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Abstract: This paper focuses on the use of dynamical chaotic systems in
Economics and Finance. In these fields, researchers employ different methods
from those taken by mathematicians and physicists. We discuss this point.
Then, we present statistical tools and problems which are innovative and can
be useful in practice to detect the existence of chaotic behavior inside real
data sets.
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1 Introduction

Chaotic systems are complex systems which belong to the class of determin-
istic dynamical systems. They are detected and used in a lot of fields for
control or forecasting. Deterministic chaos has been rigorously and exten-
sively studied by mathematicians and other scientists. It is almost impossible
to give a precise mathematical definition of deterministic chaos that encapsu-
lates everything in the diverse literature. In this paper we are not interested
by complete mathematical rigour, and avoid technical details. Our viewpoint
is to understand how the notion of chaotic systems is viewed, analysed and
used in different fields.

As a first insight, we know that these systems are characterized by strong non-
linearity, permitting to take into account non-periodic fluctuations, mixing
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cycles and switches inside data sets. They are characterized by an invariant
distribution function and their orbits evolve inside an attractor in which it is
possible to do forecasts. Working inside an attractor also permits to control
the system and to be able to avoid explosions and strong volatility, which is
an interesting task for applications.

Historically, mathematicians were the first to be interested by this theory.
Since 1800, work concerning deterministic dynamical systems which gener-
ate random behaviors has been investigated, and Poincare’s works (Poincaré,
1908) enable those studies to foster a growing interest and to be developed in
a lot of communities. In biology, people who study population evolution have
used chaotic deterministic systems since the 1970s, May (1976). In physics,
it is a long tradition for researchers, working mainly with an empirical ap-
proach, to use these models. The works of Ruelle and Takens (1971) proposed
a new approach to non-linear modelling with few parameters and also gave
the opportunity to extend the research in this field in this community. In
economics, people working on stability and instability have flirted with bifur-
cation theory since the 1980s. This approach is really new and unexpected
coming from this community. Indeed, working with chaotic systems is in
opposition to most of the different concepts developed by macro-economists:
we cite for instance, the neo-classical theory of Lucas, Sargent, Prescott, etc,
the ‘rational’ theory which uses mainly linear concepts or, Keynes’ theory
which is not concerned with complex systems, Medio (1992). Between the
years 1986 and 1998, a lot of studies, following the idea of Grandmont (1988),
guided a part of the research in economics towards chaotic systems. In partic-
ular, it explained randomness endogenously. New econometric models were
developed and time irreversibility was introduced. In finance the interest
in chaos theory is more recent and sparse. The craze for this theory from
financial people began around the nineties. People expected to get robust
forecasts using chaos. Finally, chaos has been recently developed as an area
of increasing interest for statisticians.

Why are some statisticians so interested by the vast potential which can
be gained studying deterministic chaos? One reason is that deterministic
dynamical systems can generate chaos, that is highly erratic behavior remi-
niscent of realisations of random process. Now, in the study of deterministic
dynamical systems, environmental noise tends to be suppressed or, at most,
plays a secondary role. In statistics, randomness is generated through a
stochastic process and we speak about stochastic dynamical systems. What
is the link between the deterministic characteristics of a chaotic system free
of noise and the property of stochasticity? We can illustrate this fact using
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the logistic map, largely studied in the literature, May (1976). Consider the
following map defined by

Xt = 4Xt−1(1 − Xt−1), t = 1, 2, ... (1)

The solution of the logistic map, given a starting value, is also called a tra-
jectory. If the starting value is between 0 and 1, then all the iterates of the
logistic map will remain in the interval [0, 1]. The natural measure whose
density is φ(x) = 1

π
√

x(1−x)
, 0 ≤ x ≤ 1, and zero elsewhere, reflects the fact

that each point inside [0, 1] will be visited arbitrarely closely and infinitely
often. This natural measure is associated with a typical trajectory of the pre-
vious logistic map and describes the ‘frequency’ of any point to be visited by
such a trajectory and it can be linked with the marginal distribution of the lo-
gistic map. Thus, we may introduce stochasticity into the logistic dynamical
system by specifying the initial condition according to some probability dis-
tribution. Then Xt, t = 1, 2, · · · , defined by (1), becomes a random sequence.

