prices. This stochastic
process for the risk free rate is simply a Brownian motion with drift. Model
2 is the Ornstein-Uhlenbeck process used by Vasicek (1977) in deriving an
equilibrium model of discount bond prices. This Gaussian process has been
used extensively by others in valuing bond options, futures, futures options,
and other types of contingent claims.

Model 3 to 6 are nested in the CIR-CEV specification. Model 3 is the
square root (SR) process which appears in the Cox, Ingersoll, and Ross
(CIR) (1985) single-factor general-equilibrium term structure model. This
model has also been used extensively in developing valuation models for
interest-rate-sensitive contingent claims. Model 4 is introduced by CIR
(1980) in their study of variable-rate (VR) securities. A similar model is
also used by Constantinides and Ingersoll (1984) to value bonds in the pres-
ence of taxes. Model 5 is the constant elasticity of variance (CEV) process
introduced by Cox (1975) and by Cox and Ross (1976). The application of
this process to interest rates is discussed in Marsh and Rosenfeld (1983).
Model 6 is relatively recent compared to Model 1-5. It is introduced by
Ahn and Gao (1999) and is of particular interest due to its quadratic drift
function. In their study, they considered a non-linear term structure model
which was documented to be able to generate more realistic dynamics of the
interest rate. The drift and the diffusion functions where both non-linear,
and the market price of risk generated by the model were close to the empir-
ical findings reported in Chan et al. (1992), Aı̈t-Sahalia (1996a,b), Conley
et at. (1997), and Stanton (1997). Their empirical analysis indicates that
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their model can dominate the affine-class term structure models in both the
time series and cross-sectional dimension. It is easily seen that the CIR-
CEV model proposed in the current work encompasses the Ahn and Gao
(1999) model as a special case where γ = 1.5. Clearly, the CIR-CEV model
is a more general setup which not only preserves the non-linear features of
the drift function discussed in Ahn and Gao (1999) but also allows for an
extra degree of freedom in the (data-driven) choice of the value of γ. In our
application, we found that the empirical estimate of γ can be very different
from the suggested value.

3.2 Analysis of the Distributions

This section provides an analysis of the distributions implied by the two
stochastic processes proposed in the previous section3.

3.2.1 CIR-CEV

We apply the methodology of Aı̈t-Sahalia (1996b) concerning the constraints
on the drift and the diffusion to the CIR-CEV model in (14) to derive the
sufficient conditions for stationarity and unattainability of 0 and ∞ in finite
expected time. The results are given in the following proposition.

Proposition 3.1 Let {rt, t ≥ 0} be a CIR-CEV process defined in (14).
The necessary and sufficient conditions for stationarity and unattainabil-
ity of 0 and ∞ in finite expected time are: (i) a1 < 0 and 4a2/b2 >
(2γ − 1) / (γ − 1) if γ > 1; (ii) a1 < 0 and 4a2/b2 > 1/ (1− γ) if γ < 1.

Proof See Appendix

Since the original CIR process is a special case of (14) when γ = 0.5, the
relevant conditions deduced from the proposition is 2a2/b2 > 1 as stated in
Cox et al. (1985). The process in (14) reduces to the Ahn and Gao (1995)
process if γ = 1.5, the corresponding conditions become a2/b2 > 1 as stated
in their paper. Clearly, our results provide conditions for arbitrary value of
γ ∈ (0, 1) ∪ (1,∞).

For the CIR-CEV process, according to the transformation in (13) the
transition density of the process is given by

f (rt|rt−∆) =
1
2

r1−2γ
t

|1− γ|ce
−u−v

(v

u

)q/2
Iq

[
2 (uv)1/2

]
,

3The analysis carried out in this section assumes that the parameter a1 in the two
processes are non-zero. Therefore, the results derived here may not be valid for Model
1 and 4 which assume a1 = 0. Meanwhile, for the same reason discussed in footnote 1,
Model 1, 4, and 5 are not considered in the rest of the paper.
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where

c = 2a1

/[
b2

(
ea1∆ − 1

)]
, u =

(
cea1∆ /4

) [
r1−γ
t−∆ /(1− γ)

]2

v = (c /4)
[
r1−γ
t /(1− γ)

]2
, q = 2a2

/
b2 − 1.

and Iq (·) is the modified Bessel function of the first kind of order q.
Similar to the OU-CEV process, the CIR-CEV process also permits a

closed form expression for its conditional distribution function which can be
written as

F (rt|rt−∆) =
{

D (2cxt; 2q + 2, 2u) for γ < 1
1−D (2cxt; 2q + 2, 2u) for γ > 1

,

where xt is defined by (13) and D (·; 2q + 2, 2u) is the non-central χ2 distri-
bution function with 2q+2 degrees of freedom and non-centrality parameter
2u.

Straightforward calculation yields the mth conditional moments for rt

following the CIR-CEV process:

E (rm
t |rt−∆)

= [2 |1− γ|] m
1−γ c

− m
2(1−γ) e−u

Γ
(
q + m

2(1−γ) + 1
)

Γ (1 + q) 1F1

(
q +

m

2 (1− γ)
+ 1, 1 + q, u

)
,

where 1F1 (·, ·, ·) is the confluent hypergeometric function4 (or Kummer’s
function) which can be represented in the Pochhammer symbols as follows,

1F1 (a, b, y) =
∞∑

j=0

(a)j yj

(b)j j!
=

Γ (b)
Γ (b− a) Γ (a)

∫ 1

0
eyzza−1 (1− z)b−a−1 dz,

and Γ(·) is the gamma function. Since the CIR-CEV process displays mean
reversion, then as ∆ →∞, its distribution is well defined. It can be shown
that the steady-state density function is given by

π (rt) =
1
2

r1−2γ
t

|1− γ|

(−2a1
b2

) 2a2
b2

Γ
(

2a2
b2

) x
2a2
b2
−1

t exp
(

2a1

b2
xt

)
,

and the mth unconditional moments are

E [rm
t ] = [2 |1− γ|] m

1−γ

(
−2a1

b2

)− m
2(1−γ) Γ

(
2a2
b2

+ m
2(1−γ)

)

Γ
(

2a2
b2

) .

4Abadir (1999) provided a detailed account of the hypergeometric functions and their
applications in economics. Also see Abadir and Rockinger (2003) and Bu and Hadri (2007)
for applications in finance.

14



3.2.2 OU-CEV

The analysis of the OU-CEV process is less straightforward than that of the
CIR-CEV process. An inspection of the two transformation functions reveals
that the process is only defined when the driving process xt is on the domain
(0,∞). Since zero and negative values are attainable for the OU process in
finite expected time, in principle we can only concentrate on the realizations
of the process that do not lead to absorption at zero. That is, we need at least
in theory define a conditional process {rt = U (xt) : t > 0, xt > 0}. Accord-
ingly, {rt = U (xt) : t > 0, xt > 0} is prescribed to be the process confined
to the sample paths not involving ultimate absorption at zero. This design
is similar at least in spirit to the Conditioned Diffusion Processes discussed
in Karlin and Taylor (1981). The separate treatment in (10) and (11) guar-
antees that −a2/a1 > 0 and thus the conditional process is mean-reverting
on (0,∞).

