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1 Introduction

Long memory processes have received considerable attention by researchers
from very diverse �elds. The books by Beran (1994), Doukhan, Oppenheim
and Taqqu (2003) and Robinson (2003) provide updated surveys of recent
developments on this topic. The long memory processes are characterized by
a long-term dependence and the presence of cycles and level changes. They
were detected in economy in many �elds, for example in the dynamic of ex-
change rates or the volatility of �nancial time series. In addition, we assist
for the few latest years to a signi�cant development of nonlinear modelling.
For instance, in economics and �nance, multiple regimes modeling becomes
more and more important in order to take into account phenomena character-
ized for instance by recession or expansion periods, or high or low volatility
periods. Consequently, a variety of models has been proposed in the liter-
ature to account for this behavior, among which Markov switching models,
smooth transition autoregressive (STAR) models. The nonlinearity property
of economic time series can also be justi�ed by the existence of asymme-
try in variable�s dynamics, such as favorable shocks have a more important
and persistent e¤ect than the unfavorable shocks. In order to consider these
possible nonlinearities, it is necessary to have econometric models able to
generate di¤erent dynamic according to the cycle phase.
Therefore, this paper belongs to a literature exploring simultaneously

these two key properties of economic and �nancial time series, namely the
long-memory and nonlinear properties. Indeed, a line of papers has recently
proposed that we can call "nonlinear long-memory" models. For instance,
some authors provide a joint evidence of mean reversion over long horizons
and nonlinear dynamics on exchange rate markets, by generalizing to the
nonlinear framework the Beveridge-Nelson decomposition (see, Clarida and
Taylor (2001), Sarno and Taylor (2001)). Others propose new classes of long-
memory models. For instance, Franses and Paap (2002), Franses, Van der
Leij and Paap (2002) introduce CLEAR and Switching CLEAR processes,
which show autocorrelation at high lags with an ACF that decays at a faster
rate in the beginning in comparison to the ACF of an ARFIMA model.
Along this line of research, the fractionally integrated smooth transition

autoregressive (FISTAR) models have also been proposed, that o¤er another
potential application to economic and �nancial data (see van Dijk, Franses
and Paap (2002) and Smallwood (2005)). Van Dick, Franses and Paap (2002)
present the modeling cycle for speci�cation of these models, such as testing
for nonlinearity, parameter estimation and adequacy tests, in the case where
the transition function is the logistic function; they study the dynamics of
monthly US unemployment rates. Smallwood (2005) extends these results
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to consider the FISTAR model with an exponential transition function, and
applies this model to the purchasing power parity puzzle by considering the
real exchange rate processes for twenty countries against the United States.
In this paper, we study this class of models because these FISTAR models

indeed make it possible to generate nonlinearity, since they are de�ned by sev-
eral distinct modes in dynamics, and to take into account of the persistence
phenomenon. We consider the case of an exponential transition function and
propose a two-step estimation method: in the �rst step, we estimate the long
memory parameter, then, in the second step, the STAR model parameters
via nonlinear least squares estimation.
The remainder of this paper is organized as follows. In Section 2, we

present the FISTAR model with an exponential transition function and the
two-step estimation procedure; we describe also the out-of-sample forecast-
ing. In Section 3, we analyze the monthly US real e¤ective exchange rate
series in order to illustrate the various elements of the modelling cycle. Fi-
nally, Section 4 concludes.

2 The FISTAR model

2.1 Presentation of the model

Let us consider a process yt that satis�es the following long memory scheme:

(1� L)d yt = xt (1)

where xt is a covariance-stationary process. The parameter d is possibly non-
integer; in which case, the time series yt is called fractionally integrated (FI)
(see, among others, Granger and Joyeux (1980) and Hosking (1981)) and

(1� L)d = 1� dL� d(1� d)
2!

L2 � d(1� d)(2� d)
3!