It is this link between the notion of chaos and stochastic environment which
has been investigated by some statisticians, permitting to offer in real data
analysis the possibility to extracting ‘chaotic’ signals from noisy data sets.

Now, on the other hand, we can remark that, concerning the use of determin-
istic chaotic systems, each community may have different strategies. They
do not use the same models, nor the same information set. Most math-
ematicians work with analytical expressions and characterize their models
under specific assumptions to decide if they can exhibit specific chaotic be-
haviors, characterized by specific properties, following varied definitions of
‘chaos’. The economists generally use analytical systems corresponding to a
specific modelling problem. These systems depend on few parameters and
one purpose is to detect the range of these parameters in which they can
lead to stable or unstable behaviors. Bifurcation theory is often a basis of
their studies. Generally economists do not follow the roads of physicists. In-
deed, physicists are interested by questions relative to universal laws, and in
economics the trend is to understand and document differences. In finance,
practitioners do not use analytical systems and want to use chaos theory to
robustify their forecasts: most of the work is empirical. In statisitics, work
concerns estimation theory and tries to prove robustness of estimates of the
Lyapunov exponents or the embedding dimension, for instance. They are
aslo interested in re-building orbits and forecasting on the attractors.
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2 What kind of chaos for which models?

Let X t be a random vector characterized by the following equation

X t = f(X t−1), (2)

and X0 an initial condition. The sequence (X t)t corresponds to a dynamical
deterministic system and we assume that it is characterized by an invariant
measure. This system is defined on a metric space A ∈ Rd, d ∈ N and f

is a non-linear function: A → A. As a working definition for our purpose,
we will say that such a system has chaotic behavior if it is non-linear, if it is
characterized by the existence of an attractor inside A and if it is sensitive
to initial conditions (which means that there exists almost one positive Lya-
punov exponent). Such a dynamical system gives rise to observations that
have the characteristics of random data, and yet nevertheless are determin-
istically generated. Throughout this paper we remain with this definition
which is sufficient to explain the attemps of the different communities with
respect to the chaotic theory. For more details on the notion of chaos, attrac-
tors, and sensitivity to initial conditions, we refer to Devaney (1989), Katok
and Hasselblatt (1995) and Guégan (2003), among others.

It appears very interesting to use chaos for modelling. Indeed, it is a non-
explosive system (no trend); it is an aperiodic system (no seasonality); it is a
stationary system (invariant distribution - ergodicity). Thus, if we are able
to know in which space the attractor lies, by determining the phase space
using the embedding dimension for instance, and if we are able to re-build
the orbits, then we can make predictions.

1. Maps on [0, 1]. There exists a class of chaotic systems which has been
developed, mainly by the mathematicians, and which gives simple ex-
amples (toys) illustrating this theory. They are the maps defined on
[0, 1]. They include the logistic map, the tent map and its generaliza-
tion, the binary maps, etc., Guégan and Ladoucette (2002). Neverthe-
less, while the logistic map found applications in biology and ecology,
most of these maps are not very interesting for applications.

2. Chaos in experimental sciences. Chaotic dynamics have been observed
in a wide variety of experiments, such as chemistry, physics, meterology,
hydrology, medicine and biology, Lorenz (1963), Schaffer (1985) and
Greenfeld (1992), for instance. Some of these studies are famous and
illustrate the theory. They concern the detection of attractors, and
bifurcation theory with computation of Lyapunov exponents. These
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works are based on very well known chaotic systems such the Hénon,
Lorenz, Rossler, Chua and Mackey Glass systems. These models, for
instance, explain the behavior of resistance in physics, the water level
of a river in hydrology, population growth in ecology, fish flux in fishing
research or temperature evolution, Bergé, Pommeau and Vidal (1984).