The techniques required to formally express the desired conditional dif-
fusion process are beyond the scope of this study. However, it is not difficult
to realise that if the probability that xt > 0 becomes negligible, i.e. under
the assumption

P (xt ≤ 0) =
∫ 0

−∞
π (xt) dxt = 0, (15)

then the difference between the unconditional and conditional processes be-
comes insignificant in almost all real world applications.

For this reason, implementation of the OU-CEV model as well as all sub-
sequent analysis of the distribution of the process rely on the assumption
that the parameters a1, a2 and b are such that condition (15) holds approx-
imately, where π (xt) is the marginal density of xt. This essentially requires
that the unconditional mean of the process −a2/a1 is sufficiently large in ab-
solute value compared to the unconditional standard deviation

√
−b2/2a1.

It turns out that in the practice of modeling interest rate such restriction
is hardly ever binding, since the above probability implied by the estimated
parameters for the embedded OU process is typically negligibly small. For
instance, in our application to the US and UK short term interest rates the
corresponding probabilities calculated from the fitted models are found to
be practically zero (of order lower than 10−8). The implication is that in
almost all practical work concerning only finite time intervals, absorption of
the process should not be a serious concern.

For the OU-CEV process, according to the transformations defined in
(10) and (11) the probability density of the interest rate rt conditional on
rt−∆, where ∆ is the step length, is given by the following

f (rt|rt−∆) = r−γ
t

1√
2πσ2

ou

exp

[
−1

2

(
xt − µou

σou

)2
]

,
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where

µou = ea1∆xt−∆ − a2

a1

(
1− ea1∆

)
and (16)

σ2
ou =

b2
(
e2a1∆ − 1

)

2a1
. (17)

Since the OU-CEV process is a continuous and monotonic transformation
of the OU process, it has a closed form expression for its conditional distri-
bution function which is given by

F (rt|rt−∆) =
{

Φ(xt; µou, σou)− Φ(0; µou, σou) for γ < 1
1− Φ(xt;µou, σou) for γ > 1

,

where Φ (·; µou, σou) is the distribution function for a normally distributed
random variable with mean µou and standard deviation σou. Here xt is
defined by (10) for γ < 1 and (11) for γ > 1, respectively.

Straightforward calculation also yields the mth conditional moments for
rt following the OU-CEV process5:

E (rm
t |rt−∆) =

[√
2σou |1− γ|]v

√
π

1
2
e−w2

[
Γ

(
v + 1

2

)
1F1

(
v + 1

2
,
1
2
, w2

)

+ wvΓ
(v

2

)
1F1

(
1 +

v

2
,
3
2
, w2

)]
,

where
v =

m

1− γ
, w =

µou√
2σou

.

Since the unconditional distribution of the OU process is also normal, the
marginal density π (rt) and the unconditional moments E (rm

t ) have similar
expressions to their conditional counterparts. The only difference is that we
will have to replace the conditional mean and variance in (16) and (17) by
their corresponding limits as ∆ →∞.

4 The Conditional Transformation

The discussion up to this point assumes that the transformations applied
to the two basic processes remain constant over time. One natural exten-
sion of our modelling approach is to consider time-varying or conditional
transformations assuming that the basic process remains the same.

To consider time-varying transformation, we assume that the functional
form of the transformation remains fixed over the sample whereas the pa-
rameters vary according to some evolution equation. This is in the spirit of

5The expression is derived under the assumption that P (xt ≤ 0) = 0, which is only
approximately true in theory but harmless in practice for reasons discussed above. See
appendix for details of the proof.
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Hansen (1994) ”autoregressive conditional density”. An alternative to this
approach may be to allow also for time variation in the functional form us-
ing a regime switching model. The latter requires knowledge about at least
a couple of reasonable transformation functions that may be applied to a
basic process, either OU or CIR.

For both OU-CEV and CIR-CEV processes, the transformation func-
tions depend on a single parameter γ. We call it the transformation param-
eter. A natural extension is to specify an equation describing the evolution
over time of the parameter γt. We propose the following evolution equations.

To reflect the γ < 1 case in the time-homogenous transformation design,
we can define

γt = Λ


ω +

p∑

i=1

αjγt−i +
q∑

j=1

βixt−j


 (18)

where Λ (x) ≡ (1 + e−x)−1 is the logistic transformation, used to keep γt in
(0, 1) all the time. Similarly, we can let

γt = Λ̃


ω +

p∑

i=1

αjγt−i +
q∑

j=1

βixt−j


 (19)

where Λ̃ (x) ≡ (1 + e−x) is the reciprocal of the the logistic transformation,
used to keep γt inside the range (1,∞) all the time. In practice, the choice
of p and q can be decided by some model selection procedure. Obviously,
significance in either αj or βi or both is an indication of the time-varying
effect in the transformation.

5 Bivariate Modeling of US and UK Short Term
Interest Rates

In this section, we apply the theory developed in previous sections to both
US and UK short term interest rates data and compare, in terms of goodness
of fit, the performance of our models to existing models that have closed form
likelihood functions.

Interest rates between the two countries are known to be strongly related
for various social, political and economic reasons. In addition to modeling
individual short rate dynamics, it is essential to analyse the dynamic co-
movements between the two rates. This is done via a time-dependent copula
function. Details on modeling the marginal distributions and the selection
of copula functions are discussed below.
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5.1 Data

We measure the US and UK short term interest rates by 1-Month Eurodol-
lar Rate (EDR) and 1-Month London Interbank Offered Rate (LIBOR) in
British Stirling. Two different frequencies, monthly and weekly, of the two
rates are employed in this study. The EDR data are collected from the H.15
release of the Federal Reserve website and the data of LIBOR are obtained
from BBA (British Banking Association) database. For each of the two
rates, we use the longest sample period for which data are available.

Table 2: Descriptive Statistics of EDR and LIBOR Data
Eurodollar Rate LIBOR

Sample period 1971.01-2007.12 1986.01-2007.12
Frequency Monthly Weekly Monthly Weekly
Sample size 444 1930 264 1148
Mean 6.778 6.781 7.434 7.413
Std. Dev. 3.541 3.550 3.237 3.214
Skewness 1.081 1.099 1.013 1.003
Kurtosis 4.719 4.809 2.875 2.872
Jarque-Bera Statistic 141.149* 651.979* 45.330* 193.280*
ρ1 0.978 0.996 0.987 0.997
ρ2 0.944 0.990 0.971 0.995
ρ3 0.916 0.983 0.955 0.992
ρ4 0.891 0.975 0.940 0.989
ρ5 0.869 0.967 0.927 0.986
ρ6 0.851 0.959 0.909 0.982

An asterisk (∗) indicates a rejection of the null hypothesis at the 0.01 level.