L3 + ::: (2)

=

1X
j=0

�(j � d)
�(j + 1)�(�d)L

j;

where �(�) is the Gamma function and L is the lag operator. If �1
2
< d < 1

2
,

the process is stationary and invertible, and d represents the degree of long
memory behavior. For 0 < d < 1

2
, (yt) is a stationary long memory process

in the sense that autocorrelations are not absolutely summable and decays
hyperbolically to zero. Finally, if d � 1

2
; yt is nonstationary and the shocks

have permanent e¤ects.
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To capture the nonlinear feature of time series, a wide variety of models
can be used (see Franses and van Dijk (2000)). The smooth transition autore-
gressive (STAR) model is one of the more popular; it has been empirically
developed by Teräsvirta (1994) and is given by:

yt =

 
'10 +

pX
i=1

'1iyt�i

!
+

 
'20 +

pX
i=1

'2iyt�i

!
F (st; 
; c) + "t (3)

where "t is a white noise process, 
 is the transition parameter (
 > 0) and c
is the threshold parameter; the transition variable, st, is generally the lagged
endogenous variable. In most applications, the transition function F (st; 
; c)
is an exponential function or a logistic function.
Speci�cally, for the Exponential STAR (ESTAR)1 family of models, the

transition function takes the following form:

F (st; 
; c) = 1� exp
�
� 


�2st
(st � c)2

�
(4)

where �st is the standard deviation of st. The exponential transition function
is symmetric and the parameter 
 controls the degree of nonlinearity. As

 ! 0 or 
 !1, the exponential transition function goes to zero or 1, such
that the model in (3) becomes linear.
The logistic transition function is given by:

F (st; 
; c) =

�
1 + exp

�
� 


�st
(st � c)

���1
: (5)

The Logistic STAR (LSTAR)2 model describes thus an asymmetric behavior.
As 
 !1, the logistic transition function approaches an indicator function
depending on jst � cj, and the model becomes a threshold autoregressive
model. When 
 ! 0, F (st; 
; c) becomes equal to 0.5 such that the LSTAR
model reduces to a linear model.
In this paper, we consider the fractionally integrated STAR (FISTAR)

model introduced by van Dijk, Franses and Paap (2002) (see also Smallwood
(2005)); it combines the two representations in (1) and (3) and is given by:�

(1� L)d yt = xt
xt = ('10 +

Pp
i=1 '1ixt�i) + ('20 +

Pp
i=1 '2ixt�i)F (st; 
; c) + "t

(6)

1Paya and Peel (2006), Michael, Nobay and Peel (1997), Taylor, Peel and Sarno (2001),
and Sarantis (1999) applied the ESTAR models to exchange rates.

2Terasvirta and Anderson (1992), for instance, applied this model in order to char-
acterize the di¤erent dynamics from the industrial production for some OECD countries
during the expansion and recession phases.
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where "t is a martingale di¤erence sequence withE ["tj
t�1] = 0 andE ["2t j
t�1] =
�2 and 
t is the information set available at time t. The FISTAR model can
be also be written as follows:

(1� L)d yt =
�
�10 +

P1
j=1 �1;jyt�j

�
+
�
�20 +

P1
j=1 �2;jyt�j

�
F (st; 
; c) + "t;

(7)

where, �i0 = 'i0 and �i (L) = 'i (L) (1� L)
d for i = 1; 2 and j = 1; :::; p.

F (st; 
; c) is the transition function governing the movement from one regime
to another; the model will be called Logistic FISTAR (LFISTAR) when this
function is a logistic and Exponential FISTAR (EFISTAR) when it is an
exponential. The transition variable is a lagged value of yt, i.e. st = yt�m
with m > 0, where m is the delay parameter. The fractional parameter
d and the autoregressive parameters make the FISTAR model potentially
useful for capturing both nonlinear and long-memory features of the time
series yt. Indeed, as noted by van Dijk, Franses, and Paap (2002), the long-
run properties of yt are restricted to be constant and these are determined by
the fractional di¤erencing parameter; however, the short-run dynamics are
determined by autoregressive parameters.
We are going to present the di¤erent steps of the speci�cation procedure

for FISTAR models, such as it is proposed by van Dijk, Franses, and Paap
(2002):

� Specify a linear ARFI(p) model by selecting the autoregressive order p
by means of information criteria (Akaike (1974) or Schwarz (1978)).

� Test the null hypothesis of linearity against the alternative of a FISTAR
model. If linearity is rejected, select the appropriate transition variable.

