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André Lapied, Pascal Toquebeuf

1. Introduction

NonExpected Utility (NEU) models of choice undercanainty have generated
a growing interest over the last decades amongsidectheorists. In situations of
uncertainty (.e. where probability distributions on the outcomes aot given), these
models allow to describe Ellsberg-type preferenogdaking into account attitude
toward uncertainty. In this paper, we focus on tamgproaches, namely Choquet
Expected Utility (CEU) model and Multiple Priors BY1 model. This raises an
important theoretical issue: how could NEU modeatsused in multi-stage decision
problems? To preserve rationality in such situajoseveral principles can be
imposed.

Sarin and Wakker (1998) show that under CEU, camsetiplism, dynamic
consistency and their sequential consistency ptgpenply that deviations from
Expected Utility (EU) are allowed in only one stagfee last one. Ghirardato (2002)
shows that consequentialism and dynamic consistetoggether with standard
assumptions imply that an EU representation existsl stages. This paper first aims
at explaining this paradox. We show that the ontiecence between these results is
due to Ghirardato’s (2002) assumption that the $deci Maker (DM) does not care
about the timing of the resolution of uncertainkreps and Porteus (1978)). In other
words, in his set-up, the DM satisfies a subjectigesion of reduction of compound
lotteries (RCL) axiom (Ghirardato (2002, p. 86))\@n-Neumann and Morgenstern.
In settings of ‘objective uncertainty’, or risk, Kmand Schmeidler (1991) show that if
consequentialism and RCL hold together, then theadyc consistency property is
equivalent to the independence axiom of choice umi¥ in one-stage decision
problems. In an identical set-up, Volij (1994) sisothat given dynamic consistency
and any of the two other concepts (consequentiaischRCL), the third is equivalent
to the independence axiom.

Concerning MP model, Sarin and Wakker (1998) shwat it can be applied to
dynamic choice situations without restrictions. sTimesult contrasts with the ‘folk
theorem’ of decision theory, which enounces thatseguentialism and dynamic

consistency together imply Savage’'s postulate P@re(SThing Principle). This
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constitutes a second paradox, because MP modekws&ure Thing Principle (STP).
We show that these dynamic choice principles implsesame restrictions on MP and
CEU.

In section 2, we present set-up and axioms, aogepa version of the folk
theorem. In section 3, we present our result folJC@Eodel. Section 4 reports results
for MP model. For simplicity, section 3 and 4 ontgnsider dynamic decision
problems with two stages, two first stage eventstao second stage events. Section
5 extends our results to cases with many stageewamats. Section 6 discusses and

concludes.

2. Set-up, axioms and definitions

S is a finite state space. A state $his represented by. Subsets ofS are called

events.VA C S, the eventS \ A4 is denoted4A“. X is an outcome spacee. a subset
of R, and we denote bR® = {f: 5 — X} the set of acts, or random variables. In a
dynamic setting,S is endowed with the filtratio{ 7;,¢ € T}, which represents the
information structure. We assume that time is e@igcrand thatl’ = {0,1,...,7} is
finite. {#,t €T} is given and fixed throughout. For eathin T', &, is a finite
partition which contains all events that occurimett. {#,,¢ € T'} can be rewritten as
{&,....&}. We denote byE, an event which occurs at time Hence E, is an
element of£, . We only consider sequential choice, that is dyinachoice in which
outcomes are obtained at tin#®. A decision maker (DM) is characterized by a
preference relation¢ (or >=), on R®. = is defined ex-anté,e. when no information

is given to the DM.’=, compares acts conditionally tb, € &, i.e. if the DM is
informed that onlys € E, can obtain.Vi €T, we write f=, g if Vs€E,

f(s)=g(s). =5 and~ are defined in the usual way. The class of bimalgtions
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{75, }ier can satisfy several axioms. We first require greath conditional preference

be a weak order:

Axiom 1 (Complete Weak Order). Vi € T', =, is a weak ordei,e. it is complete,

transitive and reflexive ofR” .

An important axiom of the EU model (Savage (19%jhe Sure-Thing Principle.
Axiom 2 (Sure-Thing Principle). Vf,g,f,g' € R®, Vr,t € T,7 < t,, VE, € &,

(f =5 f9=5 0 =5 0. =5 d)= (7 9 7 9).

The next axiom states that each conditional prafereis only dependent on the
information received. We name this property “consadialism” in reference to
Machina (1989).

Axiom 3 (Consequentialism).Vt =1,...,T —1, VE, € £, Vf,g € R®,
(f =, 9)=(f ~E, g).
Such a definition can be found in Ghirardato (2002)

The following axiom imposes some dynamic restrit$io
Axiom 4 (Dynamic Consistency).Vf,g € R®, Vr,t =0,...,T —1 such thatr < t,
VE, € &,

(f =g 9) = (f 7 9 [ 7p 9)-
Roughly speaking, dynamic consistency property #agfs given an information set, if
the DM prefersf to g (or is indifferent betweerf andg), then he preferg to ¢ (or

Is indifferent betweerf andg) whatever new information obtains.

A well known result of decision theory is that ceqaentialism and dynamic
consistency together imply STP. This result is pbin Ghirardato (2002). For him,

this belongs to the “folk wisdom” of decision thgoHowever, his result does not hold
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true if the information structure is given and fixeln this case, STP does not

necessary holds in all stages{df,t € T'}.