Table 2 provides some summary statistics of the data. The EDR data
starts from January 1971 to December 2007, yielding 444 monthly obser-
vations and 1930 weekly observations. The LIBOR data are available from
January 1986 to December 2007, which gives 264 monthly observations and
1148 weekly observations, respectively. The sample mean of the two rates
suggest that the UK short rates are on average higher than its US coun-
terpart, whereas the standard deviations indicate the US rates are more
variable than UK rates. Both rates exhibit clear departures from normal-
ity. While both rates show positive skewness, it is interesting to note that
the EDR is leptokurtic whereas the LIBOR is playtokurtic. The departure
from normality is confirmed by the significance of the Jarque-Bera test of
normality of the unconditional distribution.

Time series plots of the data at both frequencies are provided in Figure
1. As expected, the plots of the data at different frequencies appear to be
very similar, except that the plot for weekly observations is less smooth than
that of the monthly data. Neither of the two rates show discernible trend
over its sample period. For the EDRs, due to the shift in monetary policy,
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Figure 1: Time Series of Monthly and Weekly Eurodollar Rate and LIBOR

the 1980 to 1982 years are characterised by substantially higher levels than
the rest of sample period. For the UK short rates, the LIBORs are highest
around year 1990 as a result of the monetary policy followed at the time.
Both rates reached their lowest levels during the years 2004 and 2005. The
overlapping part of the sample confirm that the UK short rates are often
higher than their US counterparts, and the evolution of the two rates shows
strong correlations between the two rates.

5.2 Modeling Univariate Interest Rates

For each of the four data series (monthly EDR, monthly LIBOR, weekly
EDR and weekly LIBOR), a total of five alternative parametric models are
considered in this application. In addition to the two new models proposed
in the paper (OU-CEV and CIR-CEV), we also include the OU model, the
CIR model, the Ahn and Gao (1999) (AG) model. All of the five models
considered here allow for mean reversion in the process and have closed form
likelihood functions. We estimate all five models using maximum likelihood.
Results based on both monthly and weekly observations for the two rates
are obtained. Tables 3 and 4 report the ML estimates of the parameters
together with the AIC and BIC values for each model. The standard error
of each parameter estimate is given in the parenthesis under each estimate.
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Table 3: Maximum Likelihood Estimates of Different Interest Rate Models
(Monthly data)

OU CIR AG OU-CEV CIR-CEV
EDR a1 -0.259 -0.148 -0.105 -0.090 -0.100

(0.120) (0.090) (0.076) (0.070) (0.074)
a2 1.745 0.992 0.023 0.355 0.389

(0.916) (0.509) (0.013) (0.308) (0.382)
b 2.555 0.782 0.117 0.193 0.193

(0.087) (0.026) (0.004) (0.017) (0.017)
γ 0.0 0.5 1.5 1.184 1.186

(0.047) (0.047)
AIC 983.82 718.99 599.88 554.35 554.13
BIC 996.11 731.28 612.17 570.73 570.51

LIBOR a1 -0.142 -0.174 -0.098 -0.124 -0.096
(0.087) (0.091) (0.081) (0.083) (0.082)

a2 0.740 0.981 0.020 0.086 0.012
(0.707) (0.625) (0.012) (0.066) (0.014)

b 1.315 0.442 0.058 0.051 0.051
(0.058) (0.019) (0.003) (0.013) (0.013)

γ 0.0 0.5 1.5 1.565* 1.565*
(0.132) (0.133)

AIC 239.90 170.95 109.54 111.08 111.31
BIC 250.63 181.67 120.27 125.38 125.61

Only cases where the hypothesis γ = 1.5 cannot be rejected. In all other cases,
γ = 0, 0.5, or 1.5 are all rejected.

We begin by analysing the relative performances of the three existing
models. Firstly, we find that the CIR model outperforms the OU substan-
tially in terms of both AIC and BIC. This is not surprising as the OU
process is indeed the simplest specification which assumes a constant diffu-
sion function. The improved performance from the CIR process is due to
the introduction of a non-linear diffusion function which is in proportion to
the square-root of the value of the state variable. Both OU and CIR model
assume a simple linear drift function. Secondly, we find that the AG model,
which is the inverse of the CIR process, outperforms both OU and CIR
models substantially by the same criteria. Since the three models have the
same number of parameters, this is equivalent to comparing the likelihood of
the models. The AG model has non-linearity in both the drift and diffusion
function. Ahn and Gao (1999) provide a detailed description of the shape
of the drift and diffusion functions of their model. It is claimed that the
diffusion function given by br1.5

t is of special interest in the literature. This
specification of the diffusion is the same as that estimated parametrically
by Chan et al. (1992), and it also reflects the non-parametric estimation re-
sult of Aı̈t-Sahalia (1996b) and Stanton (1997). It is claimed that a rapidly
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Table 4: Maximum Likelihood Estimates of Different Interest Rate Models
(Weekly data)

OU CIR AG OU-CEV CIR-CEV
EDR a1 -0.197 -0.120 -0.080 -0.070 -0.079

(0.104) (0.080) (0.067) (0.062) (0.066)
a2 1.301 0.782 0.018 0.226 0.206

(0.796) (0.452) (0.012) (0.200) (0.172)
b 2.245 0.698 0.104 0.164 0.163

(0.036) (0.011) (0.002) (0.007) (0.007)
γ 0.0 0.5 1.5 1.218 1.219

(0.024) (0.024)
AIC 971.78 -131.20 -693.36 -841.98 -842.18
BIC 988.47 -114.51 -676.67 -819.72 -819.92

LIBOR a1 -0.115 -0.147 -0.090 -0.113 -0.096
(0.083) (0.087) (0.080) (0.081) (0.080)

a2 0.590 0.829 0.018 0.198 0.075
(0.674) (0.596) (0.012) (0.143) (0.067)

b 1.257 0.423 0.057 0.079 0.079
(0.026) (0.009) (0.001) (0.009) (0.009)

γ 0.0 0.5 1.5 1.331 1.330
(0.060) (0.060)

AIC -748.07 -1047.58 -1234.46 -1240.55 -1240.39
BIC -732.94 -1032.44 -1219.33 -1220.37 -1220.21

Only cases where the hypothesis γ = 1.5 cannot be rejected. In all other cases,
γ = 0, 0.5, or 1.5 are all rejected.

increasing diffusion function would generate a dense population of large val-
ues, which can explain the slowly decaying unconditional distribution of the
interest rate documented in Aı̈t-Sahalia (1996b). It is also documented that
the shape of non-linear drift is consistent with the empirical findings of Aı̈t-
Sahalia (1996b) and Stanton (1997). Both suggest that the linearity of the
drift imposed in the affine-class models or Chan et al. (1992) appears to
be the main source of misspecification. Our empirical results seem to sup-
port their claims, and the superiority of the AG model over both OU and
CIR is found for both EDR and LIBOR rates for both sampling frequency
considered in this paper.