� Estimate the parameters in the FISTAR model.

� Evaluate the model using misspeci�cation tests (no remaining nonlin-
earity, parameter constancy, no residual autocorrelation, among oth-
ers).

2.2 Linearity tests

Teräsvirta (1994) developed the procedure of testing linearity against STAR
models; he pointed out that this procedure is complicated by the presence
of unidenti�ed nuisance parameters under the null hypothesis. To overcome
this problem, he replaced the transition function F (st; 
; c) by a suitable
Taylor series approximation about 
 = 0; in the reparametrized equation,
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the identi�cation problem is no longer present, and linearity can be tested
by means of a Lagrange multiplier (LM) statistic. This procedure is extended
to LFISTAR models by van Dijk, Franses, and Paap (2002) and to EFISTAR
by Smallwood (2005).
Our empirical results show that the EFISTAR model is more appropriate

for modelling real exchange rate dynamics than the LFISTAR model. Thus,
we discuss only testing linearity against the EFISTAR model given by:xt =
('10 +

Pp
i=1 '1ixt�i) + ('20 +

Pp
i=1 '2ixt�i)F (st; 
; c) + "t8><>:

(1� L)d yt = xt
xt = �

0
1wt + �

0
2wtF (st; 
; c) + "t

F (st; 
; c) = 1� exp
�
� 

�2st
(st � c)2

� (8)

where wt = (1; xt�1; � � � � �; xt�p)0 ; �i = (�i0; �i1; :::; �ip)0 for i = 1; 2 and "t is
a martingale di¤erence sequence with E ["tj
t�1] = 0 and E ["2t j
t�1] = �2.
The problem of the presence of unidenti�ed nuisance parameters under

the null hypothesis in FISTAR model is almost the same in STAR model.
Thus, the �rst order Taylor expansion of the exponential transition function
around 
 = 0 is given by:

T1 (st; 
; c) = F (st; 
; c)

����
=0 + 
 @F (st; 
; c)@


����

=0

+R(st; 
; c) (9)

=



�2st
(st � c)2 +R(st; 
; c)

where R(st; 
; c) is a remainder term. Substituting T1 (st; 
; c) for F (st; 
; c)
in the second relationship of (8) and reparametrizing terms, the auxiliary
regression is given by:

xt = �
0
0wt + �

0
1wtst + �

0
2wts

2
t + et; (10)

where �0 = �1 +
�2
c2

�2st
; �1 = �2�2
c�2st

; �2 =
�2

�2st
; and et = "t + �wtR(st; 
; c).

Under H0 : �2 = 0 or 
 = 0, we have R(st; 
; c) = 0 and et = "t. Therefore,
the null hypothesis for linearity is given by: H0 : �1 = �2 = 0.
The existence of the fractional di¤erencing parameter, however, compli-

cates the construction of the LM type test statistic. Following van Dijk,
Franses, and Paap (2002), under the assumption that et � N (0; �2), the
conditional log-likelihood for observation t is given by:

lt = �
1

2
ln 2� � 1

2
ln�2 � e2t

2�2
: (11)
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The remaining partial derivatives evaluated under the null hypothesis H0 are
given by:

@lt
@�i

=
1

�2
b"twtsit; i = 0; 1; 2

@lt
@d

=
1

�2
et
@et
@d

= � b"t
�2

t�1X
j=1

b"t�j
j
;

where b"t are the residuals obtained from the ARFI model under the null
hypothesis. Therefore, the LM-type test statistic can be computed in a few
steps as follows:

� Estimate an ARFI(p), obtain the set of residuals b"t . The sum of
squared errors, denoted SSR0, is then constructed from the residualsb"t, SSR0 =PT

t=1b"2t :
� Regress b"t on wt, �Pt�1

j=1
b"t�j
j
and wtsit, i = 1; 2, and compute the sum

of squared residuals SSR1 under the alternative hypothesis.