Proposition 2-1.Let {F,,t € T} be a filtration. Suppose that consequentialisna$ol

on the complete weak order frof, },_, , ,, and that dynamic consistency holds

between=, and’=, forall 7 andt in T such thatr <t < T'. Then the Sure-Thing

77777

Proof. First consider a partitior,, with ¢ =1,....,7—1, and an eventE, € &,.

VT < t, consider now a pair of acts and g s.t. f =, g and Vs € Ef, f(s) = g(s).
From dynamic consistency, =, ¢ if and only if f =, g. From consequentialism
and transitivity, f =, ¢ if and only if f'i=, ¢', where Vs e E,, f(s) = f'(s),
g9(s)=¢'(s), and Vs € B, f'(s) = ¢'(s). By dynamic consistencyf’ =, ¢' if and

onlyif "=, g'. [ |

The class of preference relatiofx; },., on R® induces a relation onX, also

denoted by=. Throughout the paper we assume the following thgxis:

Hypothesis 1.The relation’= on X is a weak order which satisfies continuity and
strong monotonicity. Moreover, we avoid trivialitthere are three distinguishable

consequences i . [ |

If hypothesis 1 holds, then there exists a reake@lfunctionu : X — R which is

continuous and strictly increasing, such that,z’ € X,z >z’ if and only if

u(z) > u(z’).

For simplicity, we assume that = {s,s,,s;,s,} and T ={0,1,2} henceforth.

{F,t=0,1,2} is given and fixed throughoutl = {s,s,} and E* = {s,,s,} are first
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stage events such that at time=-1 the DM is informed that only € £ or s € E°

77777

following figure, f is a two-stage lottery,e. a compound lottery which yields sub-

lotteries at the first stage.

A two-stage lotter

Following Sarin and Wakker (1998), we suppose that DM uses folding back
procedure to value a compound act.

Axiom 5 (Folding back). Vz,, z,, z;,z, € X,
W(fL’l...IL’4) = V(VE(xla x2)aVE" (1’3, IL’4)) :

Once consequentialism and dynamic consistency assufolding back can be used

without more restrictions.V,,V,. are certainty equivalents of the sub-lotteries
(z, on{s,},z, on {s,}) and (x, on {s;},z, on {s,}). V is the certainty equivalent of
(Ve(z),25), Ve (24,2,)), and W is used by the DM in the single stage evaluation
(x,...,x,). We assume that such functions exist and are dediihed. For each NEU

form (CEU or MP), we will specify which axiomatizan is used. Note that folding

back procedure implies that the DM is indiffereateeen the two following figures.
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Single stage and two stages lotted@sequivalent.

In a dynamic setting, it seems natural to imposed® consistency’. LefVl be a
class of numerical representations, such that eltssyed M have the same axiomatic
basis. Model consistency implies the use of theesaomerical representation in the

first stage, in the second and in the single seagduation:W,V, V. V.. are elements

of M.

We now present a general definition of model cdanrsy:

Axiom 6 (Model consistency)Let M be a class of decision criteria defined by the
same axiomatic basi§F, C 2 Vt,r=0,....,T -1t =, VE, € E,VE €&

WeMeV, eM<V, €M

Our Model consistency condition is slightly diffatefrom the sequential consistency
property of Sarin and Wakker (1998). Sequentiab@iancy implies that
Vi Vg € M= W e M.

Now we can present the following results:

Sarin and Wakker's (1998) theorem.Let {F,,t = 0,1,2} be a filtration.

Suppose that hypothesis 1 holds and thatis the family of CEU form.
Then folding back and model consistency hold togiethand only if there
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are a utility functionu: X — R and a unique capacity : 2° — [0, 1]

necessary additive in the first stage{df,t = 0,1,2}.

Thus the DM is free to use a non-additive capaitityhe second stage. This
result is consistent with our proposition 2-1. Heee this appears in

contradiction with the following theorem:

Ghirardato’s (2002) theorem. VA € 2°, the class of binary relations
{4}, satisfies Savage postulates (except Sure Thingcipie),
consequentialism and dynamic consistency if ang rthere are a utility
function »: X — R and a unique additive measupe 2° — [0,1] s.t. all

elements fromM are expected utility representations.

Sarin and Wakker (1998) preserve the dynamic siraadf the decision problem: the
exact sequence of decisions and events is reldeatiie DM, hence they do not
assume reduction of compound lotteries (p. 93)tl@nother hand, Ghirardato (2002,
p. 86) applies his axioms df, and not only for a given and fixed filtration. Hetes

that this implies a subjective version of the reaucof compound lotteries axiom.

Axiom 7 (Reduction of Compound Acts) Vf, g € R?,
Vs S, fls)=g(s)=f~g.
This axiom is so called “neutrality assumption” owariance. An important

consequence of this assumption is that the DM dgdferent about the timing of the

resolution of uncertainty.
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We take up the figure 5 of Sarin and Wakker (1998)h E' = {s,s,} and
E'* ={s,,s,}. Under folding back, Reduction of Compound Actgplies that
W@y y) = V(Vi (@1, 25), Vige (35, 2,)) -

Our purpose is to emphasize the implication of R@A axiom. Given the filtration

{#,t=0,1,2} and a familyM of CEU representations, we show that if RCA is

assumed with folding back and model consistenasn thll elements oM have an
expected utility form.