We now turn our attention to the two new models proposed here. Firstly
we find that the goodness of fit of the OU-CEV model in terms of AIC and
BIC, or equivalently the likelihood is very close to that of the CIR-CEV
model. It is not surprising as it can be shown that the conditional distribu-
tion for the OU-CEV is a transformation of a distribution that is akin to a
non-central χ2 with one degree of freedom, whereas the conditional distribu-
tion of the CIR-CEV is the same transformation of an exact non-central χ2

with fractional degree of freedom which is greater than unity. Nevertheless,
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the two models do not nest each other. In addition, the two non-centrality
parameters of the two distribution are generally different. Secondly, the es-
timated diffusion functions in the two models are almost identical, including
the standard errors for the two parameters. The estimates of a1 in the two
models are also close but different in principle. The most prominent differ-
ence is in the estimation of a2. This is actually expected. We can see that
even in the simple OU and CIR models the estimates of the two parameters
are quite different due to different specifications of the diffusion. Besides,
the interpretations of the two parameters are different after the transforma-
tions. These findings are once again similar for both US and UK rates and
invariant to sampling frequencies.

An important feature of the newly proposed OU-CEV and CIR-CEV
models is that the basic OU and CIR as well as the AG models are nested
within them. Specifically, the OU process is a special case of the OU-CEV
when the transformation parameter γ = 1 and the CIR and AG processes are
special cases of the CIR-CEV process when γ = 0.5 and 1.5 respectively. For
this reason, the relative simple specifications can be tested under the more
general framework proposed here. Test of the specification of the simple
OU model against the more general OU-CEV is a test of the null hypothesis
γ = 0. Note that the hypothesis is on the boundary of the parameter space.
Since the model is estimated by ML, the boundary problem in the testing of
coefficient may be avoided by using a Lagrange Multiplier (LM) test based
only on the restricted OU model. The same test can be used to test the
specification of the simple CIR model against the more general CIR-CEV.
The results confirm that both OU and CIR are strongly rejected across all
cases. The AG specification corresponds to γ = 1.5 in the CIR-CEV model.
A simple likelihood ratio test can be used. The AG specification is strongly
rejected at 1% significance level in three out of the four data series. The only
case where the AG model is not rejected is the monthly LIBOR case which
yields a p-value of 0.627. The AIC and BIC criteria also suggest the AG
model is preferred to all other models in the monthly LIBOR case, whereas
in all the rest of cases the more general models are preferred. Specifically,
the CIR-CEV model is preferred for EDR data at both frequencies and the
OU-CEV is preferred for weekly LIBOR rates. These results suggest that
despite some evidence in favour of the relatively simple AG model, most of
the time existing models that have closed form likelihood functions are too
simple to describe the movement of interest rates. This is indeed one of the
fundamental motivation of this study.

Both OU-CEV and CIR-CEV models assume time-invariant transfor-
mation function. It would be interesting to see whether conditional (time-
varying) transformation is indeed a necessary extension. Since the fitted
values of γ in the time-homogenous version of the model are all greater than
unity, we focus on the specification given in (19). To avoid over parame-
terisations, a more restricted version of (19) is used in this application. We
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assume that the dynamics of the conditional transformation parameter is
given by

γt = Λ̃


ω + αγt−1 + β


1

q

q∑

j=1

rt−j





 . (20)

On one hand, using the average of lags of rt as the only forcing variable rather
than including individual lags avoids over-parametrisation of the model and
alleviate difficulties in numerical optimisation. On the other hand, unre-
ported results suggest that including more lags of γt did not improve the
likelihood significantly. The resulting time-varying models are denoted as
TV-OU-CEV(1,q) and TV-CIR-CEV(1,q), respectively. Strictly speaking,
the resulting processes no longer have constant elasticity diffusion as the γt

is time-dependent. However, in any given time period (t− 1, t) the process
has constant elasticity diffusion. The value of q is selected by optimising
the resulting likelihood of the model. In practice, we estimate the model for
q = 1, 2, . . . 12 and chose the one that gives the highest likelihood. This is
equivalent to using AIC or BIC, as the number of parameters is always the
same.

The results from time-varying models are presented in Table 5. Once
again, in terms of likelihood the goodness of fit of the time-varying model
based on OU-CEV is very similar to that of the model based on CIR-CEV.
This is expected because in any given time period from t−1 to t the TV-OU-
CEV process is simply an OU-CEV and the TV-CIR-CEV is a CIR-CEV.
The latter two are shown to have provided similar goodness of fit to the
data in the time-homogenous cases. We found q = 1 to be optimal for
both monthly and weekly observations of the EDR data, and the optimal
choices for monthly and weekly LIBOR rates are q = 5 and q = 8, re-
spectively. The introduction of the conditional transformation has clearly
improved the goodness of fit to the data as the values of AIC and BIC have
decreased despite the increased number of parameters. However, a formal
test is required to confirm the existence of time-varying effects in the trans-
formation parameter. We therefore consider a likelihood ratio test of the
restricted time-homogenous model we considered earlier against the unre-
stricted time-varying model estimated here. Under the null hypothesis of no
time-varying effect, which means α = β = 0, the likelihood ratio test statis-
tic has an asymptotic χ2 distribution with two degrees of freedom. The test
that there is no time-varying effect is strongly rejected as the p-values for
all of the eight reported cases are less than 0.0001, especially for the weekly
data the p-values of these tests are all practically zero, showing an over-
whelming evidence of time-varying effect in the transformation parameter
of the proposed models. The use of conditional transformation is therefore
justified.
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Table 5: ML Estimates of Time-varying Transformation Models