3. Chaos in social sciences. The analysis of the behavior of individuals
(auto-organization - reproduction) depends also on complex models,
"closed" models, and researchers are interested to know their asymp-
totic behavior. If we consider, for instance, the organization of a market
looking at social behavior, it is assumed, in equilibrium theory, that the
agents have complete knowledge of the market. But in fact, any agent
has incomplete knowledge of the market. This knowledge comes from
empirical observations, from which the agents learn, and then take
some decisions. It appears that the information setting is not com-
plete. Auto-regulation can be interpreted in terms of an attractor, but
no known chaotic analytical model corresponds a priori to this fact.
Nevertheless, this idea has been developed in the social sciences based
mainly on behavioral surveys.

4. Chaos in economics. Macro-economists have long realized that a cer-
tain class of deterministic non-linear sytems was capable of producing
a self-sustained fluctuation without any shock from outside of the mod-
els. A group of researchers including Benhabib and Nishimura (1979),
Day (1982) and Grandmont (1988), for instance, have developed many
examples of deterministic economic models that could generate non-
periodic fluctuations. In a recent work, Brock and Hommes (1998) show
that routes to chaos can arise in the traditional expectation models such
as the cobweb model, and the asset pricing model by the introduction
of heterogeneous beliefs.

5. Chaos in finance. In finance, some models try to explain the behavior of
the chartists and the fundamentalists in a market through the evolution
of exchange rates. One of these models follows the expression:

St = XtS
α
t−1S

β
t−2, (3)

where St represents the exchange rate at time t and Xt some behavioral
variable, α and β being the parameters of the system. For a specific
range of these parameters, they have an attractor as given in Figure 1,
de Grauwe, Dewatcher and Embrechts (1993). This work has proved
that some models used in economics may produce either stable solutions
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or complex solutions including a ‘chaotic’ solution. Following these
ideas, an active research program has focused on evidence of chaos as
the source of business cycles, Shintani and Linton (2004). In the same
way, work has been developed to understand the dynamics of the labour
market, or agents’ behavior in markets, using stock prices and currency
exchange rates, although the detection of attractors empirically appears
difficult because of the presence of measurement noise, Guégan and
Mercier (1998). In another way, in order to make forecasts with data
sets whose dynamics appear complex, detection of attractors have been
considered after deconvolution using wavelets. As example, in Figure 2,
we provide the attractor corresponding to the evolution of deconvoluted
hourly electricity spot prices, Guégan and Hoummyia (2005).
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Figure 1: Representation of the attractor of the system (3). On the vertical axis, we
represent St and on the horizontal axis St−1.
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Figure 2: Attractor for electricity German spot prices (Pt): Hourly prices from 16th
of June, 2000 to the 16th of December, 2004. Pt on the vertical axis and Pt−1 on the
horizontal axis.

Now, in practice, we observe only a trajectory X1, · · · , Xn that we assume
corresponds to a process (Xt)t that we want to determine. This trajectory is
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not sufficient to observe the auto-regulation or the reproduction of specific
behaviors which can exist in the data. One way is to detect an attractor
which could solve this problem.

How can we know that some attractor exists? Theoretically we have some
answers. From two initial conditions, we can observe the divergence of tra-
jectories and compute a positive Lyapunov exponent λ; we can consider a
bifurcation diagram using the different values of the parameters of a model;
we can make evidence of the attractor in the phase space of dimension d;
we can compute its fractal dimension dH , d ≥ 2dH + 1. But, from a unique
trajectory (that is the case in economics and finance), we cannot use most of
these techniques in practice. Indeed, bifurcation theory is not available be-
cause we have only one experiment. The computation of dH is generally very
complicated. In return, we can estimate the Lyapunov exponents and test
their positivity or we can investigate the attractor by successive embeddings.
Thus, we have two choices: to work with an analytical system known a pri-

ori, or to work with a time series without knowledge of analytical systems.
The strategies need different knowledge.

• If we know the analytical system, we can estimate its parameters and
build a bifurcation diagram. This approach is mainly used in control
theory. It can detect existence of instability corresponding to chaotic
behavior. Researchers, mainly dynamicists and economists, obtain the
range of the parameters corresponding to the stable and unstable pe-
riods.