� The �2 version of the LM test statistic is calculated as:

LM�2 =
T (SSR0 � SSR1)

SSR0
(12)

and is distributed as �2 (2 (p+ 1)) under H0 (T denotes the sample
size). The Fisher version3 of the LM test statistic is calculated as:

LMF =
(SSR0 � SSR1) =2 (p+ 1)
SSR1= (T � 3 (p+ 1))

(13)

and is distributed as an F (2 (p+ 1) ; T � 3 (p+ 1)) statistic under H0.

2.3 Estimation of the FISTAR model

It is important to obtain a consistent estimate of the long memory parameter
d because the test statistics for the FISTAR model depend on this estimated
value. In this section, we present two approaches for estimation of the para-
meters in the FISTAR model: in the �rst one, we estimate all the parameters
simultaneously (as proposed by van Dijk, Franses, and Paap (2002)), while
the second method consists in performing the estimation in two steps.

3The Fisher version is preferred than �2 when the sample size is small and that the
selected delay is important.
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2.3.1 Simultaneous estimation

To estimate the parameters of the FISTAR model, van Dijk, Franses, and
Paap (2002) modify "Beran�s (1995) approximate maximum likelihood (AML)
estimator for invertible and possibly nonstationary ARFIMA models to allow
for regime switching autoregressive dynamics". This estimator minimizes the
sum of squared residuals of the FISTAR model as follows:

S (�) =
TX
t=1

"2t (�) ; (14)

where � = (�01; �
0
2; d; 
; c) denotes the parameters of the FISTAR model (7).

The residuals "t (�) are calculated as follows:

"t (�) = (1� L)d yt �
�
�10 +

Pt+p�1
j=1 �1;jyt�j

�
�
�
�20 +

Pt+p�1
j=1 �2;jyt�j

�
F (st; 
; c)

(15)

with F (st; 
; c) = 1�exp
�
� 

�2st
(st � c)2

�
. Thus, conditional upon d; 
 and c;

van Dijk, Franses, and Paap (2002) remark that the FISTAR model is linear
in the remaining parameters; estimates of �1 and �2 can be thus obtained by
ordinary least squares as:

b� (d; 
; c)0 =  TX
t=1

wt (d; 
; c)wt (d; 
; c)
0

!�1 TX
t=1

wt (d; 
; c) yt

!
; (16)

where wt (d; 
; c) = (w0t; w
0
tF (st; 
; c))

0 : Therefore, the sum of squares func-
tion can be obtained by :

S (d; 
; c) =

TX
t=1

�
yt � b� (d; 
; c)0wt (d; 
; c)�2 : (17)

According to van Dijk, Franses, and Paap (2002), it can be di¢ cult to esti-
mate the model parameters jointly. In particular, accurate estimation of the
smoothness parameter 
 is quite di¢ cult when this parameter is large. They
proposed an algorithm that is based on a grid search over d; 
 and c in order
to obtain starting values for the non-linear least squares procedure.

2.3.2 Two steps estimation

The properties of the process yt depend on the value of the parameter d.
Many researchers have proposed methods for estimating the long memory
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parameter d. These methods can be summarized in three classes: the heuris-
tic methods (Hurst (1951), Higuchi (1988), Lo (1991)...), the semiparametric
methods (Geweke and Porter-Hudak (1983), Robinson (1994, 1995a and b),
Lobato and Robinson (1996)...) and the maximum likelihood methods (Whit-
tle (1951), Sowell (1992)...). In the �rst two classes, we can estimate only
the long memory parameter d. However, to �t an ARFIMA (p; d; q) model,
we need two steps: one �lters out the long memory component and then �ts
an ARMA (p; q) model to the residual series. In the last class, we estimate
simultaneously all the parameters.
The estimation method of the FISTAR model we propose proceeds in two

steps:

� In the �rst step, we estimate the long memory parameter d in the simple
model

(1� L)d yt = xt; (18)

using a standard estimation method, such as the Geweke and Porter-
Hudak (1983).

� Once we obtained bdGPH , in the second step, we �lter out the long
memory component and we estimate the STAR model parameters via
nonlinear least squares estimation.

2.4 Misspeci�cation tests of FISTAR models

Eitrheim and Teräsvirta (1996) develop misspeci�cation tests (residual auto-
correlation, remaining nonlinearity and parameter constancy) for the STAR
model. Van Dijk, Franses and Paap (2002) modify these tests to obtain
similar misspeci�cation tests for the FISTAR model.