Monthly Weekly
TV-OU-CEV TV-CIR-CEV TV-OU-CEV TV-CIR-CEV

EDR (p = 1) (p = 1) (p = 1) (p = 1)
a1 -0.100 -0.114 -0.091 -0.107

(0.074) (0.079) (0.070) (0.076)
a2 -0.398 0.441 -0.282 0.258

(0.295) (0.300) (0.218) (0.178)
b 0.187 0.186 0.159 0.159

(0.006) (0.006) (0.003) (0.003)
ω -2.105 -2.087 3.522 3.520

(0.697) (0.693) (0.468) (0.465)
α 3.184 3.158 -1.667 -1.666

(0.592) (0.587) (0.383) (0.380)
β 0.004 0.004 0.003 0.003

(0.001) (0.001) (0.000) (0.000)
AIC 526.90 526.67* -930.19 -930.49*
BIC 551.48 551.25* -896.80 -897.10*

LIBOR (p = 5) (p = 5) (p = 8) (p = 8)
a1 -0.228 -0.223 -0.208 -0.198

(0.141) (0.146) (0.122) (0.123)
a2 -0.124 0.017 -0.336 0.131

(0.072) (0.009) (0.190) (0.074)
b 0.046 0.046 0.077 0.077

(0.002) (0.002) (0.002) (0.002)
ω -1.768 -1.766 1.924 1.903

(0.310) (0.311) (1.566) (1.715)
α 1.288 1.286 -0.662 -0.645

(0.201) (0.202) (1.154) (1.264)
β 0.025 0.026 0.006 0.006

(0.006) (0.006) (0.003) (0.003)
AIC 95.06 95.00* -1264.98* -1264.95
BIC 116.51 116.46* -1234.71* -1234.67

5.3 Bivariate Modeling through Copulas

In addition to greatly simplifying the estimation of the model by breaking
the estimation problem into smaller problems, the multi-stage estimation
procedure allows us to deal with situations where the time series of vari-
ables under consideration have different lengths, as is the case in our data.
Patton (2006b) proposed to use a multi-stage maximum likelihood estima-
tor (MSMLE) based on all available data rather than the usual one-stage
maximum likelihood estimator (1SMLE) based only on the overlapping part
of the data. He provided conditions under which the MSMLE is no less
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asymptotically efficient than the 1SMLE and examined the small sample
efficiency of the estimators via simulations.

In order to choose the best fitting copula model, we attempted a num-
ber of widely used parametric copula specifications including nine constant
copulas and three time-varying copulas6. Our results (not reported here
for economy of space) show that the time-varying SJC copula, proposed by
Patton (2006a), is preferred to all the rest of the models in terms of like-
lihood and two information criteria (AIC and BIC). We therefore chose to
base our empirical analysis on the time-varying SJC copula. The details
of the time-varying SJC copula and statistical inferences of the model are
discussed below.

The SJC copula is a modification of the Joe-Clayton (JC) copula (the
“BB7” copula of Joe (1997)).

CJC

(
u, v| τU , τL

)

= 1−
(

1−
{

[1− (1− u)κ]−γ + [1− (1− v)κ]−γ − 1
}−1/γ

)1/κ

,

where κ = 1
/
log2

(
2− τU

)
, γ = −1

/
log2

(
τL

)
, and τU ∈ (0, 1), τL ∈ (0, 1)

are measures of the upper and lower tail dependencies. For a given copula
function C, the upper and lower tail dependencies are defined as

τU = lim
δ→1

(1− 2δ + C (δ, δ))/ (1− δ) and

τL = lim
ε→0

C (ε, ε)/ ε,

respectively. Tail dependence captures the behavior of the random variables
during extreme events. A major drawback of the JC copula is that it is
always asymmetric even when the two tail dependence measures are equal,
i.e., τU = τL. A more desirable model would have the tail dependence
measures completely determining the presence or absence of asymmetry.
For this reason, Patton (2006a) advocates the use of the SJC copula given
by:

CSJC

(
u, v| τU , τL

)

=
1
2

[
CJC

(
u, v| τU , τL

)
+ CJC

(
1− u, 1− v| τL, τU

)
+ u + v − 1

]
.

The SJC copula is by construction symmetric when τU = τL and remains
asymmetric otherwise. Therefore the presence or absence of asymmetry of

6The nine constant copula models are Nomal copula, Clayton copula, Rotated Clayton
copula, Plackett copula, Frank copula, Gumbel copula, Rotated Gumbel copula, Student’s
t copula, Symmetrised Joe-Clayton (SJC) copula. The three time varying copula models
are Time-varying normal Copula, Time-varying rotated Gumbel copula, Time-varying
SJC copula.
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the copula is completely determined by the tail dependencies. The fact that
the SJC copula nests symmetry as a special case makes it a more flexible
specification.

The concept of conditional (time-varying) copula was formalised in Theo-
rem 1 of Patton (2006a). Basically, it states that if FX|W (·|w) and FY |W (·|w)
are the conditional distributions of X|W = w and Y |W = w, respec-
tively, and C (·|w) is a conditional copula that is measurable in w, then
FXY |W (x, y|w) = C

(
FX|W (·|w) , FY |W (·|w)

∣∣w
)

is a conditional bivariate
distribution function with conditional marginal distributions FX|W (·|w) and
FY |W (·|w). Patton (2006a) proposed to use the following specification for
the conditional SJC copula function.

τU
t = Λ

(
ωU + αUτU

t−1 + βU

[
1
p

p∑

i=1

|ut−i − vt−i|
])

τL
t = Λ

(
ωL + αLτL

t−1 + βL

[
1
p

p∑

i=1

|ut−i − vt−i|
])

,

where Λ (·) is again the logistic transformation to keep τU
t and τL

t in the
range (0, 1). The dynamics of the tail dependence parameters are akin to a
restricted ARMA(1, q) process. Patton (2006a) chooses to use a fixed value
of p = 10. In our study, however, we estimate the time-varying SJC copula
with a number of different values of p up to p = 12 and choose the best
fitting model in terms of the likelihood. This is equivalent to using AIC and
BIC as the number of parameters in the model remains the same.

5.4 Copula results

For space of economy, we estimate our model only for the weekly data series.
We therefore report the empirical results employing 1148 observations in the
overlapping series. The estimation results from the conditional copula model
are presented in Table 6. We note from the estimated unrestricted time-
varying SJC model that the autoregressive parameter in both conditional
tail dependence specifications of the SJC copula model, αU and αL, are not
significantly different from zero. In an attempt to see whether both autore-
gressive terms can be discarded from the specification, we re-estimate the
model imposing the joint restriction αU = αL = 0. This makes this model
for the conditional tail dependence parameter resembles an ARCH model. A
simple likelihood ratio test on this joint restriction yields a statistic 1.5214.
According to a chi-square distribution with 2 degrees of freedoms, this cor-
responds to a p-value of 0.4673. Therefore, this joint restriction cannot be
rejected and we proceed to estimate the model without the autoregressive
terms.

Results for the restricted model are also provided in Table 5. Testing
for the significance of time variation in such a model can be achieved via
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Table 6: ML Estimates of Time-varying SJC Copula
Time-varying SJC copula model (p = q = 8)
Unrestricted model Restricted model

ωU 3.646 4.464
(1.554) (0.540)

αU 0.628
(1.303)

βU -35.565 -40.197
(9.030) (7.208)

ωL 3.126 1.845
(1.282) (1.261)

αL -2.512
(1.838)

βL -31.991 -26.447
(8.723) (8.511)

AIC -123.96 -126.44
BIC -93.70 -106.26

a similar likelihood ratio test on the joint restriction that βU = βL = 0
in the restricted model. Following such a procedure yields a p-value that
is practically zero, indicating strong rejection of the hypothesis of no time
variation in the conditional copula.

