M. Barbut and B. Monjardet, Ordre et Classification, Algèbre et Combinatoire, tomes I-II, 1970.

J. Berman and G. Bordalo, Finite distributive lattices and doubly irreducible elements, Discrete Mathematics, vol.178, issue.1-3, pp.237-243, 1998.
DOI : 10.1016/S0012-365X(97)81832-8

G. Bordalo and B. Monjardet, Reducible classes of finite lattices, Order, pp.379-390, 1996.

G. Bordalo and B. Monjardet, The lattice of strict completions of a finite poset, Algebra Universalis, vol.47, issue.2, pp.183-200, 2002.
DOI : 10.1007/s00012-002-8183-2

G. Bordalo and B. Monjardet, Finite orders and their minimal strict completion lattices, Discussiones Mathematicae - General Algebra and Applications, vol.23, issue.2, pp.85-100, 2003.
DOI : 10.7151/dmgaa.1065

N. Caspard, A characterization theorem for the canonical basis of a closure operator, Order, pp.227-230, 1999.

N. Caspard and B. Monjardet, The lattices of closure systems, closure operators, and implicational systems on a finite set: a survey, Discrete Applied Mathematics, vol.127, issue.2, pp.241-269, 2003.
DOI : 10.1016/S0166-218X(02)00209-3

URL : https://hal.archives-ouvertes.fr/hal-00095569

N. Caspard and B. Monjardet, Some lattices of closure systems, Discrete Math. Theor. Comput. Sci, vol.6, pp.163-190, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00959003

B. A. Davey and H. A. Priestley, Introduction to lattices and order, 1990.
DOI : 10.1017/CBO9780511809088

R. P. Dilworth, Lattices with Unique Irreducible Decompositions, The Annals of Mathematics, vol.41, issue.4, pp.771-777, 1940.
DOI : 10.2307/1968857

P. H. Edelman and R. E. Jamison, The theory of convex geometries, Geometriae Dedicata, vol.19, issue.3, pp.247-270, 1985.
DOI : 10.1007/BF00149365

M. Erné, Bigeneration in complete lattices and principal separation in ordered sets, Order, pp.197-221, 1991.

F. Lorrain, Notes on Topological Spaces with Minimum Neighborhoods, The American Mathematical Monthly, vol.76, issue.6, pp.616-627, 1969.
DOI : 10.2307/2316662

B. Monjardet, The consequences of Dilworth's work on lattices with unique irreducible decompositions The Dilworth theorems Selected papers of Robert P, Dilworth, pp.192-201, 1990.

B. Monjardet and V. Raderanirina, The duality between the anti-exchange closure operators and the path independent choice operators on a finite set, Mathematical Social Sciences, vol.41, issue.2, pp.131-150, 2001.
DOI : 10.1016/S0165-4896(00)00061-5

URL : https://hal.archives-ouvertes.fr/halshs-00214289

J. B. Nation and A. Pogel, The lattice of completions of an ordered set, Order, pp.1-7, 1997.

J. Niederle, Boolean and distributive ordered sets: Characterization and representation by sets, Order, vol.41, issue.2, pp.189-210, 1995.
DOI : 10.1007/BF01108627

O. Ore, Some studies on closure relations, Duke Math, J, vol.10, pp.761-785, 1943.

I. Rabinovitch and I. , The rank of a distributive lattice, Discrete Mathematics, vol.25, issue.3, pp.275-279, 1979.
DOI : 10.1016/0012-365X(79)90082-7

N. Reading, Order dimension, strong Bruhat order and lattice properties for posets, Order, pp.73-100, 2002.

J. Schmid, Quasiorders and sublattices of distributive lattices, Order, pp.11-34, 2002.

M. Wild, A Theory of Finite Closure Spaces Based on Implications, Advances in Mathematics, vol.108, issue.1, pp.118-139, 1994.
DOI : 10.1006/aima.1994.1069