An other theoretical paradox is linked with the usiethe MP model in
sequential choice situations. Sarin and Wakker §1%%how that MP model can be
consistently used in dynamic choice without restrc This result contrasts with the
logic implication of the folk theorem, because MBdul is obtained from EU model
by weakening STP axiom (Gilboa and Schmeidler (},.988sadesus-Masanell and al.

(2000)). We show that MP model can be consistamdld in dynamic choice if and
only if the set of priors is reduced to a singleborthe first stage of 7, = 0,1,2}

(V(.) is an expected utility form). Moreover, once RCAioan is assumed, all

elements of the familyl of multiple priors forms use a unique additive saa.
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3. Choquet Expected Utility

An important class of NEU models is the CEU onetHis model, the beliefs are

represented by a Choquet capadity,a set functiorv : 2° —[0,1] s.t. :
v(S)=1Lv(@)=0 andVA,B c2° BC A= v(A)>v(B).

Remark that ifv is convex, then CEU model is reduced to MP mo@elbpa and

Schmeidler (1989), Denneberg (1994)).

The single stage evaluatioly is a Choquet Expected Utility representation itl an
only if

W (2., x,) — fu(:z:(s))dl/(s).

S
If model consistency holds with respect to a CEUmMiothen the conditional

evaluations V,,,V,. use the same utilityu: X — R and the update fromv.
vt =1,...,T, we denote by/(.|E,) the conditional set function far given E, € &,.

Several rules can be used by the DM to update &eadities. In order to simplify

notations, we only define these rules {¢f,t = 0,1,2} .

Definition 1. Let v be a capacity on S. The Full Bayes Updating Rule of v
conditional on B € {E,E“} isgiven by :

v(BNQ)

vVC C B,v(C'|B) = .
V(C1B) 1+v(BNC)—v(CUB")

(FUBU).

Definition 2. Let v be a capacity on S. The Bayes update of »~ conditional on
Be{E ,E} isgivenby:

V(BQC).

VB C A,v(C|B) = (5

(B)

Definition 3. Let v be a capacity on S . The Dempster-Shafer update of v conditional

on Be{FE,E} isgivenby:
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v(BNC)U B°) —v(B°)
1—y(B) '

¥C C B,v(C|B) = (DS)

If the DM maximizes CEU in all stages of the fittca, then we impose the following

hypothesis:

Hypothesis 2.V, C 2° Vt =1,...,T —1,VE, € &, we suppose that the DM possibly
uses FUBU, DS or B to calculaté.|E,). u

We suppose that each form froM is constructed with the axioms from Gilboa
(1987), who gives an axiomatization of CEU with &g& acts. Therefore, all forms
from M satisfy Sure Thing Principle on comonotonic aatsl ather axioms from
Gilboa (1987).

Theorem 3-1.Let {F,t =0,1,2} be a filtration. We suppose that hypothesis 1, 2,

consequentialism, dynamic consistency and foldexgkkhold. Then the following two

statements are equivalent:

() Model consistency holds with respectké, the family of CEU forms, and

reduction of compound acts (RCA) axiom holds.

(i) There exist a utility functionu : X — R and a unique additive measure
p:2° —1[0,1] such thatvB € {E,E‘},W,V,V, are expected utility forms, and
V, uses conditional probabilities(.|B): &, — [0,1] calculated with Bayes

rule.

Proof. The implication from (ii) to (i) is straightforwd, because the expected utility
representation verifies RCA. Moreover, it is cldhat the statement (ii) implies
folding back, consequentialism and dynamic cons@te Now we prove the

implication from (i) to (ii).

10
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If consequentialism holds o, for B € {E,E}, and dynamic consistency holds
between’= and =, then = verifies Sure Thing Principle (proposition 2-1yof
Sarin and Wakker (1998) theorem 3-1, we can statéailowing equality:
v(C)+v(D) =v(CUD) (E1)
for eitherC C {s;,s,} andD C {s,,s,} or C C{s,,s,} andD C {s;,s,}.
Consider now a filtration{ %)t = 0,1,2} with first stage eventsZ’ = {s,,s,} and
E'* ={s,,s,}. By RCA and folding back, we have
W(zy,...,z,) =V(Vy(z,z5), Ve (2y,2,)) -
It's easy to see that consequentialism and dynawmmsistency are satisfied and so
STP axiom holds or=. By model consistencyy/,V,V,.V... are elements oM, i.e.
they are all CEU forms. We have to show that
vH)+v(J)=v(HUJ) (E2)
for either H C {s;,s,} andJ C {s,,s,} or H C{s,,s,} andJ C {s;,s,}.
Suppose that (E2) holds. Then,
v({si}) +v({s}) = v({s} U{s})
and
v({sy}) +v({s,}) = v({ss} Udsiy).
Moreover, v is additive on{E’,E’°}. Adding up these equalities with (E1) gives

4
Zz/({si}) = 1. This implies that the single-stage evaluatinis an expected utility

1=1

1111

(E2) from our axioms.