In Figure 2 we plot the estimated conditional upper and lower tail de-
pendencies from the time-varying SJC copula model. We can see substantial
time variation in tail dependencies, ranging from near zero to 0.957 within
the sample period. This indicates that the probability of these joint extreme
movements can range from near zero to about 96 per cent. When compared
with the original plot of the over-lapping part of the two interest rate series,
the evolution of the conditional tail dependencies appear to coincide with
that of interest rates themselves. That is, the tail dependencies tend to be
higher when the interest rates are relatively high, and lower in the opposite
situation. In particular, the tail dependencies are lowest when the two rates
are at their local bottoms.

We also note that the plots of the two tail dependencies are similar in
patterns with difference only in their scales. As we used the same forcing
variable in the evolution equations for both upper and lower dependence,
we can formally test for the significance of asymmetry in the conditional
copula by testing whether the parameters of the upper tail dependence co-
efficient equal the parameters of the lower tail dependence coefficient in the
restricted model. The p-value for such a likelihood ratio test is 0.005, indi-
cating a rejection of symmetry in the conditional tail dependencies of the
distributions of the two interest rates series.

In Figure 3 we plot the time path of the conditional linear correlation
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Figure 2: Conditional Upper and Lower Tail Dependencies in the SJC Cop-
ula

implied by the time-varying SJC copula model. These conditional correla-
tions are obtained via simulation based on the estimated copula model and
the two marginal models estimated earlier. Specifically, at each time period
t we generate 10000 pairs of bivariate uniform random variables (FX , FY )
from the conditional SJC copula model. These pairs of uniformly distributed
(FX , FY ) are transformed to random variables of interest (X, Y ) according
to the conditional marginal distributions implied by TV-CIR-CEV(1,1) and
TV-OU-CEV(1,8), respectively. The conditional linear correlation is ob-
tained based on the 10000 simulated (X, Y ) pairs. Not surprisingly, the
conditional correlations also reveal substantial time variation in the linear
dependence between the two rates, ranging from 0.023 zero to 0.959 within
the sample period. Similar relationship between the level of dependence
and the level of interest rates is also found. The evolution of the conditional
linear correlation appear to coincide with that of interest rates themselves.
The correlation tends to be stronger when the rates are comparatively high,
and weaker when they are relatively low.
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Figure 3: Overlapping Series and Conditional Linear Correlations in the
Time-varying SJC Copula

6 Conclusion

In this paper, we develop a copula-based non-linear multivariate interest
rates models that account simultaneously for observed non-linearities and
correlation across short-term interest rates. The dynamics of the marginal
processes are governed by a special type of SDEs, called reducible SDEs. The
use of reducible SDEs for modeling financial variables, such as the short term
interest rates, has a number of advantages. These SDEs usually lead to ex-
act discretisation and closed form transition density functions. As a result,
maximum likelihood can be easily implemented as a major tool for statisti-
cal analysis where various types of likelihood-based inferences can be used.
These closed form conditional distributions functions are useful tools for sta-
tistical analyses based on probability integral transforms (PIT), such as the
copula based multivariate modeling. Moreover, it follows straightforwardly
from a mapping theorem that the discrete random sequence generated by
the non-linear SDEs would also have stationarity and ergodicity properties
under minor conditions if the basic processes are stationary and ergodic.
These are useful properties for asymptotic analysis.

We consider SDEs that can be reduced to either an OU process or a CIR
process, since these two processes have all the desired statistical properties
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mentioned above and are widely used in Finance. We focused our attention
on a couple of CEV models, the OU-CEV and CIR-CEV models, respec-
tively. We showed that even these relatively simple specifications encompass
most existing parametric models that have closed form likelihood functions.
These include OU, CIR as well as the Ahn and Gao (1999) model. The
statistical properties of the two processes are investigated. In particular,
we provide expressions of both conditional and unconditional moments of
the two processes. These expressions make the method of moments based
inference convenient in case the users intend to impose conditions only on
a number of moments instead of the whole distribution of the model. In
our empirical studies of monthly and weekly US and UK short term interest
rates, we found that simple parametric models like OU and CIR are strongly
rejected by the data under their more general CEV frameworks. The AG
model is also rejected by all but the monthly LIBOR data, and the only ex-
ception is likely to be due to insufficient number of observations. Hence, our
new models outperform, in most cases, existing parametric models endowed
with closed form likelihood functions. To generate more flexible dynamics,
we extended our theory to allow for conditioning variables in the transfor-
mation functions. We found that in all four cases the time-varying effects
of the transformation parameter are significant.

The dependence of the US and UK short rates were studied via a condi-
tional copula. We found that the time-varying effect in the conditional SJC
copula is significant. Also significant is the asymmetry in the tail depen-
dence implied by the copula. From the fitted tail dependence coefficients, we
found that the evolution of the conditional tail dependencies appear to co-
incide with that of interest rates themselves. That is, the tail dependencies
tend to be higher when the interest rates are relatively high, and lower in
the opposite situation. Similar relationship is also found in the conditional
linear correlation coefficients implied by the conditional copula.
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7 Appendix

This appendix provides an analysis of the distributions of rt implied by the
CIR-CEV process and the OU-CEV process defined in Section 3.
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7.1 CIR-CEV Process

7.1.1 Stationarity

We examine, with reference to Assumption (i)-(iii) in Aı̈t-Sahalia (1999b),
the behaviour of the speed measure S and scale measure M near both bound-
aries7. When γ > 1, we note that near zero

µ (u,φ)
/
σ2 (u,φ) ∝ [

a1

/
(2− 2γ) b2

]
u2γ−1

so the speed and scale density functions

s (v, φ) ∝ exp
{[
−a1

/
2b2 (γ − 1)2

]
v2−2γ

}
(21)

m (v, φ) ∝ (
1

/
v2γ

)
exp

{[
a1

/
2b2 (γ − 1)2

]
v2−2γ

}
(22)

Therefore, a1 < 0 guarantees the divergence of S and the convergence of M .
Near infinity

µ (u,φ)
/
σ2 (u,φ) ∝ [

2a2 (1− γ) + b2 (2γ − 1) /2
] /

b2u

so

s (v, φ) ∝ v−[4a2(1−γ)+b2(2γ−1)]/b2 (23)

m (v, φ) ∝ v[4a2(1−γ)+b2(2γ−1)]/b2−2γ (24)

We require
4a2

/
b2 > (2γ − 1) /(γ − 1) (25)

Meanwhile, a1 < 0 ensures limrt↓0 µ (rt, φ) > 0 and (25) ensures limrt↑+∞ µ (rt, φ) <
0.