� Testing the hypothesis of no residual autocorrelation. Consid-
ering the FISTAR model in (7), the null hypothesis of no autocorrela-
tion in "t can be tested against the alternative of serial dependence up
to order q, given by:

"t = �1"t�1 + � � � �+�q"t�q + et; et � iid
�
0; �2

�
: (19)

Thus, the null hypothesis, given by �1 = � � � = �q = 0, can be tested
by LM test, denoted as LMSI(q), that is equal to TR2, where R2 is
the coe¢ cient of determination. The LMSI(q) test, is asymptotically
�2 distributed with q degrees of freedom.
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� Testing the hypothesis of no remaining nonlinearity. The null
hypothesis can be tested against the additive third regime FISTAR
model, where F2(st; 
2; c2) is a logistic function. We apply Van Dijk�s
approach to the case where F2(st; 
2; c2) is an exponential function i.e.
to model given by:8><>:

(1� L)d yt = xt
xt = �

0
1wt + �

0
2wtF1 (st; 
1; c1) + �

0
3wtF2(st; 
2; c2) + et;

Fi(st; 
i; ci) = 1� exp
�
� 
i
�2st
(st � ci)2

�
; i = 1; 2:

(20)

The null hypothesis of no remaining non linearity is given by 
2 = 0.
This test su¤ers from a similar identi�cation problem as encountered
in testing linearity against a FISTAR model; the problem is solved
by replacing again F2(st; 
2; c2) by a suitable Taylor expansion around

2 = 0.

� Testing the hypothesis of parameter constancy. The null hy-
pothesis of the test of parameter constancy in the FISTAR model
against the alternative of smoothly changing parameters is based on:8<:

xt = '
0
1twt (1� F1 (st; 
1; c1)) + '02twtF1 (st; 
1; c1) + et

'1t = (1� F2 (s2t; 
2; c2))'1 + F2 (s2t; 
2; c2)'3
'2t = (1� F2 (s2t; 
2; c2))'2 + F2 (s2t; 
2; c2)'4

(21)

Lin and Teräsvirta (1994) and Lundberg and Teräsvirta (2001) sup-
posed that the parameters have the same transition function as the
endogenous variable, where the transition variable is s2t = t. The
identi�cation problem of the parameters is solved by a suitable Taylor
approximation of F2(t; 
2; c2). The LM type test statistics is denoted
as LMc.

2.5 Out-of-sample forecasting performance

Unlike the linear model, forecasting with nonlinear models is more com-
plicated, especially for several steps ahead (see, for instance, Granger and
Teräsvirta (1993)). Let us consider the EFISTAR model (8) which can be
written as: 8><>:

(1� L)d yt = xt
xt = G (wt; !) + "t

F (st; 
; c) = 1� exp
�
� 

�2st
(st � c)2

� (22)
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where G (wt; !) = �01wt+�
0
2wtF (st; 
; c) and ! = (�

0
1; �

0
2; 
; c)

0. The optimal
one-step ahead forecast of xt is given by:

xt+1jt = E (xt+1j
t) = G (wt+1; !) ; (23)

this forecast can be achieved with no di¢ culty and can be estimated bybxt+1jt = G (wt+1; b!) (24)

where b! is the parameter estimate. However, when the forecast horizon
is larger than one period, things become more complicated because the di-
mension of the integral grows with the forecast horizon. For example, the
two-step ahead forecast of xt is given by:

bxt+2jt = E �G � bwt+2jt; !� j
t� = Z 1

�1
G
� bwt+2jt; b!� f(")d" (25)

with bwt+2=t = �1; bxt+1jt + "t+1; xt; :::; xt+2�p�0. The analytic expression for the
integral (25) is not available. We thus need to approximate it using inte-
gration techniques. Several methods obtaining forecasts to avoid numerical
integration have been developed (see Granger and Teräsvirta (1993)). In this
paper, we use a bootstrap method suggested by Lundbergh and Teräsvirta
(2001). This approach is based on the approximation of E