• If we do not want to use a specific model, we need to embed the time
series in order to detect the attractor - if it exists. We obtain it using
Takens’ (1996) approach, building, from observations, for a certain d ∈
N and τ ∈ R, the orbits (Xt, Xt−τ , Xt−2τ , · · · , Xt−dτ ), then we work
using the re-built attractor. This approach is employed by statisticians,
practitioners in finance, insurance and economics researchers.

In both cases estimation theory is helpful. The embedding technique provides
an estimate for d. Then, in the phase space, we can estimate the Lyapunov
exponent λ, Wolff (1992), Bayley (1998), Guégan and Leroux (2009a) and
test its positivity. In all procedures, we need to reconstruct the chaotic fun-
tion f using non-parametric methods. Finally, forecasts can be provided.

On the other hand, we know that random behavior does not create chaos:
this is the case for noisy economic data sets or noisy financial data sets
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(no attractor appears in the successive embeddings) and, we know that an
ordered behavior does not fill the space providing an attractor. It is this
last property that is useful in time series modelling. Thus, to be free of the
presence of noise is fundamental in applications. If we want to suppress it, we
need to work by deconvolution: see Dechert and Gençay (1992) and references
therein and, Guégan and Hoummiya (2005) for recent developments using
wavelets techniques.

3 Statistical tools for chaos theory

In this section, we specify the statistical tools which support the attemps
of practitioners in economics and finance when no model is known a priori.
We do not enter into details, and refer to basic works. Estimation theory
is important and also the predictive approach, thus we discuss these two facts.

As we already said, the observation of one trajectory X1, · · · , Xn cannot
detect the existence of an attractor characterizing the data set (Xt)t. The
embedding of the data set is then necessary.

• In a first step, we need to estimate the embedding dimension d. This
estimate d̂ is obtained using non-parametric techniques: The delay
method (Takens, 1981), the Grassberger and Procaccia method (1986)
or the zero-one explosive method, Bosq and Guégan (2003), see Guégan
(2003) for a review. As soon as we have found the smallest embedding
dimension, if the attractor exists, it is evident from the orbits of the
system corresponding to the data set (Xt)t=1,··· ,n.

• Second, we estimate the Lyapunov exponents and test their positivity
in order to provide a measure of the chaoticity of the data sets. If
we assume that the random variables (Xt)t=1,··· ,n are characterized by
the dynamical system defined by the map (2) which is assumed to be
ergodic, then the Lyapunov exponent can be computed as follows:

λ̂ = lim
n→∞

1

n

n−1∑

t=1

ln |f̂ ′(X t)|,

when this limit exists and if the chaotic map f is differentiable, Wolff
(1992), Delecroix, Guégan and Léorat (1997). The X t are the points of
the orbits built from an initial condition X0. The Shintani and Linton
test (2004) can then be used.
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• Third, the computation of λ̂ necessitates the knowledge of f̂ and of its
derivatives. To solve this problem we use non-parametric techniques:
nearest neighbors, radial basis functions, neural networks or kernels,
we refer to Pesaran and Potter (1993), Guégan (2003) and references
therein.

Considering the time series, we can decide to characterize them through an
anlytical model known a priori. In that case, classical estimation theory
developed for stochastic dynamical models can be applied, such as the least
squares method. These techniques will be used in economics when we search
a specific range of values for the parameters to detect stable and unstable
periods in order to apply control, for instance.

In finance, generally, we only observe one trajectory of a time series and the
purpose of the study concerns predictions using this information set: short,
medium and long term predictions. As soon as the function f is well re-
built, short term predictions on the attractor can be computed easily. To get
medium term or long term predictions is always an open problem. Tradi-
tionally, working with chaos means the inability to make forecasts, in return,
working with ‘stochastic’ processes permits to compute forecasts. In that
last case, if the model has short memory behavior, we make short term pre-
dictions. If the model has long memory behavior we will be able to make
long term predictions. A process is said to have short memory behavior if its
autocorrelation function decreases with an exponential rate towards zero; it
has long memory behavior if its autocorrelation function decreases with an
hyperbolic rate towards zero, Guégan (2005).