Case 1.H ={s,}, J C{s,,8,},1 ={s5,8,}\ J.
We denote byr,,z, the outcomes od,.J . We suppose the followings rank-ordering
onX.z, >z >z, >z, andz, 2:1:1'2:1:?')2331 :

<$17x37$J7$I) ~ (‘f{?x?lnxjaxl) (E3)

11
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Note that the utility v: X — R keeps the rank-ordering because it's strictly
increasing. We replacez, by =z} which is st =z >z >z, >2 and
x>z > z; > z,. By STP and by folding back, (E3) holds if andyoifil

(21,25, 25, 3p) ~ (21, 25, 25, ;) (E4)
In the left outcomes, the decision weight assodidte u(z,) is affected if z, is
replaced byz’ . But in the right outcomes, the decision weight{ gf} is not affected

in the CEU form. This implies that
v({si}) +v(J) =v({s}UJ]). (E5)

Case 2.H = {s;,8,} = E',J C{s,,8,},1 = {s,,8,} \ J.
Now we supposer, which is such thaty, > i, >z, >z, andz >z} > %, > x,.
By STP and folding back, (E4) holds if and only if

(2, 24,25, 2;) ~ (], 25,2, 2;) (E6)
In the CEU form, the decision weight ¢§,} must be affected in the right outcomes
However, in the left outcomes the decision weigh{9} is not modified. Together
with the equality (E5), the indifferences (E4) d&®) implies that

v({s,,s;.}) +v(J)=v({s,s,} UJ).

Case 3.H ={s;}, J C{sy,8,}, 1 ={s,8,}\ J.

This case is similar to case 1.

Case 4.J C{s,,s;},H C{s,,s,}. This case is straightforward.

(E2) has now been proved. (E1) and (E2) imply thdtc {E, E°,E',(E')°}, the first
stage evaluatiofy uses a unique additive measyre{4, A°} — [0,1] andVs,s' € S,

the single stage evaluation uses the same measurg — p({s}).

12
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Now we show that the DM must use Bayes rule to tgbar beliefs. By hypothesis 2,
the DM is free to use FUBU, DS, or Bayes to updste capacities. However, the

equalities (E1) and (E2) imply that:

FUBU is reduced to Bayes rule:

B v({s}N B)
s € B= p({s}|B) = 1+ v({s}NB)—v({s} UB)
p({s}) _ pdsh)

T 1+ p({sh)—p{shH - p(B)  p(B)

DS is reduced to Bayes rule:

s€ B = p({s}|B) = v(({s} N B)UB*) —v(B°)

1—v(B°)
_ psh) +p(B) = p(B) _ plish)
1—p(B°) p(B)

If the DM uses Bayes rule to update her capacities)

Liap = S PUsH _
;({HB) ;p(B) 1

and

S u(shia) = S 2 gy

seB° seB¢ p(BC)
It implies that VB € {E,E‘}, the conditional capacities({s}|B),v({s}|B‘) are
additive. Moreover, the capacity is additive ¢tF )t = 0,1,2}, hence p is well

defined on2°. To conclude the demonstration, it is sufficiemtrémark that model

consistency implies thd¥/,V,V,,V,. use the same utility : X — R, s.t. they are alll

expected utility representations. |

13
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4. Multiple Priors

In this section, we suppose that the DM considesst& = {w‘w additive on 2S} of

priors, and maximizes minimal expected utility.is assumed compact and convex.
Maxmin Expected utility over Savage acts has beepnaatized by Casadesus-
Masanell and al. (2000). Model consistency withpees$ to a multiple priors form
means that all forms from use elements of and satisfy axioms from Casadesus-
Masanell and al. (2000). We define the MP repredimt:

Definition 4. W : R® — R isamultiple priors representation if and only if

W : (z,,...,z,) — min [ u(z(s))dn(s) = Z:szu@)

wel

4
wheren’ = arg min W(z,,...,z,) andij =1.
i=1

The DM is pessimistic and uses the probability measvhich minimizes expected
utility. Note that the measure which minimizes expd utility overweights the

minimal utility. In other words, the value of th&pected utility of an aclf is rank-

dependentr’ = arg min W(z,,...,z,) is valid only for a given rank-ordering.

If z, >z, >z, >z, thenV(.) is a multiple priors representation if

V (Vp(xy,2y), Vie (25,3)) = 7 (B)Wy (2, 2,) + 7 (B )W (24, 7,),
hence such that’ = argminV (Vy(z,,,), V. (2;,2,)) . If u is strictly increasing on
X, thenV,(z,,2,) > Ve (25,7,) and sor’ = min 7(E).

If x, >z, >z, > z,, then the conditional valuations are:

Vi(zy,2,) = I7IT1€1(1;1 m({s} |E)u(3:1) +(1— Ifrlelél W<{31}|E))u<x2)a
Vi () = min ({s,} B Yutay) + (1 — min ({5, E e,

14
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Proposition 4-1. Let {F,,t = 0,1,2} be a filtration. If hypothesis 1 holds and if all

elements ofM maximize minimal expected utility by using a namque prior, then

model consistency and folding back cannot be sanelbusly satisfied.