When γ < 1, near zero we obtain the same expressions as in (23) and
(24) for the speed and scale density functions except that we have γ < 1.
Therefore, we require

4a2

/
b2 ≥ 1 /(1− γ)

which also ensures limrt↓0 µ (rt, φ) > 0. Near infinity we obtain the same
expressions as in (21) and (22) for the two densities. Therefore, a1 < 0 will
suffice and also guarantees limrt↑+∞ µ (rt, φ) < 0.

7.1.2 Transition Density

Since xt follows the well-known CIR process, the transition density function
for xt given xt−∆ is

f (xt|xt−∆) = ce−u−v
(v

u

)q/2
Iq

[
2 (uv)1/2

]

7See Aı̈t-Sahalia (1999b) for definitions of speed and scale densities and speed and scale
measures, and more extensive analysis regarding the conditions for a general process.
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where

c =
−2a1

b2 (1− ea1∆)
, u = cxt−∆ea1∆, v = cxt, q =

2a2

b2
− 1.

Since the Jacobian of the transformation is given by |∂xt/∂rt| = r1−2γ
t

/
(2 |1− γ|),

standard transformation method of distributions yields

f (rt|rt−∆) =
1
2

r1−2γ
t

|1− γ|ce
−u−v

(v

u

)q/2
Iq

[
2 (uv)1/2

]
(26)

where

c =
−2a1

b2 (1− ea1∆)
, u = c

1
4

[
r1−γ
t−∆

1− γ

]2

ea1∆, v = c
1
4

[
r1−γ
t

1− γ

]2

, q =
2a2

b2
− 1.

7.1.3 Conditional distribution function

It follows from (26) and (13) that the conditional distribution function of rt

can be computed as

F (rt|rt−∆) =
∫ rt

0

1
2

r1−2γ
t

(1− γ)
ce−u−v

(v

u

)q/2
Iq

[
2 (uv)1/2

]
drt

=
∫ xt

0
ce−u−v

(v

u

)q/2
Iq

[
2 (uv)1/2

]
dxt

= D (2cxt; 2q + 2, 2u)

when γ < 1, and

F (rt|rt−∆) = −
∫ rt

0

1
2

r1−2γ
t

(1− γ)
ce−u−v

(v

u

)q/2
Iq

[
2 (uv)1/2

]
drt

= −
∫ xt

∞
ce−u−v

(v

u

)q/2
Iq

[
2 (uv)1/2

]
dxt

=
∫ ∞

xt

ce−u−v
(v

u

)q/2
Iq

[
2 (uv)1/2

]
dxt

= 1−D (2cxt; 2q + 2, 2u)

when γ > 1.

7.1.4 Conditional moments

To derive the conditional moments for rt, we note from (13) that

rt = [2 |1− γ|] 1
1−γ c

− 1
2(1−γ) v

1
2(1−γ)

drt = [2 |1− γ|] 1
1−γ c

− 1
2(1−γ) v

1
2(1−γ)

−1 [2 (1− γ)]−1 dv.
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The conditional moments for rt can then be computed as

E [rm
t |rt−∆]

=
∫ ∞

0
rm
t f (rt|rt−∆) drt

=
∫ ∞

0
rm
t

1
2

r1−2γ
t

|1− γ|ce
−u−v

(v

u

)q/2
Iq

[
2 (uv)1/2

]
drt

=
∫ ∞

0
r1−2γ+m
t ce−u−v

(v

u

)q/2
Iq

[
2 (uv)1/2

]
[2 |1− γ|] 2γ−1

1−γ c
− 1

2(1−γ) v
1

2(1−γ)
−1

dv

= [2 |1− γ|] m
1−γ c

− m
2(1−γ)

∫ ∞

0
v

m
2(1−γ) e−u−v

(v

u

)q/2
Iq

[
2 (uv)1/2

]
dv.

To evaluate the integral, we note that

Iq

[
2 (uv)1/2

]
= (uv)q/2

∞∑

p=0

(uv)p

Γ (p + 1)Γ (p + 1 + q)
. (27)

Therefore, we obtain
∫ ∞

0
v

m
2(1−γ) e−u−v

(v

u

)q/2
Iq

(
2 (uv)1/2

)
dv

=
∫ ∞

0
e−u−vv

q/2+ m
2(1−γ) u−q/2 (uv)q/2

∞∑

p=0

(uv)p

Γ (p + 1) Γ (p + 1 + q)
dv

= e−u

∫ ∞

0

∞∑

p=0

e−vv
p+q+ m

2(1−γ) up

Γ (p + 1) Γ (p + 1 + q)
dv

= e−u
∞∑

p=0

up

Γ (p + 1) Γ (p + 1 + q)

∫ ∞

0
e−vv

p+q+ m
2(1−γ) dv

= e−u
∞∑

p=0

up

Γ (p + 1) Γ (p + 1 + q)
Γ

(
p + q +

m

2 (1− γ)
+ 1

)

= e−u
∞∑

p=0

upΓ
(
q + m

2(1−γ) + 1
)(

q + m
2(1−γ) + 1

)
p

Γ (1) (1)p Γ (1 + q) (1 + q)p

= e−u
Γ

(
q + m

2(1−γ) + 1
)

Γ (1 + q)

∞∑

p=0

up
(
q + m

2(1−γ) + 1
)

p

p! (1 + q)p

= e−u
Γ

(
q + m

2(1−γ) + 1
)

Γ (1 + q) 1F1

(
q +

m

2 (1− γ)
+ 1, 1 + q, u

)
.
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Finally, we get

E [rm
t |rt−∆]

= [2 |1− γ|] m
1−γ c

− m
2(1−γ) e−u

Γ
(
q + m

2(1−γ) + 1
)

Γ (1 + q) 1F1

(
q +

m

2 (1− γ)
+ 1, 1 + q, u

)
.

7.1.5 Marginal density

Using the result in (27), the transitional density can be written as

f (rt|rt−∆) =
1
2

r1−2γ
t

|1− γ|ce
−u−vvq

∞∑

p=0

(uv)p

Γ (p + 1)Γ (p + 1 + q)
.

Note that as ∆ →∞

c → −2a1

b2
, u → 0, v → −2a1

b2
xt.