�
G
� bwt+2jt; !� j
t�;

the optimal point forecast is given by :

bxt+2jt = 1

k

kX
i=1

G
�bw(i)t+2jt; b!� ; (26)

where k is some large number and the values of "t+1 in bw(i)t+2jt are drawn with
replacement from the residuals from the estimated model b"t:
In general, forecasts are evaluated using the mean squared prediction er-

ror (MSPE) and the root mean squared prediction (RMSE), where m is the
number of steps-ahead forecasts. Models with smaller MSPE have a better
forecast performance. Further, in order to assess the accuracy of forecasts de-
rived from two di¤erent models, we employ the Diebold and Mariano (1995)
test:

DM =
lq
2� bfl(0)
T

; (27)

where l is an average (over T observations) of a general loss di¤erential func-
tion and bfl (0) is a consistent estimate of the spectral density of the loss
di¤erential function at frequency zero. They show that the DM statistic is
distributed as standard normal under the null hypothesis of equal forecast
accuracy.
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3 Empirical results

The fractionally integrated models4 have been already applied in economics
and �nance, for instance to exchange rates (Diebold, Husted and Rush
(1991), Cheung and Lai (2001), Baillie and Bollerslev (1994)), in�ation (Has-
sler and Wolters (1995), Baillie, Chung and Tieslau (1996)) and unemploy-
ment modeling (Diebold and Rudebusch (1989), Tschernig and Zimmermann
(1992), Koustas and Veloce (1996), Crato and Rothman (1996)). Therefore,
the long memory models, such as the FISTAR, are not only able to study
the persistence but also to capture nonlinearity features such as thresholds or
asymmetries. They can be applied in various economic and �nancial �elds,
in particular the stock indexes, the exchange rates and the interest rates.
Van Dijk, Franses and Paap (2002) apply the FISTAR models to US unem-
ployment and Smallwood (2005) to the case of purchasing power parity. In
this paper, we study the behavior of exchange rates and compare the fore-
cast performances of the EFISTAR modeling compared to other more used
models.

3.1 The data

We use monthly data of the US real e¤ective exchange rate covering the
period June 1978 until April 2002; these data were obtained from the IMF
International Financial Statistics. The series is expressed in logarithm. The
use of monthly data provides us with a reasonably large sample and hence
meets the requirement of the linearity tests for many degrees of freedom.
The series is shown in Figure 1, which demonstrates a real appreciation of
the dollar during the beginning of the 1980�s followed by depreciation in 1985.
As noted by Smallwood (2005), consistently with the theoretical foundation
of Sercu, Uppal, and van Hulle (1995), we observe four periods after 1987
in which the dollar steadily appreciates and then rapidly depreciates after
reaching approximately the same value. This provides some support for the
use of nonlinear models.

3.2 Linearity tests results

Application of the linearity tests models requires stationary time series. The
unit root tests of Phillips and Perron (PP), Kwiatkowski, Phillips, Schmidt

4For a survey on long memory models and their applications in economics and �nance,
see Baillie (1996).
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and Shin (KPSS)5 and Dickey-Fuller Augmented (ADF) for the level and �rst
di¤erence of the real e¤ective exchange rates, measured in logarithms, are
shown in Table 1. These results indicate that the time series are integrated
of order 1 at both 5% and 1% signi�cance levels.
The selection of the maximum lag p, of the linear ARFI model was made

using the AIC and BIC criteria under the non autocorrelation hypothesis.
We allow for a maximum autoregressive order of p = 6. Both AIC and BIC
indicate that an ARFI model with p = 4 is adequate.
The linearity tests are displayed in Table 2. In carrying out linearity

tests, we have considered values for the delay parameter m over the range
[1; 6], and calculated the p � values for the linearity test in each case; the
estimate of m is chosen by the lowest p � value. Using 5% as a threshold
p�value, the test classi�es the US real e¤ective exchange rates as nonlinear.
Although the p � value is slightly higher than 5%, we show thereafter that
a nonlinear model describes the features of a time series better than a linear
model6 . Then the lowest p� value corresponds to m = 4 (m � p).