Proof. Given a rank-ordering;, > ... >z, on X, we assume a measuré which
minimizes expected utility of/,(z,,7,), a measurer’ which minimizes expected
utility of V,.(z;,z,), and a measure“ which minimizes expected utility o¥’(.).

Note that7“(E) = min n(E£) becauseV,(z,,z,) > V,.(z,,z,). Folding back holds if

wel

and only if W(.) uses a measur€ s.t.
Vs € E,n'({s}) = n°(E)x 7 ({s}|E)

Vs € E°,7'({s}) = n°(E°) x 7" ({s}|E")

hence
min 7, = m =7(E)x 1 ({s,}|E).
TE
It implies that
/
s
min 7({s, }|F) = ——.
nip ({5} 16) =~

But in the Multiple Priors form, we have‘(F) = min#(F). This last equality

wel

implies a contradiction. |

This result leads us to establish the followingptieen:

Theorem 4-2. Let {F,,t =0,1,2} be a filtration. We suppose that hypothesis 1-1

holds, and that consequentialism, dynamic consigtemd folding back hold. Then

the following two statements are equivalent:

() Model Consistency holds with respectlib, the family of multiple priors

forms, such that?,V,V,,V,. are elements of.

15
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(i) There exist a utility v: X — R and a unique additive measure

7 : F — [0,1] such that= can be represented by an expected utility form
Vi (@, my) = T(E)Wp (2, 3,) + 7(E° )V (25, 7,),
where V,;,V,. uses minimal conditional probabilities calculatedh Bayes

rule.

Proof. The implication from (ii) to (i) is straightforwdy because it's easy to see that

W,V.,V,,V, are multiple priors forms. Moreover, it is clefat the statement (ii)

implies folding back, consequentialism and dynaoadnsistency. We concentrate our
attention on the implication from (i) to (ii)/(.) is reduced to an expected utility form
if

VB e {E’EC}’I?ECX 7(B) = min 7(B) (E1)

welC

If (E1) holds, thenr is unique onZ,. The statement (ii) follows from (E1) and from

the model consistency property. Now we prove (E1).

Case 1.B = E,D C {s;,8,},D" C{s,,5,}\ D.
First consider the followings rank-ordering oX: =z <z, <z, <z, and
zy, <z <z, <z,, wherez, is the outcome associated to evéhtand z,, is the

outcome associated tB’. The utility » : X — R keeps this rank-ordering because it

IS strictly increasing. We also suppose the follayvindifference:
= (@23, 3) ~ (2], 25, T, Ty) = g (E2)
We note n' the measure which minimizeg(Vy(z,,,),Vy(zp,z,,)). By folding
back, we have
W(f) =W(g) & V(Vy(@y,3), Vi (25, 7)) = V(Vi (a1, 3), Vi (2, 7)) -
By dynamic consistency,
Vi@, 3y) = Vp(ai,3,),
hence

7w = argmin V(Vy(z,,,), Ve (2, 2,)) & 7' = argmin V(Vy(z),23), Ve (25, 2,)) -

16
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If w:X — R is continuous and strictly increasing, then

(23 S 2f S 2 Swy) = Vilal, 1) < Vie(zp, 7).
In the Multiple Priors form, this implies that

m'(E) = max m(F)
and

'(E°) = I?elgl T(E°).
By STP (consequentialism and dynamic consisterfE), holds if and only if

1= (g, 29,2, 23y) ~ (2], 2, 2, ) = (E3)
where z;,,z,, are such that, <zj, <z, <z, andz), <z, <z, <z . f and f’
give the same rank-ordering ok . It implies that the single stage evaluatiif.)
and the conditional evaluationg,(.),V,.(.) use the same probability from (E2) to
(E3). Then folding back and model consistency isgli

7 = argmin V(V, (7, 7,),V, (zp, 7)),
s.t. all elements ofM use the same probabilities to valyfe and f'. Again, if
u: X — R is continuous and strictly increasing, then

(3:2) <z, <my< 3:1') = Vip(z),xy) > Vye(z),2),) .
In the Multiple Priors form, this implies that

7'(E) = min m(E)

mel

and

7' (E°) = max m(E°).

wel
Therefore,

max 7(F) = minn(FE).
melC meC

Case 2.B = E°,D C{s,,s,},D' C {s;,s,} \ D. This case is straightforward.
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We have shown that B € {F, EC},ma(?( 7(B) = min7(B). Thereforer is unique on
s

wel

JF, and the first stage evaluatidf(.) uses a unique additive measureThe minimal

probabilities used by, V,. are calculated with Bayes rule :

, min 7({s})
Vs € E,min ({s}|E) = )
. . minm({s})
VseFE ,min n({s}|E°) = —W(EC) :

Under folding back, it implies thd¥/,V,,V,. can used a non-unique prior. Moreover,

W,V,V,, V. use the same utility : X — R andV is an expected utility form. W

Corollary 4-3. Let {F,t = 0,1,2} be a filtration. We suppose that folding back and
Model Consistency hold with respect to a fami§ of Multiple Priors forms. Then

the DM must maximize expected utility in the fistage but she’s free to use a non-

unique prior in the second stage.