Consequently, the steady-state density function is

π (rt) = lim
∆→∞

f (rt|rt−∆)

=
1
2

r1−2γ
t

|1− γ|ce
−vvq 1

Γ (1 + q)

=
1
2

r1−2γ
t

|1− γ|

(−2a1
b2

) 2a2
b2

Γ
(

2a2
b2

) x
2a2
b2
−1

t exp
(

2a1

b2
xt

)
. (28)

7.1.6 Unconditional moments

We note from (13) that

rt =
[
|1− γ| (4xt)

1
2

] 1
1−γ = [2 |1− γ|] 1

1−γ x
1

2(1−γ)

t

drt = [2 |1− γ|] 1
1−γ x

1
2(1−γ)

−1

t

1
2 (1− γ)

dxt.
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Then it follows from (28) that

E [rm
t ] =

∫ ∞

0
rm
t π (rt) drt

=
∫ ∞

0
rm
t π (rt) [2 |1− γ|] γ

1−γ x
1

2(1−γ)
−1

t dxt

= [2 |1− γ|] m
1−γ

(−2a1
b2

) 2a2
b2

Γ
(

2a2
b2

)
∫ ∞

0
x

m−2+2γ
2(1−γ)

+
2a2
b2

t exp
(

2a1

b2
xt

)
dxt

= [2 |1− γ|] m
1−γ

(−2a1
b2

)− m
2(1−γ)

Γ
(

2a2
b2

) Γ
(

m− 2 + 2γ

2 (1− γ)
+

2a2

b2
+ 1

)

= [2 |1− γ|] m
1−γ

(
−2a1

b2

)− m
2(1−γ) Γ

(
2a2
b2

+ m
2(1−γ)

)

Γ
(

2a2
b2

) .

7.2 OU-CEV Process

7.2.1 Transition density

Since xt follows the well known OU process, it has a normal transition
density function with mean and variance given by

µou = ea1∆xt−∆ − a2

a1

(
1− ea1∆

)

σ2
ou =

b2
(
e2a1∆ − 1

)

2a1
.

Since the Jacobian of the transformation is r−γ
t , the transition density func-

tion for the process rt is given by

f (rt|rt−∆) = r−γ
t

1√
2πσ2

ou

exp

[
−1

2

(
xt − µou

σou

)2
]

. (29)

7.2.2 Conditional distribution function

For γ < 1, it follows from (10) and (29) that the conditional distribution
function of rt given rt−∆ can be computed as

F (rt|rt−∆) =
∫ rt

0
r−γ
t

1√
2πσ2

ou

exp

[
−1

2

(
xt − µou

σou

)2
]

drt

=
∫ xt

0

1√
2πσ2

ou

exp

[
−1

2

(
xt − µou

σou

)2
]

dxt

= Φ(xt)− Φ(0) .
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For γ > 1, (11) and (29) yields

F (rt|rt−∆) =
∫ rt

0
r−γ
t

1√
2πσ2

ou

exp

[
−1

2

(
xt − µou

σou

)2
]

drt

= −
∫ xt

∞

1√
2πσ2

ou

exp

[
−1

2

(
xt − µou

σou

)2
]

dxt

=
∫ ∞

xt

1√
2πσ2

ou

exp

[
−1

2

(
xt − µou

σou

)2
]

dxt

= 1− Φ(xt) .

7.2.3 Conditional moments

For γ < 1, it follows from (10) that

rt = [(1− γ) xt]
1

1−γ = (1− γ)
1

1−γ x
1

1−γ

t

drt = (1− γ)
γ

1−γ x
γ

1−γ

t dxt

The conditional moments for rt can be then be written as

E (rm
t |rt−∆) =

∫ ∞

0
rm
t r−γ

t

1√
2πσ2

ou

exp

[
−1

2

(
xt − µou

σou

)2
]

drt

= (1− γ)
m

1−γ

∫ ∞

0
x

m
1−γ

t

1√
2πσ2

ou

exp

[
−1

2

(
xt − µou

σou

)2
]

dxt

The integral above is by definition the fractional moments of a truncated
normal distribution. If we let w = µou

/√
2σou and z = xt

/√
2σou , the

conditional moments become

E (rm
t |rt−∆) =

[√
2σou (1− γ)

] m
1−γ

√
π

∫ ∞

0
z

m
1−γ exp

[
− (z − w)2

]
dz

For γ > 1 with transformation being (11), similar reasoning yields

E (rm
t |rt−∆) =

[√
2σou (γ − 1)

] m
1−γ

√
π

∫ ∞

0
z

m
1−γ exp

[
− (z − w)2

]
dz
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To evaluate the integral, we let v = m /1− γ . Note that
∫ ∞

0
zve−(z−w)2dz

= e−w2

∫ ∞

0
zve−z2

e2wzdz

= e−w2

∫ ∞

0
zve−z2

∞∑

j=0

(2wz)j

j!
dz

= e−w2
∞∑

j=0

(2w)j

j!

∫ ∞

0
e−z2

zj+vdz

=
1
2
e−w2

∞∑

j=0

(2w)j

j!
Γ

(
j + v + 1

2

)

Focusing on the summation, we note that by regrouping terms in terms of
whether j is odd or even we obtain

∞∑

j=0

(2w)j

j!
Γ

(
j + v + 1

2

)

=
∞∑

j=0

(2w)2j

(2j)!
Γ

(
2j + v + 1

2

)
+

∞∑

j=0

(2w)(2j+1)

(2j + 1)!
Γ

(
(2j + 1) + v + 1

2

)

=
∞∑

j=0

(2w)2j

(2j)!
Γ

(
v + 1

2

)(
v + 1

2

)

j

+
∞∑

j=0

(2w)(2j+1)

(2j + 1)!
Γ

(
1 +

v

2

)(
1 +

v

2

)
j

= Γ
(

v + 1
2

) ∞∑

j=0

(2w)2j

(2j)!

(
v + 1

2

)

j

+ Γ
(
1 +

v

2

) ∞∑

j=0

(2w)(2j+1)

(2j + 1)!

(
1 +

v

2

)
j

= Γ
(

v + 1
2

) ∞∑

j=0

(
v+1
2

)
j

(
4w2

)j

(2j)!
+ wvΓ

(v

2

) ∞∑

j=0

(
1 + v

2

)
j

(
4w2

)j

(2j + 1)!

= Γ
(

v + 1
2

) ∞∑

j=0

(
v+1
2

)
j

(
w2

)j

(
1
2

)
j
j!

+ wvΓ
(v

2

)


∞∑

j=0

(
1 + v

2

)
j

(
w2

)j

(
3
2

)
j
j!




= Γ
(

v + 1
2

)
1F1

(
v + 1

2
,
1
2
, w2

)
+ wvΓ

(v

2

)
1F1

(
1 +

v

2
,
3
2
, w2

)

Finally, we get

E (rm
t |rt−∆) =

[√
2σou |1− γ|]

m
1−γ

√
π

1
2
e−w2

[
Γ

(
v + 1

2

)
1F1

(
v + 1

2
,
1
2
, w2

)

+wvΓ
(v

2

)
1F1

(
1 +

v

2
,
3
2
, w2

)]

where v = m /1− γ and w = µou

/√
2σou .
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7.2.4 Marginal density and unconditional moments

To get the marginal density and unconditional moments we simply have to
replace the conditional mean and variance in (16) and (17) by their corre-
sponding limits −a2/a1 and −b2/2a1 as ∆ →∞.
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