3.3 Estimation results

Estimation results for the ARFI and EFISTAR models are shown in table
3. The second column gives the ARFI model estimation; the estimate of d
is 0.941, showing that the long memory model is nonstationary. The results
of the second model are based on the speci�cation (8) where yt is the �rst
di¤erence of the US real e¤ective exchange rates. The third column of Table
3 contains simultaneous estimation results of the parameters. In particular,
the estimate of d is equal to �0:169 and belongs thus to the interval

�
�1
2
; 0
�
,

suggesting that the process is stationary and invertible. The autocorrela-
tion function decreases quickly than the case where 0 < d < 1

2
: (yt) is an

anti-persistent process. It is also interesting to note in the last column corre-
sponding to the two-step estimation that the degree of persistence measured
by the di¤erentiation parameter increases. If the GPH estimatior is used,�bdGPH = 0:218�, then the process is stationary and invertible. The auto-
correlation function decays hyperbolically to zero, thus yt is a long memory
process. The ratio of the standard errors for the nonlinear and linear models
for the simultaneous estimation of the EFISTAR model is equal to 0.840; it�s
higher than for the two-step estimation (0.670). We can thus con�rm that the
nonlinear model improves modelling of the exchange rate process, as shown

5Contrary to ADF test, the KPSS test considers the stationnarity under the null hy-
pothesis, and the alternative hypothesis is the presence of unit root.

6This result is also found in Sarantis (1999).
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by both estimation methods. It is worthwhile noting here the relative small
value of the estimation of 
 for the second estimation (2.547 compared to
12.655 for simultaneous estimation), suggesting that the transition from one
regime to the other is rather slow, contrary to �rst estimation which assumes
a slightly sharp switch. The parameter c indicates the halfway point between
the di¤erent phases of the exchange rate. The value of c is negative for the
�rst case, and not signi�cantly di¤erent from zero in the other. These val-
ues belong to the neighborhood of the sample mean for the exchange rates.
Figures 2 and 3 show the curves of the exponential transition function cor-
responding to the estimation of the EFISTAR model, the �rst one using the
simultaneous estimation method and the second one the two-step method.
Table 4 gives summary statistics and misspeci�cation tests for ARFI and

FISTAR models. In particular the p � values (using 5% as the threshold)
reject serial correlation, the presence of ARCH, and accept normality in the
residuals for both models. From the skewness and kurtosis of the series,
it is evident that the US real e¤ective exchange rate is symmetric and the
frequency curve is normal, this is con�rmed by the Jarque-Bera test for
normality. Moreover, the test of parameter constancy against the alternative
of smoothly changing parameters for st = t, give �ne results, and LM test
of no remaining non linearity is accepted for FISTAR model.

3.4 Forecasting performance

In this section, we evaluate the performance of EFISTAR model estimated
by the two-step estimation method, by comparing its out-of-sample forecasts
with the ARFI model. The �nal two years of data from January 2002 to
April 2004 for US real e¤ective exchange rate are used to evaluate the fore-
cast performance of the estimated linear ARFI and EFISTAR models. To
obtain the forecasts from nonlinear model, we use the method exposed in
section 2.5; the forecast accuracy is evaluated using mean squared prediction
error (MPSE) criterion. Further, in order to assess the accuracy of fore-
casts derived from two di¤erent models, we employ the Diebold and Mariano
(1995) test statistic for which the null hypothesis is the hypothesis of equal
accuracy of di¤erent predictive methods.
The results successfully provide evidence in favour of the predictive su-

periority of the EFISTAR model against the ARFI model using MPSE: the
MPSE of the linear model (0.0008451) is actually greater than the MPSE of
the nonlinear model (0.0004746). The statistical signi�cance of this result is
con�rmed executing the Diebold and Mariano test: the Diebold and Mariano
test statistic (p � value = 0:0412) indicates a statistically signi�cant di¤er-
ence in predictive accuracy for the EFISTAR model over the ARFI model
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speci�cations. We can thus conclude that the forecasts of the EFISTAR
modeling are signi�cantly better than those of the ARFI model.