Now, coming back to our discussion introduced previously concerning the
property of chaoticity of some deterministic dynamical systems, it will be
interesting, for such chaos, to investigate its behavior in terms of short or
long term memory. For instance, chaos may have the same behavior as white
noise (in terms of the behavior of its autocorrelation function): it is the case
of the logistic map. In that latter case, it is not possible to make more
than short-term predictions. To get these predictors, we compute iteratively
f̂n(Xn), f̂n(Xn+1), · · · , f̂n(Xn+h). Examples of short term predictions using
financial data sets are provided in Guégan and Mercier (2005).

It will be interesting to develop the same approach to compute long-term
predictions. This means that we need to explore the behavior of the sample
autocorrelation function and of the periodogram using the orbits, on the
attractor. If we suspect existence of long memory behavior, we can test it
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using some well known long memory processes like the Gegenbauer process
whose representation is

(I − 2νB + B2)ωX t = εt, (4)

where B is the backshift operator, cos−1 ν the frequency where the peri-
odogram explodes and ω the long memory parameter, Gray et al (1989).
This model contains the FARMA process as a particular case, Granger and
Joyeux (1980, and Hosking (1981). The model (4) takes into account the
slow decay of the autocorrelation function on the attractor. The parameters
of this model can be estimated using the trajectory (X1, · · · , Xn): for estima-
tion theory of long memory models, see Palma (2007). Then the predictions
are obtained by computing E[Xn+h|In] using (4). Long-term prediction for
chaotic sytems is discussed in detail by Guégan (2003).

To illustrate we now exhibit evidence of long memory behavior inside a well
known chaotic system: the Hénon system. Using a simulated n-data set from
this system and after examination of the sample ACF and the periodogram
(see Figure 3), we detect explosions on the periodogram and we decide to fit
a 2-factor Gegenbauer process to this data set:

(I − ν1B + B2)ω1(I − ν2B + B2)ω2X t = εt, (5)

where (εt)t is Gaussian white noise N(0, 1), Woodward (1998). The esti-
mated values for (νi, ωi), i = 1, 2, are given in the table below with respect
to n. Whatever the values of the sample size, we observe some stability in
the results. Residuals analysis confirms that the model (5) can be accepted,
so we can use this model to perform long-term predictions on the attractor.

n (ν̂1, ω̂1) (ν̂2, ω̂2)
10000 0.6504; 0.2543 -0.9695 ; 0.2851
5000 0.6340; 0.2573 -0.9695; 0.2814
2500 0.6948; 0.2335 -0.9667; 0.2685
1250 0.7185; 0.2211 -0.9646; 0.2596
500 0.7203; 0.2013 -0.9548; 0.2274

4 Open problems

This paper has discussed the approaches followed by some economists and
financial researchers when they apply chaos theory to real data sets. The
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Figure 3: Sample ACF for Hénon system.

main difference between physicists and economics is due to the fact that in
economy, we only have a unique trajectory (and not the possibility to repeat
the experience as in physics) and also to presence of measurement noise in
the time series.

The presence of noise in real data sets is a brake for the use of chaos theory in
practice. Thus, robust deconvolution techniques need to be developed more.

Estimation theory is very often used under strong assumptions like inde-
pendence of the data sets or Gaussianity of the observations: assumptions
which are not verified in practice. Thus, new developments need to be con-
sidered for particular for data sets characterized by skewness or kurtosis.
Another problem which is important is the existence of an invariant measure
for chaotic systems. We can question if this assumption is realistic and we
refer to Guégan (2007) for a discussion on this subject.

Concerning predictions, no good solution has been proposed for medium
term predictions. We conjecture that to predict at a medium term horizon
necessitates taking into account the divergence of the orbits if we are in a
region of the attractor where the Lyapunov exponent is positive. Such work
is in progress, Guégan and Leroux (2009 b).
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