Proof. It is sufficient to remark that the contradictiah proposition 3-1 is now
removed. Then probabilities used by the single estagaluation are obtained by

multiplying probability used by the first stage &ation V(.) with probabilities used
by V, and V,.. Therefore, folding back and model consistency saineultaneously
satisfied if and only if” uses a unique additive measure ButV,,V,. use a non-

unique prior. |
Similarly to CEU model (Sarin and Wakker (1998,atlary 3-3)) , MP model can be
used in situations where first stage events invaleeambiguity but second stage

events may involve ambiguity.

Example 4-4.Suppose that the utility. is the identity function. We also suppose a

convex setC = {ar' + (1— )7’ ‘wl, 7% additive on 2°,a € [0,1]} of priors, where

18
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Bayes rule:
' ({s}1E) = 0.8, 7' ({8, }|1F) = 0.7 ({8, }|E") = 0.2;7 ({5, }|E") = 0.8;
({5, }|B) = 0.6:7°({5,}|12) = 0.4:7° ({8, }|E") = 0.6:7* ({5, }|E") = 0.4.
If V,,V, are multiple priors forms, then the value (@f2,3,4) with the first stage

evaluationV is given by

(1 _ min W(EC))[% n({s, ) x 2+ (1 - min n({s,}|E)) x 1}

el
i () [min ({5, } ) x 4 + (1~ min w({s, }[£)) x 3],
becausé/,;(1,2) < V,.(3,4). Then,
V(V,(1,2), Ve (3,4)) = 0.6 x (0.8 x 1+ 0.2%2) 4 0.4 x (0.6 x 3 + 0.4 x 4) = 2,08 .
Note thatV,(.) uses the conditional measuré&(.|E) but V,.(.) uses the conditional
measuresr’(.|E°).
If the single stage evaluatidit is also a multiple priors form, then
W(1,2,3,4) =0.36 x140.24x2+0.24x3+0.16 x4 = 2,2

This implies that folding back does not hold for= =* on {E, E°}, because we have
7* = argmin W(z,,...,z,). By theorem 2, if folding back and model consistehold
together, thenw' = 7> on {E,E‘}. We suppose thati’(.) uses probabilities
m(E)=1'(E°) = n*(E) = n°(E°). The value of (1,2,3,4) with the first stage
evaluationV is given by

%x(0.8><1+0.2><2)+%><(0.6><3+0.4><4):2,3.

Again, V,(.) uses the conditional measure(.|E) but V,.(.) uses the conditional

measuresr’(.|E°).
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We can easily see that folding back holds, becdubke single stage evaluatidir(.)
Is also a multiple priors representation, then
W(1,2,3,4) =04x140.1x24+03x3+0.2x4 =23,

Note thatW(.) uses the measure on {s,,s,} and the measure' on {s,,s,}, S.t.

(r*, 7%, 7', 7') = argmin W(z,,...,z,) under MP. [

Moreover, MP is reduced to an expected utility fomall stages of F;,¢ = 0,1,2} if

and only if RCA axiom holds.

Theorem 4-5.Let {F,,t = 0,1,2} be a filtration. We suppose that hypothesis 1 $o0ld

We also assume consequentialism, dynamic consyist@md folding back. Then the

following two statements are equivalent:

(i) Model consistency holds with respect k6, the family of MP forms, and

reduction of compound acts holds.

(i) There exist a utility functionu : X — R and a unique additive measure
7:2° —[0,1] such thatvB ¢ {E,E°}, W,V,V, are expected utility forms,
and V,, use conditional probabilities(.|B) : £, — [0,1] calculated with Bayes

rule.

Proof. The implication from (ii) to (i) is straightforwardecause the expected utility
representation verify RCA. Now we prove the impiiea from (i) to (ii).

We assume that;, > ... > z,. Note that the utilityu : X — R keeps this rank-
ordering because it is strictly increasing. We notethe probability which minimizes
the single stage evaluatioi’(.) s.t. 7/ = argmin W(x,,...,z,). If folding back and

model consistency hold, we know from our theoreththat V' is an expected utility

form which uses a unique additive measure{F, E‘} — [0,1]. Now we assume a
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filtration {%.t = 0,1,2} with first stage events’ = {s,,s,} and E’° = {s,,s,}. By
RCA and by folding back, we have

W(z,,...,z,) =V(Vy(z,z5), Ve (2y,2,)).
If model consistency holds, thdn,,V,.. are multiple priors forms and we can shown

(similarly to the proof of the theorem 4-2) thit is an expected utility form which

uses a unique additive measure{FE’, E'°} — [0,1] and a utilityu : X — R . Then,

W(z)yeooyy) = V(Vi @), 23), Ve (20, 2,)) = V(Vi(2), 35), Ve (25, 2,))

& miu(r,) + mu(z,) + mu(zy) + mu(z,)

= m(E)min ({5 }|E)u(z,) + 7(E) (1 — min 7({s, }| E))u(z,)

() mim ({5, Yu(as) + () (1 — min 7({s | E) (i,

= n(B') minw({s,}|E Ju(z,) + n(E') (1 —min ({5 }|E) ju(z,)

() )min w({s, }|E™ u(z,) + w((B')) (1~ minw({s,}[E"))u(z,)
If this last equality hold$/z,, z,, 2,2, € X s.t.x, > ... >z, then W,V,V,,V,. and
V.,V.. use the same probability’ € C. Moreover, they use the same utility
u: X — R. 7w isunique or’® if and only if

Vse Ae{E,E° E Elc},Z;I?eigl 7({s}) = 7(4)
c

or ’ (E1)
Vse Ae{E E F E’C},Zmax m({s}) = m(A)
) melC

If (E1) holds, then
Vs € Aminn({s}) = maxn({s}) = Vs € §,vr', 7’ € C,;7'({s}) = 7'({s}).