4 Conclusion

The aim of this paper was to study the dynamic modelling of the US real
e¤ective exchange rates covering the period June 1978 until April 2002. We
considered the FISTAR model, as proposed in van Dijk, Franses and Paap
(2002), that can describe long memory and nonlinearity simultaneously and
be used to produce out-of-sample forecasts. We used their model to the case
of an exponential transition function. To this end, we employ two modelling
approaches corresponding to two di¤erent estimations (simultaneous estima-
tion or two-step estimation) of a EFISTAR model. The estimated EFISTAR
models seem to provide a satisfactory description of the nonlinearity and
persistency found in the US real e¤ective exchange rates. With regards to
the out-of-sample forecasting performance for US exchange rate, the tests
for comparing the predictive accuracy show that the EFISTAR model seems
better that the linear model.
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Figure 1: Monthly US real e¤ective exchange rate (Log)
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Figure 2: Exponential transition function (simultaneous estimation)

Figure 3: Exponential transition function (two-step estimation)
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Table 1. Unit root tests

Level First di¤erence
ADF -1.118 -7.287
PP -1.106 -12.281
KPSS 3.090 0.251

Note: The unit root tests are Phillips and Perron (PP), Kwiatkowski, Phillips, Schmidt

and Shin (KPSS) and Dickey-Fuller Augmented (ADF) tests. For ADF test, the 1%, and

5% critical values are -3.455 and -2.871, respectively. For KPSS test, the 1%, and 5%

critical values are 0.739 and 0.463, respectively.
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Table 2. Linearity tests (p� values)

m 1 2 3 4 5 6
LM-test 0.868 0.346 0.087 0.073 0.251 0.171
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Table 3. Estimation of the di¤erent models

ARFI
EFISTAR

(simultaneous
estimation)

EFISTAR
(two-step
estimation)

�10 -0.000 (0.001) -0.063 (0.026) -0.003 (0.014)
�11 0.346 (0.059) 0.665 (0.295) -0.175 (0.142)
�12 -0.136 (0.062) -0.167 (0.335) 0.156 (0.144)
�13 0.082 (0.062) 0.194 (0.394) 0.345 (0.163)
�14 -0.049 (0.059) -0.683 (0.290) 0.217 (0.126)
�20 -0.001 (0.001) -0.004 (0.015)
�21 1.256 (0.078) 0.470 (0.115)
�22 -0.458 (0.122) -0.238 (0.120)
�23 0.172 (0.119) 0.121 (0.103)
�24 0.035 (0.075) -0.195 (0.121)
d 0.941 (0.134) -0.169 (0.007) 0.218� (0.200)

 12.655 (8.648) 2.574 (1.190)
c -0.101 (0.003) 0.022 (0.020)
SE 0.840 0.670

Note: The standard errors are displayed in parentheses. * : GPH estimator. SE is

the ratio of residual variance for the nonlinear and linear models.
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Table 4. Diagnostic tests

ARFI FISTAR
AIC -8.195 -8.181
BIC -7.846 -0.1327
SK -0.166 -0.1327
Kr 3.297 3.006
JB 1.313 (0.518) 0.463 (0.793)
ARCH(1) 0.981 (0.321) 0.714 (0.398)
ARCH(2) 1.778 (0.411) 1.292 (0.524)
ARCH(3) 5.634 (0.130) 2.933 (0.402)
ARCH(4) 7.605 (0.107) 4.276 (0.370)
LMSI(2) 0.765 (0.467) 1.764 (0.175)
LMSI(4) 1.174 (0.325) 2.179 (0.075)
LMSI(6) 1.280 (0.271) 2.111 (0.057)
LMSI(8) 1.118 (0.355) 1.690 (0.106)
LMSI(31) 0.746 (0.817) 0.965 (0.529)
LMNL - 0.937 (0.521)
LMC - 0.701 (0.778)

Note: The table presents selected diagnostic and misspeci�cation tests statistics for the

estimated FISTAR and ARFI models for the US real e¤ective exchange rate; the numbers

in parentheses are p-values. SK is skewness, Kr is kurtosis, JB is the Jarque�Bera test

of normality of the residuals, ARCH(r) is the LM test of no autoregressive conditional

heteroscedasticity up to order r, LMSI(q) denotes the LM test of no serial correlation in

the residuals up to order q, LMNL is the LM test of no remaining non linearity, and LMC
is the LM test of parameter constancy.
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