Together with the unicity ofr on (% U F), this implies that there exists a unique

additive measurer on 2°. Now we prove (E1).

Casel.A=F.
We haver(E’) = 7/ + ] andn(E) = 7/ + 7.
Remark that
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m = m(E)min7({s }|E) = m(E') minx({s,} )
and that

m) = (E)(1—minw({s}|E)) = n(E') min(({s,}|E")).
Moreover,

min ({5 }) = (&) min ({s, } |E)

wel

minw({s,}) = 7(E") min({s}[E").

el

This implies that
m(E)minw({s }| ) + 7(E)(1 - min7({s }|E))
= (') minw({s,}|E') + =((E')") min({s,}|E")
& 7(E) = minn({s }) + min({s,}) (E2)

We have proved (E1) fod =FE st Vse E,Vr',n’ € C,n'({s}) = n’({s}) and

thereforer is unique onkE .

Case 2.A = E°.
Remark that
mj = m(B) minn({s;}|E*) = x(E')(1 - min({s}|E")
and that
) c . c ¢ : le
w] = 7(E)(1 - minw({s,}|E")) = w(E") (1 - min7({s,}|E")).
Moreover,

max w({s,}) = n(E") (1~ minw({s }5)).

maxw({s,}) = w(E")(L — min=({s,}|E")).

This implies that
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(E°)minw({s;}|E) + 7(E) (1 — min 7({s, }| E"))

= 7(E’)(1— min w({s,}[E)) + m(E") (1~ min m({s,}|E"))
& m(E) = max w({s;}) + max 7({s,}) (E3)

Therefore,Vs € E°, V', 7/ € C,n'({s}) = 7/({s}) and sor is unique onk".

Case 3.A=F andA = (E').

This case is similar to cases 1 and 2, so we ocawnrskhat

m(E") = minw({s,}) + min7({s,}) (E4)
and that
m((E')) = max w({s,}) + max 7({s,}). (E5)

(E2) and (E3) imply that/,,V,. use a unique additive measure updating from C .
(E4) and (ES) imply thatV,,,V,. use a unique additive measure updating from

m € C. Therefore,IW uses a unique additive measure All elements of M are
expected utility forms which use an unique additmeasuren and an utility
u: X — R. |

5. Arbitrary finite numbers of events and stages

Now we consider the general case whérecontains any finite numbef > 4 of
states, and’ contains any finite numbeF > 2 of stages&, , = {EL ,,...,EY  }is
the finite partition which containsV' ™" events at timel’ —1. We note f,  the

restriction of an acy to the elements of eveit, | .

Therefore, folding back can be rewritten as

DoV (Vi (Fy ))...)) 0

T-1

W)=V (VE% (V,y (f,

i
T-1

wherei € card{E;,_, € &_,|E,_, C B} andj € card{E,_, € & _,|E; , C B }.
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Theorem 5-1. Let F. ={¢&,,...,&E} be a filtration with 7" > 2. Suppose that
hypothesis 1 holdsvt = 1,...,T —1,VE, € £, we assume that consequentialism holds
on {7 },_,._r, and that dynamic consistency holds betweeand {; },_, , ;.

If folding back and model consistency hold withpest to a familyM, then,

0] If M is the Multiple Priors family, thetvr = 0,....,.7 -2, VE €&, V,
is an EU form which uses a unique additive measure/. , — [0,1], and
VE, , €&, W,V, are all multiple priors forms which use a non-
unique prior, andW,V, ,V, use the same utility : X — R,

(i) If M is the Choquet Expected Utility family and if hypesis 2 and RCA
axiom hold, thervt = 0,...,T —1, VE, € £, W,V are all expected utility
forms which use a unique additive measwre2® — [0,1] and the same
utility »: X — R.

(i) If M is the Multiple Priors family and if RCA axiom s, then

Vi=0,.,T-1 VE €&, W,V, are all expected utility forms which use

a unique additive measure: 2° — [0,1] and the same utility, : X — R.

Proof. Throughout the proof, we assume folding back asctigbin (1). We first prove
part (i).

() Note that the main argument of the proof of theorem 2 is the Sure Thing-
Principle, which allows to replace any result onezent£_, for 7 = 0,...,7 —1, by
another result and so another utility. By propositl, STP holds of>=; },_, 1 -
By verify all cases, we can show that Vr=0,...7—-1 VE €&,
max m(E, E._)) = min(E, |E._,). Itimplies thatr is unique on%; _, s.t.V, uses an
unique additive measure. The rest of the proof irequno adaptation and

VE; , €&, W,V use a non-unique prior because we do not impose @i
{7, Yp, e - Therefore, V, ~ can use several conditional probabilities

(.

E;. ):& —101] s.t.
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7rZ-<ET) _
(B |ET—2)

VE, € & V' € C,m'(Ey|Ey ) =

Moreover, model consistency implies thavr=0,...,.7 -2, VE €&,

VEp , € & 4, W,V ,V,  usethe same utility. Now we prove statement (ii).

(i) For the CEU family, STP (consequentialism ahamic consistency) implies the
additivity of v on F ,V7 =0,...,T — 1. Therefore,

VE €& Vse E Vs € ESv({s}) +v({s'}) = v({s} U{s'}).
The main implication of RCA is that it does not rifgdhe preference ordering dR®
whatever partition fixed at time € 7'. It implies that STP holds off — 2 stages,
whatever filtration faced to the DM. All elementagyents fromS are separable.

Therefore, by verify all cases, we can show thats’ € S, v is additive such that
v({s}) +v({s'}) = v({s} U {s'}). Similarly to the proof of theorem 1, FUBU and DS

v(E,)

are reduced to Bayes rules such that=1..T.v(E |E )= .
V(‘E,Tfl ET*Q)

Therefore, W uses an additive measurg and V.V, ...V,  use conditional
probabilities calculated with Bayes rule. It imglighatVt =0,...,7 —1, VE, € &,
W,V are all expected utility forms which use an adgeitmeasurep : 25 [0,1] and

the same utilityu : X — R.

(i) Again the main implication of RCA is that implies STP onT —2 stages,
whatever filtration faced to the DM. ThereforéZ, C 2°, = is unique onF, ,. All
probabilities used by/ are obtained by probabilistic multiplication (Bayeule).
Therefore, given a rank-ordering of, folding back implies that the same probability
is used by all elements & on all filtrations. Extension of the proof of threm 3 is
straightforward, and we can shown that this prdiighis unique by verifying all

cases. This implies thatt =0,....,T -1, VE, € £, W,V, are all expected utility
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forms which use a unique additive measure2® — [0,1] and the same utility

u: X — R. [ |

6. Related literature and conclusion

Since Sarin and Wakker (1998), dynamic consistarfcflonExpected Utility
preferences has been studied in several paperseTpapers give an axiomatic
understanding of the links between NEU prefererar@$ dynamic choice. It is no
surprise that given NEU preferences, all of themaehto relax a specific dynamic
choice principle to preserve the other.

Regarding the CEU model, there are several waysdserve consistency in
dynamic choice situations. One is to impose sonstricions on behavior under
uncertainty. Assuming Model Consistency with resgeca convex capacity updated
with Bayes rule, Dempster-Shafer rule or FUBU (@mpsentialism) in all stages of the
filtration, Eichberger and al. (2005) show that a@ync consistency holds if and only if
the capacity is additive over the final stage. €hmme, to preserve dynamic
consistency, they assume aversion to ambiguity7on1 stages. Another way to
preserve dynamic consistency is to relax consealism. Chateauneuf and al. (2001)
relate conditioning and comonotony (or antimonojomiyinformation with the valued
random variable. The DM minimizes the role of imi@tion (pessimism). She uses
Bayes rule when information is comonotonic with adued act and Dempster-Shafer
rule when information is antimonotonic with it. Ass consequence, counterfactuals
outcomes do matter and hence consequentialism woe$old. This implies that
dynamic consistency can be preserved when infoomatis comonotone or
antimonotone with the valued act. A third way tesarve dynamic consistency is to
weaken model consistency. Nishimura and Ozaki (ROPBeserve dynamic
consistency of CEU preferences by weakening theonaxiof comonotonic
independence of Gilboa and Schmeidler (1989) frone t1 to time7 on a given

filtration. Therefore, they relax model consistency
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Similarly, several papers have extensively studé@é in dynamic choice
situations. Assuming consequentialism and reduafocompound acts, Sinischalchi
(2006) weakens dynamic consistency and showslilgallows the existence of a MP
representation in all stages of the filtration. sTlalso permits to take into account
Ellsberg-type preferences while preserving a fofrdymamic consistency.

It is also possible to preserve dynamic consistesfcylP model by imposing some

restrictions on the set of priors. Epstein and $der (2003) show that

consequentialism, dynamic consistency and modedistamcy hold with respect to a
MP representation if and only if the set of priggssrectangular. This assumption
implies that the set of priors does not containbphility measures which do not
ensure dynamic consistency of MP preferences. Arssequence, Ellsberg-type
preferences cannot always be taken into accoungEastein and Schneider note that,

in some settings, ambiguity may question dynamitsistency.

Pursuing the works of Sarin and Wakker (1998), weehstudied how decision
criteria that take attitude toward uncertainty iattcount could be consistently used in
sequential choice situations. Our result imply tRahExpected Utility models cannot
simultaneously satisfy consequentialism, dynamisigiency and model consistency.
To be more precise, these axioms impose some ctemts on the information
structure, which must contain unambiguous eventsi'enl stages. Adding up the
reduction of compound acts axiom implies that Ngodeted Utility models collapse
in Expected Utility in all stages of the filtratiomhe use of Multiple Priors and
Choquet Expected Utility models in sequential chosituations involves the same
restrictions. From a strictly technical point okwi, this result is due to the fact that

these models are based on a very similar axiorf@atiedation.
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